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Université de Montréal and Imperial College London

January 8, 2008

Abstract

The log transformation of realized volatility is often preferred to the raw version of realized
volatility because of its superior finite sample properties. One of the possible explanations for this
finding is the fact the skewness of the log transformed statistic is smaller than that of the raw
statistic. Simulation evidence presented here shows that this is the case. It also shows that the log
transform does not completely eliminate skewness in finite samples. This suggests that there may
exist other nonlinear transformations that are more effective at reducing the finite sample skewness.

The main goal of this paper is to study the accuracy of a new class of transformations for
realized volatility based on the Box-Cox transformation. This transformation is indexed by a
parameter β and contains as special cases the log (when β = 0) and the raw (when β = 1)
versions of realized volatility. Based on the theory of Edgeworth expansions, we study the accuracy
of the Box-Cox transforms across different values of β. We derive an optimal value of β that
approximately eliminates skewness. We then show that the corresponding Box-Cox transformed
statistic outperforms other choices of β, including β = 0 (the log transformation). We provide
extensive Monte Carlo simulation results to compare the finite sample properties of different Box-
Cox transforms. Across the models considered in this paper, one of our conclusions is that β = −1
(i.e. relying on the inverse of realized volatility also known as realized precision) is the best choice if
we want to control the coverage probability of 95% level confidence intervals for integrated volatility.
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†Département de sciences économiques, CIREQ and CIRANO, Université de Montréal. Address: C.P.6128, succ.
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1 Introduction

The logarithmic transformation of realized volatility (the sum of squared intraday returns) is known

to have better finite sample properties than realized volatility and for this reason it is often used in

empirical applications involving realized volatility. This transformation was first used by Andersen,

Bollerslev, Diebold and Labys (2001) to induce normality for realized volatility measures for high

frequency exchange rates returns. Andersen, Bollerslev, Diebold and Ebens (2001) applied it to high

frequency stock returns. Barndorff-Nielsen and Shephard (henceforth BN-S) (2002) studied the first

order asymptotic properties of the log transformation, whereas BN-S (2005) showed by simulation that

the finite sample distribution of the log transformation was closer to the asymptotic standard normal

distribution than the finite sample distribution of the non-transformed version of realized volatility.

Gonçalves and Meddahi (2008, henceforth GM (2008)) provide a theoretical explanation of this finding

based on Edgeworth expansions of the distribution of realized volatility and of its log version.

In this paper we introduce a new class of nonlinear transformations of realized volatility based

on the Box-Cox transformation. This transformation is indexed by a parameter β and includes as

special cases the log transformation (when β = 0) and the linear (or raw) version of realized volatility

(when β = 1). BN-S (2002) briefly discuss some nonlinear transformations for realized volatility as an

alternative to the log transform, but no higher order theory is presented. Here we study the higher

order asymptotic accuracy of Box-Cox transforms across different values of β. Our results suggest that

the log transformation can be improved upon by choosing values of β other than zero. We derive an

optimal value of β for which the skewness of the higher order expansion of the distribution associated

with this transformation is equal to zero and show that its finite sample properties are often superior to

those associated with other Box-Cox transformations (including the log). The transformation based

on the optimal value of β is infeasible because it depends on the volatility process. We therefore

propose a consistent estimator of the optimal value of β and study its finite sample properties. Our

results suggest that estimation of β can induce significant distortions in finite samples. In practice,

a fixed value of β equal to −1 (the so-called precision) proves to be a better choice if the target is

to obtain 95% level confidence intervals for integrated volatility whose actual coverage is close to the

desired level of 95%. The value of β = −1 yields coverage probabilities that are roughly similar to

those obtained with the i.i.d. bootstrap for β = 1 (see GM (2008)). However, the i.i.d. bootstrap for

β = 0 tends to outperform the confidence intervals based on β = −1, which suggests that an i.i.d.

bootstrap for β = −1 may yield even more accurate intervals than the first order asymptotic theory

based intervals studied in this paper.

Power transformations have for a long time been known to improve the quality of the asymptotic

normal distribution in finite samples. A leading example is the Wilson and Hilferty (1931) cube root

transformation of chi-squared i.i.d. random variables. More recently, Chen and Deo (2004) propose

power transformations for statistics that are positive linear combinations of positive independent ran-
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dom variables, thus generalizing the Wilson and Hilferty (1931) power transformation. In particular,

they provide a method to choose the optimal power that approximately eliminates skewness in finite

samples for statistics whose asymptotic variance is known and does not need to be estimated (for

realized volatility-based statistics, these correspond to infeasible statistics because in practice we do

not know the asymptotic variance of realized volatility). Chen and Deo’s (2004) setup allows for linear

combinations of independent and possibly heterogeneous random variables. Because conditionally on

the volatility path, the returns are independent but heteroskedastic, the optimal power transforma-

tions that we derive here for the infeasible statistics can be obtained as a special case of Chen and

Deo’s (2004) results. Since in our context these transformations are a function of the volatility path

and therefore are infeasible, we propose consistent estimators for the optimal power transformations.

In this paper, we also derive the optimal Box-Cox transform for feasible statistics based on realized

volatility. These are studentized statistics which replace the asymptotic variance with a consistent

estimator and are not studied in Chen and Deo (2004). Our results show that the optimal Box-Cox

transformation that approximately eliminates skewness for the feasible transformed statistic is different

from the optimal Box-Cox transformation that applies to the infeasible statistic. When returns are

homoskedastic, the optimal transform corresponds to β = −1/3 instead of β = 1/3.

Unlike the infeasible statistic, the feasible statistic is biased (due to the estimation of the asymptotic

variance). Thus we also derive the optimal Box-Cox transform that eliminates the bias. Under constant

volatility, it corresponds to β = −1. Under stochastic volatility, our optimal Box-Cox transforms

depend on the volatility path and need to be estimated. Our simulations show that estimation of the

optimal power transforms creates some finite sample distortions. In practice, a fixed β = −1 reduces

both the bias and the skewness and therefore yields good coverage probabilities.

The idea of using Edgeworth expansions to compare the accuracy of the asymptotic distribution

for alternative statistics of interest has been used previously in other contexts. An example is Phillips

and Park (1988), who use Edgeworth expansions to investigate alternative forms of the Wald test for

nonlinear restrictions. Phillips and Park (1988) derive Edgeworth expansions for the distribution of

Wald tests for different formulations of a given nonlinear restriction and utilize the associated correction

terms to determine which form is more closely approximated by the asymptotic distribution.

The rest of this paper is organized as follows. In Section 2 we introduce the setup and study

by simulation the finite sample properties of the log transform for realized volatility in comparison

with the raw realized volatility. In Section 3 we study the higher order properties of the Box-Cox

transformation. We complement our theoretical analysis with Monte Carlo simulation results. Section

3.1 considers infeasible statistics, for which the asymptotic variance is assumed known. In Section

3.2 we study the Box-Cox transformed feasible statistics, which replace the unknown asymptotic

variance with a consistent estimator. Section 4 concludes. Appendix A contains details on the Monte

Carlo design and on how to construct confidence intervals for integrated volatility based on Box-Cox

transformed realized volatility statistics. Appendix B contains the proofs of the our theoretical results.

