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Abstract

A Fluid-Structure Finite Element Method is developed to compare the self propulsion mechanism ef-
ficiency of two jellyfishes, Philiadium Gregarum and Aurelia aurita. The motion is generated by circular
muscles that contract and generate a hydrodynamic propulsive jet. This jet is the principal source of thrust
of jellyfishes. The propulsive efficiency of the animal can be evaluated when comparing the resulting momen-
tum with input power from the muscles. An axisymmetric numerical model of the animal has been set up and
muscular forces modeled by body forces. Several parameters control this Fluid-Structure configuration. For
instance, the excitation forces of muscles over a propulsive cycle, shape, amplitude, frequency, contraction,
relaxation, the material properties and the morphology of the jellyfish body are key parameters.

I. Introduction

Biology offers a wide variety of propulsive mechanisms that engineers can mimic to their advantage.1, 2

In hydrodynamics, cetaceans have evolved shapes that delay stall on their flippers thus enhancing both
manoeuvering and propulsive efficiency.3 The case of the jellyfish, is especially interesting because the
mechanism for its propulsion is very different from that of whales. The cyclic contractions of its bell result
in a sequence of periodic impulse jets. Several experimental studies describe the kinematics and dynamics
of the motion from video recordings and wake measurements.4–6

Dabiry5 studied the swimming performance of jellyfish from a vortex dynamics point of view. More
precisely, they studied the properties of the wake induced by the motion of the animal. They show that the
vortex ring generated by jetting contributes to the propulsive forces in terms of vortex added-mass. Hence it
contributes to the regulation of the body motion of the animal over one cycle. Peng and Dabiri6 applied the
Lagrangian Coherent Structures approach in a potential flow to deduce forces and moments on a swimming
animal.

McHenry and Jed4 studied the hydrodynamic and swimming performance of an Aurelia Aurita. They
develop a point mass model based on Newton’s first law of dynamics, correlations for forces and some
kinematic information extracted from video recordings in the wild. The model was calibrated on other video
data. They used this calibrated model to understand the scaling rules for hydrodynamic forces and predict
how changes in size, shape and motion of the body influence the swimming performance. Their conclusion is
that shape is very important. Prolateness of the bell controls the energetic cost of motion and the speed. The
more prolate the bell is, the faster the jellyfish swims and the more energy it consumes. The model relies so
much on correlation that they experience difficulties at discriminating between slightly different individuals.
Achieving such level of resolution requires higher fidelity models capable of describing the details of the flow
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in and around the medusa, and the large displacements and geometrical changes of the bell. This is the
topic of our paper.

The fourth author of this abstract harvested samples of the population Philiadium Gregarum in the coastal
water of British-Columbia during the month of June 2008. He measured the geometrical characteristics of
individual of different sizes (equivalent to age).

From available data in the literature on Aurelia Aurita and our data on Philiadium Gregarum we can
compare the efficiency of both jellyfishes.

We use the partial differential equations describing viscous laminar flows (the Navier-Stokes equations)
and nonlinear equations of hyperelasticity to predict the forces and moments that enter the equations de-
scribing the dynamics of the motion of the medusa’s center of mass. (i.e. the correlations of the previous
models)

Zhao et al. applied a cartesian mesh method combined to a projection technique and computed a swim-
ming period of a jellyfish in two-dimensions. An advantage of this combined method is that deformation of
the mesh is not an issue. However, the immersed-interface treatment requiring projection and the interpo-
lation of the different variables at the interface location both affect the overall accuracy.

We here study the jellyfish motion in an axisymmetric frame of reference with an ALE-FEM formulation
for the incompressible fluid flow and a Total Lagrangian FEM formulation for the solid. We first present the
governing equations and the solution procedure and then show results for a jellyfish motion.

II. Shapes of the two species

The typical shapes of the Philiadium Gregarum and Aurelia Aurita jellyfishes are shown on Fig. 1. Data
concerning Philiadium Gregarum have been obtained on samples collected by Chris Cameron off the coast
of Vancouver Island. Geometrical shapes as well as density of the animals have been measured. Period of
motion, amplitudes of bell displacements, forward velocities and periods of contraction have been recorded
on these samples. Informations for Aurelia Aurita have been extracted from the work by McHenry and Jed.4

Philiadium Gregarum Aurelia Aurita

Contracted
shape

Expanded
shape

Figure 1. Shapes of Philiadium Gregarum and Aurelia Aurita.
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III. Governing Equations