2



2 Setup and Motivation

The goal of this section is to explore by simulation some possible explanations for the improved

accuracy of the normal distribution when applied to the log transform. As we will see, the skewness

of the log transformed realized volatility is substantially smaller than that of the non-transformed

statistic and this can explain why the log transform performs better in finite samples. Our results

also show that the log transform does not completely eliminate the skewness in finite samples. This

finding suggests that there may exist other nonlinear transformations that more efficiently reduce the

finite sample skewness. This motivates our study of the Box-Cox transformation in the next section.

We consider the same setup as in GM (2008). More specifically, the log price process {log St : t ≥ 0}
follows d log St = σtdWt, where Wt denotes a standard Brownian motion and σt a volatility term. We

assume the drift term is zero and we suppose the independence between Wt and σt. Because our higher

order cumulants expansions rely on the higher order expansions for general nonlinear statistics derived

in GM (2008), we exclude drift and leverage effects, consistent with Assumption H of GM (2008).

Intraday returns at a given horizon h are denoted ri and are defined as ri ≡ log Sih − log S(i−1)h =
∫ ih
(i−1)h σudWu, for i = 1, . . . , 1/h, with 1/h an integer. The parameter of interest is the integrated

volatility over a day, σ2 =
∫ 1
0 σ2

udu, where we have normalized the daily horizon to be the interval

(0, 1). The realized volatility estimator is defined as R2 =
∑1/h

i=1 r2
i . Following the notation of GM

(2008), we let the integrated power volatility be denoted by σq ≡
∫ 1
0 σq

udu for any q > 0. The realized

q-th order power variation is defined as Rq = h−q/2+1
∑1/h

i=1 |ri|q . Under certain regularity conditions

(see BN-S (2004) and Barndorff-Nielsen et. al. (2006)), Rq
P→ µqσ

q, where µq = E |Z|q, Z ∼ N (0, 1).

As h → 0, it also follows that (BN-S (2002), Jacod and Protter (1998))√
h−1

(

R2 − σ2
)

√
V

→d N (0, 1) , (1)

where V = 2σ4 is the asymptotic variance of
√

h−1R2. Similarly, as first proved by BN-S (2002),√
h−1

(

R2 − σ2
)

√

V̂
→d N (0, 1) , (2)

where V̂ = 2
3R4 is a consistent estimator of V .

The log versions of (1) and (2) are given by√
h−1

(

log (R2) − log
(

σ2
))

√

V

(σ2)
2

→d N (0, 1) (3)

and √
h−1

(

log (R2) − log
(

σ2
))

√

V̂
(R2)2

→d N (0, 1) , (4)

respectively.

We compare the log transformed statistics with the raw statistics in a Monte Carlo study. The
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design is the same as in GM (2008). In particular, we consider two stochastic volatility models. The

first model is the GARCH(1,1) diffusion of Andersen and Bollerslev (1998) and the second model is

a two-factor diffusion model analyzed by Huang and Tauchen (2006). We assume no drift and no

leverage effects. 100,000 Monte Carlo replications are used throughout. Appendix A contains more

details on the Monte Carlo design.

We consider two types of statistics: infeasible statistics, such as (1) and (3), for which the asymp-

totic variance depends on the true volatility process, and feasible statistics, such as (2) and (4), which

are based on a consistent estimator of the asymptotic variance. We include infeasible statistics in our

study for two reasons. First, the contrast between the infeasible and the feasible statistics is important

to help us understand the finite sample performance of the feasible statistics (in particular, estimation

of the asymptotic variance matters in finite samples and it deteriorates the properties of the feasible

statistic). Second, as we will show next, the optimal Box-Cox transformation is different when applied

to the infeasible or to the feasible statistics. By including the infeasible statistic in the Monte Carlo

study we can evaluate the performance of these two choices for both types of statistics.

Tables 3 and 4 contain the results for the infeasible R2-based statistics for the GARCH(1,1) and

the two-factor models, respectively. Tables 5 and 6 contain the corresponding results for the feasible

versions of these statistics. In these tables we find results for several Box-Cox transformed statistics,

but for now we only discuss the results for the raw statistics (β = 1) and for their log transforms

(β = 0). For each sample size (h−1 = 12, 48, 288 and 1152), we computed the finite sample summary

statistics for each version of the R2-based statistic, namely the mean, the standard error, the skewness1

and the excess kurtosis, across the 100,000 Monte Carlo replications. We also computed the coverage

probability of two-sided symmetric and lower one-sided 95% level intervals for integrated volatility.

See Appendix A for more details on how to build confidence intervals for integrated volatility based

on the infeasible and feasible statistics.

Tables 3 and 4 suggest the bias is smallest (and close to zero) for the raw version of the infeasible

statistic. This is in line with the fact that the raw statistic has zero bias by construction. In contrast,

the log transform introduces a negative bias, especially at the smallest sample sizes. The raw statistics

have right skewed distributions, especially for the small sample sizes and for the two-factor diffusion.

The degree of asymmetry is smaller for the log version than for the raw version of the statistics. This

transformation clearly reduces the amount of finite sample skewness and is particularly effective in

doing so for the two-factor diffusion. The log transform is also able to reduce excess kurtosis. The

actual coverage rates of symmetric 95% level confidence intervals based on the raw statistics are close

to the desired level for all sample sizes. Interestingly, the one-sided intervals are too conservative

whereas the log based intervals tend to undercover (the latter is probably due to the negative bias).

1The tables report the finite sample third central moment of the statistic of interest and not the skewness as it is
usually calculated (i.e. we do not scale this quantity by the third power of the standard error). Equivalently, we report
the finite sample third cumulants. The main reason for doing so is that we want to compare this empirical measures
with the Edgeworth correction predictions for the third order cumulant of the statistics of interest.
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We now turn to Tables 5 and 6, which contain the results for the feasible statistics. The main

difference with respect to Tables 3 and 4 is that there is a clear deterioration of the finite sample

performance of the raw statistics for all sample sizes and models (although more so for the two-

factor diffusion than for the GARCH(1,1) diffusion). The raw statistics are negatively biased in finite

samples. This bias is introduced by the estimation of the asymptotic variance. Moreover, the amount

of skewness and excess kurtosis can be quite substantial, especially for the small sample sizes and

for the two-factor diffusion. The log transformation is effective in reducing the magnitude of the

bias, skewness and excess kurtosis as well as in producing less variability for the two models. The

coverage rates are therefore closer to the desired level of 95% than those of the raw statistics. However,

significant coverage distortions remain for the log transformation, especially when h−1 = 12 and 48.

Since the normal distribution is characterized by zero mean, unit variance, zero skewness and

zero excess kurtosis, a statistic that more closely matches these moments is expected to be better

approximated by the normal than otherwise. Our results suggest that this is the case for the log

transform. GM (2008) provide a theoretical result that confirms this simulation finding.

Our results also suggest that the log transformation is not completely effective in eliminating the

bias and the skewness in finite samples, which may explain why there are still some distortions in

coverage probabilities at the smaller sample sizes. This is why we consider in the next section the

more general Box-Cox transformation.

3 The Box-Cox Transformation

The Box-Cox transformation for realized volatility is defined as

g (R2; β) =

{

Rβ
2
−1

β when β 6= 0

log (R2) when β = 0.
(5)

It contains the log transformation for realized volatility (when β = 0) and the raw statistic (when

β = 1) as special cases. Our main goal in this section is to study the accuracy of this transformation

for several values of β.

The infeasible Box-Cox transformed statistic is given by

Sβ =

√
h−1

(

g (R2; β) − g
(

σ2; β
))

g′
(

σ2; β
)√

V
.

Here and throughout the paper, g′ (x; β) denotes the derivative of g with respect to x. Similarly,

g′′ (x; β) denotes the second derivative of g with respect to x. By an application of the delta method,

we have that Sβ →d N (0, 1) . When β = 0, Sβ corresponds to (3). When β 6= 0,

Sβ =

√
h−1

(

Rβ
2 −

(

σ2
)β

)

βg′
(

σ2; β
)√

V
→d N (0, 1) ,
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where g′
(

σ2; β
)√

V = σ2
(β−1)√

V . β = 1 corresponds to the raw version (1).

The statistic Sβ is infeasible because the scaling factor βg′
(

σ2; β
)√

V depends on the volatility

path, which is unknown in practice. Therefore, we need to replace it with a consistent estimator given

by βg′ (R2; β)
√

V̂ . The feasible statistic is then given by

Tβ =

√
h−1

(

g (R2; β) − g
(

σ2; β
))

g′ (R2; β)
√

V̂
=



















√
h−1

(

Rβ
2
−(σ2)

β
)

βRβ−1

2

√
V̂

when β 6= 0
√

h−1(log(R2)−log(σ2))
√

V̂

R2
2

when β = 0.

Because βg′ (R2; β)
√

V̂ is a consistent estimator of βg′
(

σ2; β
)√

V as h → 0, Tβ →d N (0, 1) .

3.1 Infeasible statistic

We study the accuracy of the Box-Cox transformation for the infeasible statistic Sβ . Our approach will

be based on a second order Edgeworth expansion of the distribution of Sβ . This expansion depends on

the first three cumulants of Sβ which we denote by κi (Sβ) for i = 1, 2, 3. The following result (which

follows from the results in GM (2008)) provides asymptotic expansions for κi (Sβ), i = 1, 2, 3.2

Proposition 3.1 Under Gonçalves and Meddahi’s (2008) regularity conditions, conditional on σ, as

h → 0,

a) κ1 (Sβ) =
√

h





1

2

g′′
(

σ2; β
)

g′
(

σ2; β
)

√
V



 + O (h).

b) κ2 (Sβ) = 1 + O (h).

c) κ3 (Sβ) =
√

h







4√
2

σ6

(

σ4
)3/2

+ 3
g′′

(

σ2; β
)

g′
(

σ2; β
)

√
V






+ O (h).

Proposition 3.1 shows that β has an impact through order O
(√

h
)

on the first and third cumulants

of the statistic Sβ . In particular, note that
g′′(σ2;β)
g′(σ2;β)

= (β − 1)
(

σ2
)−1

. Thus, β = 1 is the optimal

choice if eliminating bias is the goal, i.e. the raw statistic performs best with respect to bias. This

result confirms the Monte Carlo simulation results discussed previously. The log implies a negative

bias for Sβ , which is also in agreement with our simulation results. In general, applying a nonlinear

transformation to R2 introduces a bias term. The bias is positive if β > 1 and it is negative if β < 1.

The third order cumulant is also affected by the choice of β through the ratio
g′′(σ2;β)
g′(σ2;β)

. Because

the asymptotic normal approximation is associated with a zero third order cumulant, choosing β so

as to make κ3 (Sβ) approximately equal to zero can induce better finite sample properties.

2The proof is based on Taylor expansions. Phillips (1979) and Niki and Konishi (1986) provide higher order expansions
of the cumulants of a nonlinear transformation of an infeasible statistic in the univariate case whereas Marsh (2004)
considers the multivariate case. The results in Proposition 3.1 can be obtained from Phillips (1979) and Niki and
Konishi (1986) when applied to the realized volatility context. For the feasible statistics (to be discussed in the next
section of this paper), a case by case analysis is necessary given that one has to take into account the uncertainty in the
estimator of the variance of the statistic, which is case specific.
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Corollary 3.1 Conditionally on σ, as h → 0, up to order O
(√

h
)

,

a) Choosing β equal to 1 implies κ1 (Sβ) = 0.

b) Choosing β equal to β∗ = 1 − 2
3

σ2 σ6

(σ4)
2 ≤ 1

3 implies κ3 (Sβ) = 0.

Corollary 3.1 shows that different values of β are needed to make bias and skewness equal to

zero. In particular, the optimal value of β from the viewpoint of skewness is random and depends

on the volatility path. If volatility is constant, then β∗ = 1
3 . It corresponds to the so-called Wilson-

Hilferty cube root transformation. If volatility is stochastic, the Cauchy-Schwartz inequality implies

β∗ < 1
3 . Recently, Chen and Deo (2004) proposed an optimal power transformation for random

variables that are positive linear combinations of positive independent random variables and showed

that this transformation induces normality in small samples. Their optimal transformation is equal

to ours when applied to realized volatility for the infeasible statistic. Chen and Deo’s (2004) results

do not cover feasible statistics. As we will see in the next section, the optimal power transform β∗

derived for the infeasible statistic Sβ does not apply to the feasible statistic Tβ .

In practice we cannot compute β∗ because it depends on σ. It is nevertheless possible to consistently

estimate β∗ by replacing Rq/µq for σq (see BN-S (2004)). This yields the following estimator of β∗:

β̂
∗

= 1− 2
3

R2 (R6/µ6)

(R4/µ4)2
= 1− 2

3
R2 (R6/15)

(R4/3)2
, given that µ4 = 3 and µ6 = 15. Since β∗ depends on the sixth

order integrated power volatility, which is hard to estimate, our simulations show that estimating β∗

creates some finite sample distortions. Confidence intervals based on β̂
∗

are nevertheless still more

accurate than those based on the raw or the log statistic. Note that our Edgeworth expansions do not

apply to the statistics computed with β̂
∗

because we have not taken into account the randomness in

the estimates of β∗. However, our confidence intervals are first-order asymptotically valid.

The left-hand-side panels of Tables 7 and 8 contain some summary statistics for β∗ and β̂
∗

for dif-

ferent sample sizes, for the GARCH(1,1) and for the two-factor diffusion, respectively. We complement

these results by providing the kernel densities of σ2 σ6

(σ4)
2 and R2 (R6/15)

(R4/3)2
in Figure 1 for the GARCH(1,1)

and for the two-factor diffusion models (these are sufficient statistics for β∗ and β̂
∗

respectively).

For the GARCH(1,1) diffusion, Table 7 shows that on average β∗ equals 0.331 and its distribution

is very concentrated around this value, with a minimum of 0.310 and a maximum of 0.332. Thus,

for the GARCH(1,1) the optimal value of the Box-Cox transformation in terms of skewness is on

average very close to 1/3, which is the optimal value of β for the constant volatility case. This is not

very surprising because the GARCH(1,1) diffusion implies very persistent sample paths for volatility.

Estimation of β∗ creates some finite sample distortions. Table 7 and Figure 1 show that β̂
∗

is very

(positively) biased for finite samples. For instance, for h−1 = 12, the distribution of β̂
∗

is centered

at 0.482, with a minimum value of 0.323. Its range only slightly intersects the range of β∗! The bias

becomes less and less pronounced as we increase the sample size, as expected.