The flow of an incompressible fluid is described by the continuity and momentum equations7 written in
convective (non-conservative) form

∇ · uf = 0 (1)

ρfuf,t + ρfuf · ∇uf = ∇ · σf (2)

On an arbitrary time-dependent coordinate system, the momentum equations (2) are written as (8)

ρfuf,t + ρf (uf − um) · ∇u = ∇ · σf (3)

where um is the mesh velocity, ρf the fluid density, uf the fluid velocity, σf the total fluid stress tensor
(pressure and viscous forces). Equations (1) and (2) are expressed in an Eulerian frame of reference while
equation (3) is expressed in an Arbitrary Lagrangian Eulerian (ALE) coordinate system. Details of its
development can be found in the paper by Lacroix and Garon.8 Assuming that the fluid is Newtonian, its
constitutive equation is given by:

σf = τ f − pI

= µf [∇uf + (∇uf )T ] − pI

where µf is the dynamic viscosity and p is the fluid pressure. The flow equations are closed with the following
boundary conditions,

σf · n = tf on Γf
N (4)

uf = uf on Γf
D

where Γf
N denotes a boundary where Neumann conditions are applied in the form of prescribed surface forces

(tractions) tf , and Γf
D corresponds to a Dirichlet boundary on which the velocity, uf , is imposed.

The differential equations for equilibrium on the initial undeformed configuration are

ρs0us,t + ∇ · σl + fs = 0 (5)

us = χs,t

with fs a body force.

σl = Fσk (6)

σk = λstr(E)I + 2µsE (7)

where λs and µs are the Lamé constants and E the Green-Lagrange strain tensor.
Eqs. (5) are supplemented by the following boundary conditions,

σl · n = ts on Γs
N (8)

χs = χs on Γs
D (9)

Along the fluid-solid interface one must have

uf = us (10)

σcn̂s + σf n̂f = 0 (11)

where σs is the Cauchy stress tensor and σf is the usual viscous stress tensor.

σc =
FσkF

T

J
(12)

(13)
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IV. Motion of the mesh

The mesh motion is arbitrary except on the solid-fluid interface where the fluid nodes and solid nodes
must follow the interface distortion and motion. Our ALE formulation is adapted for describing the fluid
flow in a deforming domain and the motion of the fluid mesh is described by linear elasticity equations, the
so-called pseudo-solid approach.9 In this approach, the fluid domain is assumed to deform like an elastic
solid body so that the usual Lagrangian elasticity equations of solid mechanics can be used to ensure that
the shape of the fluid domain conforms to the new geometry of the animal.

V. Motion of the interface nodes

If the initial boundary discretisation resolves nicely the surface of the animal, interface nodes need not
move in the tangential direction, i.e. they stick to the animal surface.

VI. Key components of the simulation

A successful simulation of the propulsion of a jellyfish must simultaneously account for

1. the details of the hydrodynamic forces on the jellyfish and the details of the flow in and around the
animal,

2. the large finite displacements of the bell of the jellyfish causing the pulsatile jetting action responsible
for its motion,

3. the motion of the animal in an inertial frame of reference.

These steps are accounted for by the PDE’s described in the previous section

VII. Finite element solver

A monolithic formulation of the above equations is adopted. It couples all degrees of freedom of the
problem:

• velocity, pressure and pseudo-solid displacements in the fluid domain (u, v, p, ξ, η)

• velocity and displacements in the solid (u, v, ξ, η)

• reactions at the interface.

This approach requires that all equations be treated implicitly in the time integration scheme. This method-
ology is applicable not only for flows on deforming meshes but also to fully implicit monolithic treatment
of unsteady Fluid-Structure Interactions. Linearization of the flow and mesh equations must account for all
implicit dependencies to ensure quadratic convergence of Newton’s method.10 These steps are implemented
in a simple and straightforward manner through the use of a numerical Jacobian.