The results in Table 8 and Figure 1 (right-hand-side) suggest that the distribution of β∗ for the

two-factor diffusion is quite different from that of β∗ for the GARCH(1,1) diffusion. On average, β∗
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equals 0.057, but its range is now much larger, going from a minimum of −1.031 to a maximum of

0.297. As with the GARCH(1,1), for small samples β̂
∗

is severely biased towards positive values.

We complete this section by studying the accuracy of the normal approximation for the Box-Cox

transformation for different values of β. We rely on a second order Edgeworth expansion of the

distribution of Sβ given by (see e.g. Hall, 1992, p. 47)

P (Sβ ≤ x) = Φ (x) +
√

hpβ (x)φ (x) + o (h) ,

where for any x ∈ R, Φ (x) and φ (x) denote the cumulative distribution function and the density

function of a standard normal random variable, respectively. The correction term pβ (x) is defined as

pβ (x) = −
(

κ̄1,β +
1

6
κ̄3,β

(

x2 − 1
)

)

,

where

κ̄1,β =
1

2

g′′
(

σ2; β
)

g′
(

σ2; β
)

√
V and κ̄3,β =

4√
2

σ6

(

σ4
)3/2

+ 3
g′′

(

σ2; β
)

g′
(

σ2; β
)

√
V

are the coefficients of the leading terms of κ1 (Sβ) and κ3 (Sβ), respectively.

Given this expansion, the error (conditional on σ) incurred by the normal approximation in esti-

mating the distribution of Sβ for a given choice of β is given by

sup
x∈R

|P (Sβ ≤ x) − Φ(x)| =
√

h sup
x∈R

|pβ (x)φ (x)| + o (h) .

Thus, supx∈R |pβ (x) φ (x)| is the contribution of order O
(√

h
)

to the normal error for the transfor-

mation indexed by β.

The following table shows the magnitude of κ̄1,β and κ̄3,β for several values of β when σ is constant.

Table 1. Coefficients of the correction term pβ (x) when σ is constant

β 1 0 −1 −1/3 1/3

κ̄1,β 0 −1
2

√
2 −

√
2 −2

3

√
2 −1

3

√
2

κ̄3,β 2
√

2 −
√

2 −4
√

2 −2
√

2 0

Table 1 shows that for the case of constant volatility, the raw statistic is dominated by the log

transformation from the viewpoint of skewness but not from the viewpoint of bias (as already discussed

above). The log transformation clearly dominates the choices of β = −1/3 and β = −1. Choosing

β = 1/3 (the optimal value according to skewness when σ is constant) also induces a bias smaller than

the log transformation, so in this case β = 0 is dominated by the optimal choice β∗. The comparison

between β = 1 and β = β∗ does not provide a clear ranking because β = 1 eliminates bias but not

skewness whereas β = β∗ eliminates skewness but not bias.

For the GARCH(1,1) and the two-factor diffusion models, Tables 3 and 4 compare the finite sample

value of the first and third order cumulants (in the tables, these are under the name of ‘Mean’ and

‘Skewness’, respectively) of the Box-Cox transformed statistics with the predictions of the asymptotic

expansions for the first and third order cumulants given in Proposition 3.1 (reported as ‘EE Mean’ and
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‘EE Skewness’, respectively. In particular, ‘EE mean’ is the average value of
√

hκ̄1,β across the 100,000

Monte Carlo replications. ‘EE Skewness’ is the average value of
√

hκ̄3,β). For the GARCH(1,1), this

comparison reveals generally close agreement between the two sets of results, which suggests that

our expansions are good approximations to the true finite sample cumulants for the GARCH(1,1)

model. The only exception is when β = −1, in which case the third order cumulant in finite samples

is quite different from the Edgeworth expansion prediction, most especially when h−1 = 12. The

same remark applies for the two-factor diffusion. For this model the finite sample quality of the

asympotic expansions for the third order cumulants is inferior to the quality of these expansions for

the GARCH(1,1) diffusion, at least for the smaller sample sizes. For instance, for h−1 = 12, the average

sample value of
√

hκ̄3,β when β = β∗ is zero (as predicted by our theory), but the finite sample value

of the third order cumulant of Sβ∗ is −0.118. It reduces to −0.032 when h−1 = 48 and to 0.004 when

h−1 = 288. For the larger sample sizes, the sample values of the first and third order cumulants agree

with those predicted by the asymptotic expansions for the two-factor diffusion model.

The following result compares the accuracy of the normal approximation for several choices of β

for the general case where volatility is not necessarily constant. As a measure of accuracy, we use the

absolute value of the first higher order term in the Edgeworth expansion of the distribution of the

statistic in question.

Proposition 3.2 Conditionally on σ, as h → 0, we have that for any β1 and β2 such that β2 < β1 <

β∗ ≤ 1/3 and for any x 6= 0,
∣

∣pβ∗ (x)
∣

∣ <
∣

∣pβ1
(x)

∣

∣ <
∣

∣pβ2
(x)

∣

∣ and pβ∗ (0) = pβ1
(0) = pβ2

(0).

Proposition 3.2 shows that the log transform (β = 0) is dominated by the optimal Box-Cox

transform when σ is constant (β∗ = 1
3). When σ is stochastic, the ranking is unclear as it depends on

whether β∗ < 0 and β∗ > 0. If β∗ is always nonnegative, Proposition 3.2 applies and we can conclude

that β∗ is an improvement over the log transform. Our simulations show that this is the case for

the GARCH(1,1) diffusion, where β∗ > 0 across the 100,000 Monte Carlo simulations. Thus, for this

model we may conclude that the Box-Cox transform dominates the log transform in that the error of

the normal approximation is smaller for the Box-Cox transform when β is chosen according to β∗ for

all values of x 6= 0.

For the two-factor diffusion although the average β∗ is positive, it can take on negative values. In

this case, we can show that the ranking between the log transform and the Box-Cox transform using

β∗ is not uniform in x, i.e. none of the transformations dominates uniformly the other. Similarly,

for the infeasible statistic the ranking between the raw statistic and its log transform depends on the

value of x, with none of them dominating the other. As Proposition 4.2 of GM (2008) shows (see

Proposition 3.4 below for an extension of their result to other values of β) , this is not the case for the

feasible statistic, where the log transform dominates the raw version for all values of x 6= 0.

To evaluate the finite sample quality of the normal approximation for the different transformations,

Figure 2 presents the QQ plots for the Box-Cox transformed infeasible statistics for the GARCH(1,1)

9



diffusion (left-hand-side panels) and for the two-factor diffusion (right-hand-side panels). The normal

distribution is not a good approximation for the raw statistic (β = 1) when the sample size is small.

The log transform (β = 0) dominates the raw statistic, but some distortions remain for h−1 = 12 and

48. The optimal Box-Cox transformation based on β∗ induces a closer to normal QQ plot than the log

transformation. The QQ plots of β = 1/3 and β = β∗ are almost identical, as expected since β∗ is very

concentrated around β = 1/3. The QQ plot for β = β̂
∗

shows some distortions when h−1 = 12. Thus,

estimation of β∗ induces finite sample distortions. For the two-factor diffusion, the log improves upon

the raw version of realized volatility. The choice of β∗ does not uniformly dominate the log transform.

As for the GARCH(1,1) diffusion, estimation of β∗ introduces some finite sample distortions.

To end this section we investigate by simulation the coverage probabilities of 95% level confidence

intervals for σ2 across several values of β. Results for the GARCH(1,1) diffusion are presented in

Figure 5 (one-sided intervals on the top panels and two-sided symmetric intervals on the bottom

panels) whereas Figure 6 contains the corresponding results for the two-factor diffusion. Starting with

the GARCH(1,1) diffusion, Figure 5 suggests that the log transform clearly improves upon the raw

statistic for one-sided intervals but not for two-sided intervals, for which the raw statistic already

performs very well (confirming previous results). It also suggests that other values of β different from

zero may improve upon the log transformation. For instance, for one-sided intervals and for all sample

sizes, β = 1/3 (or slightly above) clearly improves coverage with respect to choosing β = 0. To

complement these results, note that Table 3 shows that for h−1 = 12 the coverage rates are 98.40 for

β = 1, 91.00 for β = 0, 93.51 for β = 1/3, 93.50 for β = β∗ and 94.67 for β = β̂
∗
. For the two-sided

symmetric intervals, coverage rates are equal to 95.66 for β = 1, 93.60 for β = 0, 94.82 for β = 1/3,

94.81 for β = β∗ and 95.25 for β = β̂
∗
, when h−1 = 12. Figure 5 shows that for this sample size β = 0

is dominated by β in the range 0 to 1 (or slightly above).

For the two-factor diffusion, choosing β between 0 and 1/3 induces coverage rates closer to 95%

for one sided intervals (see top panel of Figure 6). For two-sided intervals, β = 0 seems to perform

very well, with values of β larger than 0 but smaller than 4/3 producing too conservative intervals.

β = 4/3 does as well as β = 0. Table 4 shows that in general β = 0 is dominated by β∗ for one-sided

intervals but not for two-sided intervals. Intervals based on β̂
∗

tend to overcover for h−1 = 12.

3.2 Feasible statistic

In this section we study the Box-Cox transformed feasible statistics Tβ . Our goal is to compare the

higher order properties of Tβ for different choices of β in order to study the accuracy of the normal

approximation across different values of β. We first analyze the properties of the first and third order

cumulants of Tβ . These are the main ingredients in the second-order Edgeworth expansions of the

distribution of Tβ . We let κi (Tβ) for i = 1, 2, 3, denote the first three cumulants of Tβ . The following

result provides asymptotic expansions for κi (Tβ), i = 1, 2, 3. It follows from an application of Theorem

A.1 in GM (2008).
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Proposition 3.3 Conditionally on σ, as h → 0,

a) κ1 (Tβ) = −1

2

√
h







4√
2

σ6

(

σ4
)3/2

+
g′′

(

σ2; β
)

g′
(

σ2; β
)

√
V






+ O (h).

b) κ2 (Tβ) = 1 + O (h).

c) κ3 (Tβ) =
√

h






− 8√

2

σ6

(

σ4
)3/2

− 3
g′′

(

σ2; β
)

g′
(

σ2; β
)

√
V






+ O (h).

Proposition 3.3 shows that the choice of β influences the higher order properties (through O
(√

h
)

)

of the first and third order cumulants of Tβ . Note that unlike in the infeasible case, the raw statistic

(β = 1) has a negative bias equal to − 4
2
√

2
σ6

(σ4)
3/2

. Thus, applying a nonlinear transformation to the

feasible statistic has the potential to reduce bias and skewness. The following result states the optimal

choices of β for approximately eliminating the bias and the skewness of Tβ .

Corollary 3.2 Conditionally on σ, as h → 0, up to order O
(√

h
)

,

a) Choosing β equal to β∗ = 1 − 2σ2 σ6

(σ4)
2 ≤ −1 implies κ1 (Tβ) = 0.

b) Choosing β equal to β∗∗ = 1 − 4
3

σ2 σ6

(σ4)
2 ≤ −1

3 implies κ3 (Tβ) = 0.

The optimal choices of β are random and depend on the volatility path. In general, different values

of β are required to eliminate bias and skewness. Under constant volatility, these are equal to β∗ = −1

and β∗∗ = −1
3 , respectively.

For the GARCH(1,1) diffusion, Table 7 shows that the average value of β∗∗ is equal to −0.338

and thus very close to −1/3, the optimal value of β∗∗ when volatility is constant. The distribution of

β∗∗ is also very concentrated around the mean value, with a range going from −0.381 up to −0.334.

Similarly, the distribution of β∗ is highly concentrated around its average value of −1.007, very close

to the optimal value of β∗ in the constant volatility case. As we remarked for the infeasible statistics,

these results are not very surprising given that the GARCH(1,1) diffusion is highly persistent. For the

two-factor diffusion, Table 8 shows that on average the value of β∗∗ equals −0.886, with a distribution

that is very dispersed (the minimum value is −3.061 and the maximum value is −0.407). Table 8

also shows that the average value of β∗ is equal to −1.828, with a minimum value of −5.092 and a

maximum value of −1.110. Thus, in this case the values of β∗∗ and β∗ are quite different from their

optimal values under constant volatility (which equal −1/3 and −1 respectively). This is also not very

surprising because the two-factor diffusion model is known to generate sample paths for prices and

volatility that are very rugged, often close to those generated by a jump diffusion model.

The comparison between β∗∗ and β∗ shows that different values are required to eliminate bias and

skewness for the feasible statistic. In addition, the skewness correction differs for the feasible and the

infeasible statistics (compare β∗ with β∗∗). The same remark applies to the bias correction, which

corresponds to taking β = 1 for the infeasible statistic and to β = β∗ for the feasible statistic.
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As discussed previously for β∗, β∗∗ and β∗ are unknown in practice because they depend on σq for

q = 2, 4, 6. We can nevertheless estimate β∗∗ and β∗ consistently with the following estimators:

β̂
∗∗

= 1 − 4

3

R2 (R6/µ6)

(R4/µ4)
2 = 1 − 4

3

R2 (R6/15)

(R4/3)2
, and β̂∗ = 1 − 2

R2 (R6/15)

(R4/3)2
.

Tables 7 and 8 (middle and right-hand-side panels) give the summary statistics (see also Figure

1 for the corresponding kernel densities). Overall, these results suggest that estimating β∗∗ and β∗

induces distortions in finite samples. The estimates are severely upward biased for the smallest sample

sizes. The bias only becomes under control for h−1 = 1152, although for this sample size the variance

is also larger than for the smaller sample sizes.

The log does not correspond to the optimal Box-Cox transformation from the viewpoint of bias

and skewness. GM (2008) prove that the normal approximation is more accurate when applied to the

log statistic as compared to the raw statistic. To end this section, we extend this result by providing

a ranking of Box-Cox transforms across different values of β based on the accuracy of the normal

approximation.

The second order Edgeworth expansion of the distribution of Tβ is given by

P (Tβ ≤ x) = Φ (x) +
√

hqβ (x)φ (x) + o (h) , with qβ (x) = −
(

κ1,β +
1

6
κ3,β

(

x2 − 1
)

)

,

where κ1,β and κ3,β denote the coefficients of the leading terms (of order O
(√

h
)

) of the first and

third order cumulants of Tβ given in Proposition 3.3.

The following table shows the magnitude of κ1,β and κ3,β for several values of β when σ is constant.