The velocity and displacement fields are discretized using 6-noded quadratic elements. Fluid pressure is
discretized by piecewise linear continuous functions. The resulting sparse matrix system is solved using the
PARDISO software.11, 12

The temporal ans spatial accuracy of the monolithic FSI algorithm has been verified in previous commu-
nications.13, 14

VIII. Preliminary Numerical results

The geometry and boundary conditions are depicted on Fig. 2. Except for boundary conditions on
the symmetry axis and interface between fluid and solid, all boundary conditions are Neumann boundary
conditions. This allows the domain to move along with the animal. The non-dimensional Young modulus
of the solid is 130, its Poisson coefficient is 0.45. The non-dimensional fluid viscosity is 2.10−4, the non-
dimensional fluid density is equal to 1 as is that of the jellyfish. The system is started from rest and body
forces are applied periodically to mimic the stress of the jellyfish muscles as depicted on Fig. 3.
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The muscle excitation of the jellyfishes are of pacemaker type so that a periodic excitation corresponds
well to the natural behavior of these animals. The non-dimensional period is T = 15. We have chosen
the force time evolution described on Fig. 3. The direction is transverse to the motion of the animal since
muscles are axisymmetric and thus can only contract radially. It is difficult to obtain data on the excitation
of muscles. However, McHenry4 described cycles of the motion of jellyfishes and observed that excitation
takes place over a quarter of a period while the other three-quarters correspond to relaxation.

uf = free
vf = free
χps  = (free,free)

uf = free, vf = 0, χps = (free,0) uf = free, vf = 0, χps = (free,0)

uf = free
vf = free
χps  = (free,free)

uf = free, vf = 0, χps = (free,free)

Flow domain

Interface

Boundary

conditions

Figure 2. Geometry and boundary conditions for the jellyfish FSI problem.
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Figure 3. Direction and intensity of the force model representing the jellyfish muscles.

The mesh used for the simulation is depicted on figure 4. It is constituted of 96000 nodes and 48000
elements. There are two levels of node concentration. The most visible is the one corresponding to the near
wake generated by the animal. An additional level of mesh refinement is required around the tip of the bell.
This is necessary to properly resolve the large shear strains and pressure gradients occurring in this area.

Figure 5 shows the vorticity field at different instants in a cycle. Note that vorticity always remain
positive inside the bell. This confers two properties. Firstly, vorticity naturally brings nutrients to the
mouth. Secondly, it contributes to the motion of the animal since it brings fluid inside the umbrella which
maintains a high pressure level. Note that negative vortex rings are ejected in the wake. Their effects on
motion decays quickly with distance.

Referring to Fig. 6, the interval from t=0 to 30 corresponds to the initial transient in which the animal
accelerates from rest over two periods of contraction. Beginning with t=30 the jellyfish appears to have
reached an established pulsed motion. During the third period of simulation t=30 to 45, the animal has
moved by 1.5 diameter which appears to be in agreement with experimental observations.4, 15

Note the large displacements of the tip of the bell at t = 32.5 (the maximum occurs at the end of the
contraction (1/4 period) at t = 33.5. This a clear indication that the structural model of the jellyfish bell
must at the very least include geometric nonlinearities. given that the jellyfish is mostly water, it is possible
that a constitutive equation for incompressible material might also be required.
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Figure 4. Mesh of 96000 nodes.

Figure 5. Vorticity field and jellyfish shape at t =30, 32.5, 35, 37.5, 40., 42.5, 45.
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We can convert dimensionless results to dimensional responses. Noting that viscosity of sea water is
10−6m2/s and that our non-dimensional viscosity is set to 2.10−4, we find that our model corresponds to
medusa with a diameter of 2cm and of a period of 1.2s. With this information, we calculate that the animal
moved by 3cm over the third period of Fig. 6 at a speed of 2.5cm/s which is in the range of observed velocities
for individuals of this size.
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Figure 6. Displacement as a function of time.

IX. Conclusions

We have presented a flow-structure interaction model for predicting the swimming characteristics of
jellyfishes. Preliminary results indicate that the predicted motion of the animal compares well with in-situ
measurements.

A. Work-In-Progress

Work progresses over several fronts.

• the final manuscript will report all details on the geometry of the 2 species,

• the final manuscript will provide all data used for the simulations including density, viscosity of the
fluid, material properties of the body of the animals,

• the manuscript will compare effects of stem in Philadium on propulsion and flow

• the manuscript will report details of the flow fields generated by the two species velocity, pressure,
vorticity fields absolute streamlines and streak lines to document the flows around each animal,

• details of the mesh will be provided along with a description of the procedures and constraints imposed
on the motion of the mesh to avoid negative volumes of elements,

• comparison will be made via solution animation,

• finally predictions will be compared to field measurements for global quantities such as displacement
and speed of the center of mass of the animals, and local quantities such as velocity and vorticity fields
extracted from PIV measurements performed at University of British Columbia.
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