Table 2. Coefficients of the correction term qβ (x) when σ is constant

β 1 0 −1 −1/3 1/3

κ1,β −
√

2 −1
2

√
2 0 −1

3

√
2 −2

3

√
2

κ3,β −4
√

2 −
√

2 2
√

2 0 −2
√

2

When volatility is constant, Table 2 shows that the coefficients of the raw statistic (β = 1) are both

larger (in absolute value) than those of the other transformations. In particular, the log transformation

dominates β = 1 both in terms of skewness and bias. Choosing β = β∗∗ = −1/3 eliminates skewness,

as expected. Its bias is nonzero but it is smaller than the bias of both the log and the raw versions of

realized volatility. β = −1 eliminates bias (as expected in the constant volatility case), but induces a

larger amount of skewness compared to the log transform or the choice of β = −1/3. Its skewness is

nevertheless smaller in absolute value than the skewness implicit in β = 1.

Similarly to the infeasible statistics, we can compare the scaled values of κ1,β and κ3,β (i.e.
√

hκi,β

for i = 1, 3) with the finite sample bias and skewness of the Box-Cox statistics given in Tables 5 and

6. The main overall feature of notice is that the cumulant expansions for the feasible statistics are

in general less accurate than those for the infeasible statistics, especially when h−1 = 12. This is not

surprising and it only confirms that the quality of the asymptotic theory (even to higher-order) is
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poorer for the feasible statistics than for the infeasible statistics. However, Table 5 shows that for the

GARCH(1,1) diffusion, the first order cumulant expansion is quite accurate, even for the small sample

sizes. The expansion for the third order cumulant is less accurate than for the first order cumulant,

especially when h−1 = 12. It becomes reasonably accurate across the different values of β for the

remaining values of h−1. A comparison between β∗ and β∗∗ shows that β∗ has smaller bias (close

to zero) but larger skewness than β∗∗ (whose skewness is close to zero), confirming our theoretical

predictions. Estimating β∗∗ induces an even larger bias compared to estimating β∗ and it introduces

more skewness than estimation of β∗. Thus, β̂
∗∗

has poorer finite sample properties than β̂∗. As

noted previously for β̂
∗
, our Edgeworth expansions do not apply to the statistics computed with β̂

∗∗

or β̂∗ because we have not taken into account the randomness in the estimates of β∗∗ and β∗. The

method delivers however valid confidence intervals. Comparing β = −1 with β = β∗ shows that these

two transformations behave very similarly, which is as expected given that the GARCH(1,1) diffusion

implies very persistent paths for volatility. The comparison between β = −1 and β = β∗∗ is similar to

the comparison between β = β∗ and β = β∗∗, with β = −1 dominating in terms of bias and β = β∗∗

dominating in terms of skewness.

The distortions are larger for the two-factor diffusion than the GARCH(1,1) diffusion. For instance,

when h−1 = 12, the sample third order cumulant of the raw statistic is equal to −78.445 whereas the

cumulant expansion gives an average value of −3.365. For h−1 = 48, the values reduce to −1.609 and

−1.683, respectively. Thus, the quality of the third order cumulant expansion greatly improves with

this increase in the sample size when β = 1. For β = 0, not only is the amount of skewness much smaller

in small samples but it is also much more in line with our cumulant expansion. Choosing β = β∗∗

reduces the amount of skewness relatively to the other transformations (an exception is β = −1, which

has comparable, or even smaller, e.g. when h−1 = 12, skewness to β∗∗), but does not reduce it to

zero, contrary to our theoretical predictions. Similarly, choosing β = β∗ reduces the amount of bias

compared to the other transformations for all sample sizes but the smallest sample size (where β = −1

and β∗∗ have smaller bias), but does not completely eliminate it. As for the GARCH(1,1) diffusion,

the finite sample properties of β̂∗ are superior to those of β̂
∗∗

, with β̂∗ showing a smaller finite sample

mean, skewness and excess kurtosis compared to β̂
∗∗

. β = −1 has smaller bias than β∗∗ for all sample

sizes and since its skewness is comparable to that of β∗∗ in finite samples, β = −1 dominates β∗∗.

Similarly, the sample skewness of β = −1 is much smaller than that of β∗, without a correspondingly

large increase in bias (β = −1 has only slightly larger bias than β∗). Overall, we may conclude that

β = −1 performs best in terms of both bias and skewness, dominating other transformations such as

β∗ (specifically tailored at bias reduction) and β∗∗ (whose target is skewness reduction).

The following result compares the accuracy of the normal approximation for the Box-Cox trans-

formation across several values of β. The result is general and does not assume that volatility is

constant.
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Proposition 3.4 Conditionally on σ, as h → 0, we have that for any β1 and β2 such that β∗∗ <

β1 < β2 and for any x 6= 0,
∣

∣qβ∗∗ (x)
∣

∣ <
∣

∣qβ1
(x)

∣

∣ <
∣

∣qβ2
(x)

∣

∣ , and qβ∗∗ (0) = qβ1
(0) = qβ2

(0) .

Proposition 3.4 proves that eliminating skewness helps increase the accuracy of the normal ap-

proximation. In particular, the error of the normal approximation (up to order O
(√

h
)

) is larger

for any β1 such that β∗∗ < β1, including the log transform (β = 0) and the raw statistic (β = 1).

Proposition 3.4 also proves that the log transformation is an improvement over the raw statistic since
∣

∣qβ1
(x)

∣

∣ <
∣

∣qβ2
(x)

∣

∣ when β1 = 0 and β2 = 1, and β1 > β∗∗. Thus, Proposition 3.4 includes Propo-

sition 4.2 of GM (2008) as a special case. Proposition 3.4 does not allow a comparison between β∗∗

and β∗ since β∗ ≤ β∗∗. In this case, we can show that there is no uniform (in x) ranking between the

two choices.

The QQ plots for the feasible statistics are presented in Figures 3 (GARCH(1,1)) and 4 (two-

factor). For the GARCH(1,1) model, the QQ plots confirm the ranking suggested by Proposition 3.4.

These plots show that β = β∗∗ dominates the log transform with β = 0, which is better than β = 1/3,

which in turn dominates the raw transform with β = 1. The feasible transformation based on β̂
∗∗

induces more finite sample distortions than the infeasible transformation, especially for the smaller

sample sizes. The QQ plots for β̂
∗∗

are close to those for the log. Choosing β = −1 and β = β∗

is better than choosing β = 1, but the QQ plots for β = −1 and β∗ show more distortions when

compared to the other Box-Cox transforms, especially when h−1 = 12. Interestingly, the QQ plot for

β̂∗ shows small sample distortions.

The two-factor diffusion is associated with larger distortions than the GARCH(1,1) diffusion. This

is evident when we compare the scales of the corresponding QQ plots. The log dominates β = 1.

The QQ plots for β = 0 and β = β∗∗ are the reverse image of each other, with β = 0 dominating

β = β∗∗ on the right-hand side of the distribution and being dominated by β = β∗∗ on the left-hand

side. Although Proposition 3.4 does not cover the case where β = −1, the QQ plots suggest that

this transformation dominates the log on the left-hand side but does worse at the right-hand side.

Choosing β = β∗ induces larger distortions than choosing β = β∗∗ or β = −1, but estimation of β∗∗

creates larger deviations from the normal approximation than estimation of β∗ (which is very well

behaved).

To end this section, we compare the Box-Cox transformations for realized volatility in terms of

coverage probabilities for both one-sided and two-sided symmetric intervals for σ2. Our analysis is

similar to that followed for the infeasible statistics, but now we concentrate on the right-hand-side

panels of Figures 5 and 6, which refer to the feasible statistics. Starting with the one-sided intervals

for the GARCH(1,1) diffusion, Figure 5 shows that choosing β = 0 improves upon β = 1 for all sample

sizes, but β = 0 does not correspond to the best possible choice in terms of coverage accuracy. Indeed,

any value of β between −1 and 0 dominates β = 0, with the optimal choice lying somewhere close to

−1. For one-sided intervals, Table 5 shows that for β = −1 the coverage rate is equal to 96.07, 95.74,
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95.38, 95.19 for h−1 = 12, 48, 288 and 1152, respectively. In contrast, the log transformation has

coverage rates equal to 88.54, 92.36, 94.17 and 94.55. These rates are systematically worse than those

for β = −1 (which are similar to those for β∗), and they are also worse than those for β∗∗ (which are

equal to 90.94, 93.51, 94.59 and 94.77). Estimation of β∗∗ and β∗ induces larger undercoverages, but

β̂
∗∗

and β̂∗ are still preferred to β = 0, with β̂∗ dominating β̂
∗∗

(as we saw previously, the finite sample

properties of β̂∗ in terms of bias, skewness and kurtosis are better than those of β̂
∗∗

). The results for

the two-sided symmetric intervals are qualitatively similar to those for the one-sided intervals, with

the main difference being that two-sided intervals are associated with smaller coverage distortions for

almost all transformations and for all sample sizes. The exception is when β = −1 and β = β∗, which

are associated with a slight overcoverage for one-sided intervals and with undercoverage for two-sided

intervals. Nevertheless, Figure 5 shows that β = −1 is the choice of β that produces more accurate

two-sided intervals for σ2. The difference in coverage probability with respect to other choices of β

(including β = 0) is especially important for h−1 = 12. The results for the two-factor diffusion model

are qualitatively similar to those for the GARCH(1,1) diffusion. The main differences are that the

two-factor diffusion has larger distortions for all methods and all sample sizes (the lines in Figure 6

shift downwards in comparison to Figure 5). Choosing the optimal value of β∗∗ is an improvement over

choosing β = 0, which dominates β = 1/3, which dominates β = 1. Choosing β = β̂
∗∗

outperforms

β = 0, but underperforms β = β∗∗. The comparison between β = β∗ and β = β∗∗ favors β∗∗,

suggesting that for the two factor diffusion model the skewness correction is preferred over the bias

correction. One possible explanation is the fact that β∗ induces a smaller bias but at the cost of

introducing too large a skewness (β∗∗ in contrast reduces skewness without introducing too large a

bias). Figure 6 suggests that the optimal choice of β in terms of coverage probability control for

one-sided and two-sided intervals is slightly above −1 for the two-factor diffusion model. Overall, a

choice of β = −1 appears to do best if we want to produce intervals for σ2 based on the Box-Cox

transform with good coverage rates. In particular, this choice dominates the optimal choices β∗∗,

which is based solely on eliminating the finite sample skewness, and β∗, which is tailored to eliminate

bias. As we discussed before, β = −1 performs best if both bias and skewness are taken into account

simultaneously. Controlling bias and skewness are both important if good coverage accuracy is the

goal.

4 Conclusion

The log transformation is often preferred to the raw version of realized volatility because of its su-

perior finite sample properties (including finite sample skewness). GM (2008) provide a theoretical

explanation for this finding.

The fact that the log transformation improves upon the raw statistic does not imply that the log

transformation is the best possible transformation available. The main contribution of this paper is
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to consider a broader class of analytical transformations (indexed by the parameter β) that includes

the log (β = 0) and the raw (β = 1) versions of realized volatility as special cases. This is the Box-

Cox transformation. Based on higher order expansions of the cumulants of the Box-Cox transformed

statistics, we first derive the optimal values of β that induce zero bias and zero skewness. The values

of β that eliminate bias are generally different from those that eliminate skewness. These values are

also different depending on whether we consider infeasible statistics (which are constructed under the

assumption that their asymptotic variances are known) or on whether we consider feasible statistics

(which are the statistics used in practice). Therefore in this paper we treat the two cases separately.

For each case, we rely on Edgeworth expansions of the distribution of the Box-Cox transforms to study

the accuracy of these transforms across different values of β. We also provide extensive Monte Carlo

simulation to investigate how the different Box-Cox transforms behave in finite samples. Our general

conclusion is that there exist other Box-Cox transformations that dominate the log transformation. In

particular, the optimal but infeasible transformations derived in this paper generally outperform the

log. Their feasible versions are less well behaved than their infeasible versions in finite samples and

are comparable to the log transform. However, if coverage probability accuracy is the goal, choosing

β = −1 appears as the best choice across the two models studied in this paper.

The results in this paper show that confidence intervals for integrated volatility based on an

appropriately chosen Box-Cox transform have smaller finite sample distortions than intervals based on

the raw or the log versions of realized volatility. The Box-Cox transform intervals are nevertheless still

based on the asymptotic normal approximation. We could use the bootstrap to further improve upon

the first order asymptotic theory derived for our class of statistics. GM (2008) follow this approach

for β = 0 and β = 1. Their results show that the bootstrap allows a further improvement in accuracy

when applied to these statistics.
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Table 3. Infeasible R2-based statistics, GARCH(1,1) diffusion

h−1 β = 1 (Raw) β = 0 (Log) β = −1 β = 1/3 β∗ β̂
∗

12 Mean 0.000 −0.210 −0.490 −0.136 −0.136 −0.105
EE Mean 0.000 −0.204 −0.409 −0.136 −0.137 −0.106

Skewness 0.824 −0.489 −8.170 0.009 0.006 0.186
EE Skewness 0.821 −0.406 −1.663 0.003 0.000 0.185

St. Error 0.999 1.042 1.471 0.998 0.998 0.989
Ex. Kurtosis 1.064 0.387 14.419 −0.016 −0.015 0.030

Cov. one-sided 95% 98.40 91.00 84.63 93.51 93.50 94.67
Cov. two-sided 95% 95.66 93.60 87.91 94.82 94.81 95.25

48 Mean 0.002 −0.101 −0.211 −0.066 −0.066 −0.059
EE Mean 0.000 −0.102 −0.204 −0.068 −0.068 −0.061

Skewness 0.392 −0.224 −1.164 −0.010 −0.012 0.034
EE Skewness 0.410 −0.203 −0.817 0.001 0.000 0.046

St. Error 0.999 1.010 1.091 1.000 1.000 0.998
Ex. Kurtosis 0.210 0.074 1.503 −0.026 −0.026 −0.023

Cov. one-sided 95% 96.48 93.09 90.03 94.28 94.27 94.52
Cov. two-sided 95% 95.27 94.69 92.90 95.06 95.06 95.10

288 Mean −0.001 −0.043 −0.085 −0.029 −0.029 −0.028
EE Mean 0.000 −0.042 −0.083 −0.028 −0.028 −0.027

Skewness 0.160 −0.091 −0.361 −0.006 −0.007 −0.002
EE Skewness 0.168 −0.083 −0.333 0.001 0.000 0.005

Standard Error 0.999 1.001 1.014 0.999 0.999 0.999
Excess Kurtosis 0.039 0.023 0.236 0.004 0.004 0.003

Cov. one-sided 95% 95.55 94.30 93.06 94.73 94.72 94.75
Cov. two-sided 95% 95.02 94.88 94.65 94.98 94.98 94.98

1152 Mean 0.003 −0.018 −0.039 −0.011 −0.011 −0.011
EE Mean 0.000 −0.021 −0.042 −0.014 −0.014 −0.014

Skewness 0.077 −0.048 −0.177 −0.006 −0.007 −0.006
EE Skewness 0.084 −0.041 −0.167 0.000 0.000 0.001

Standard Error 1.002 1.002 1.005 1.002 1.002 1.002
Excess Kurtosis −0.001 −0.003 0.051 −0.008 −0.008 −0.008

Cov. one-sided 95% 95.22 94.62 93.99 94.81 94.81 94.81
Cov. two-sided 95% 94.99 94.98 94.93 94.99 94.99 94.99

Notes: 100,000 Monte Carlo replications. EE Mean and EE skewness denote the Egdeworth corrections for the

mean and skewness. The feasible statistic is
√

h−1

(

Rβ
2 −

(

σ2
)β

)

/βR
(β−1)
2

√

V̂ , where V̂ = 2
3R4.
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Table 4. Infeasible R2-based statistics, two-factor diffusion

h−1 β = 1 (Raw) β = 0 (Log) β = −1 β = 1/3 β∗ β̂
∗

12 Mean 0.000 −0.244 −0.603 −0.158 −0.230 −0.121
EE Mean 0.000 −0.294 −0.588 −0.196 −0.280 −0.152

Skewness 1.183 −0.206 −11.646 0.205 −0.118 0.384
EE Skewness 1.683 −0.082 −1.846 0.507 0.000 0.771

Standard Error 0.943 0.938 1.524 0.896 0.929 0.896
Excess Kurtosis 3.381 0.168 26.234 0.108 0.099 0.474

Cov. one-sided 95% 99.89 92.82 83.52 96.27 93.39 97.53
Cov. two-sided 95% 95.88 95.60 87.03 97.16 95.88 97.25

48 Mean 0.002 −0.135 −0.288 −0.089 −0.129 −0.083
EE Mean 0.000 −0.147 −0.294 −0.098 −0.140 −0.092

Skewness 0.761 −0.073 −1.335 0.183 −0.032 0.219
EE Skewness 0.841 −0.041 −0.923 0.253 0.000 0.289

Standard Error 0.985 0.975 1.095 0.965 0.973 0.965
Excess Kurtosis 1.134 0.026 1.980 0.081 0.024 0.123

Cov. one-sided 95% 98.21 93.73 89.16 95.31 93.95 95.50
Cov. two-sided 95% 95.67 95.25 92.38 95.78 95.38 95.81

288 Mean 0.003 −0.056 −0.116 −0.036 −0.053 −0.043
EE Mean 0.000 −0.060 −0.120 −0.040 −0.057 −0.047

Skewness 0.349 −0.013 −0.393 0.105 0.004 0.064
EE Skewness 0.343 −0.017 −0.377 0.103 0.000 0.061

Standard Error 0.998 0.994 1.013 0.993 0.994 0.991
Excess Kurtosis 0.257 0.018 0.285 0.041 0.016 0.011

Cov. one-sided 95% 96.30 94.50 92.69 95.12 94.58 94.97
Cov. two-sided 95% 95.18 95.17 94.61 95.22 95.17 95.26

1152 Mean 0.008 −0.022 −0.052 −0.012 −0.021 −0.018
EE Mean 0.000 −0.030 −0.060 −0.020 −0.029 −0.026

Skewness 0.152 −0.029 −0.214 0.031 −0.020 −0.006
EE Skewness 0.172 −0.008 −0.188 0.052 0.000 0.013

Standard Error 0.999 0.999 1.004 0.998 0.999 0.997
Excess Kurtosis 0.057 0.019 0.107 0.018 0.018 0.008

Cov. one-sided 95% 95.64 94.76 93.92 95.05 94.79 94.89
Cov. two-sided 95% 95.01 95.00 94.86 95.02 94.99 95.04

Notes: 100,000 Monte Carlo replications. EE Mean and EE skewness denote the Egdeworth corrections for the

mean and skewness. The infeasible statistic is
√

h−1

(

Rβ
2 −

(

σ2
)β

)

/β
(

σ2
)β−1 √

V .
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Table 5. Feasible RV-based statistics, GARCH(1,1) diffusion

h−1 β = 1 β = 0 β = −1 β = 1/3 β∗∗ β̂
∗∗

β∗ β̂∗
12 Mean −0.548 −0.235 0.000 −0.325 −0.151 −0.227 0.001 −0.103

EE Mean −0.410 −0.206 −0.001 −0.274 −0.137 −0.198 0.000 −0.092

Skewness −11.944 −0.755 1.198 −2.028 −0.004 −0.730 1.212 0.320
EE Skewness −1.641 −0.414 0.812 −0.823 0.000 −0.370 0.821 0.266

Standard Error 1.658 1.175 1.125 1.269 1.124 1.172 1.126 1.115
Excess Kurtosis 14.831 0.621 1.293 2.105 0.180 0.663 1.315 0.309

Cov. one-sided 95% 82.55 88.54 96.07 86.32 90.94 88.83 96.12 92.60
Cov. two-sided 95% 85.87 90.33 93.04 89.07 91.50 90.46 93.05 92.03

48 Mean −0.219 −0.105 0.001 −0.142 −0.069 −0.086 0.002 −0.023
EE Mean −0.205 −0.103 −0.001 −0.137 −0.068 −0.084 0.000 −0.023

Skewness −1.335 −0.259 0.450 −0.540 −0.011 −0.144 0.454 0.262
EE Skewness −0.821 −0.207 0.406 −0.412 0.000 −0.093 0.410 0.271

Standard Error 1.134 1.051 1.039 1.070 1.039 1.045 1.039 1.038
Excess Kurtosis 1.638 0.178 0.335 0.448 0.077 0.131 0.341 0.178

Cov. one-sided 95% 89.38 92.36 95.74 91.32 93.51 92.97 95.76 94.94
Cov. two-sided 95% 92.05 93.64 94.29 93.24 93.97 93.79 94.29 94.18

288 Mean −0.086 −0.043 −0.001 −0.057 −0.029 −0.031 −0.001 −0.004
EE Mean −0.084 −0.042 0.000 −0.056 −0.028 −0.030 0.000 −0.002

Skewness −0.374 −0.096 0.162 −0.185 −0.008 −0.022 0.163 0.143
EE Skewness −0.335 −0.085 0.166 −0.168 0.000 −0.010 0.168 0.153

Standard Error 1.022 1.009 1.007 1.012 1.007 1.007 1.007 1.007
Excess Kurtosis 0.260 0.043 0.056 0.088 0.022 0.027 0.057 0.053

Cov. one-sided 95% 92.93 94.17 95.38 93.76 94.59 94.53 95.39 95.31
Cov. two-sided 95% 94.44 94.69 94.83 94.61 94.77 94.77 94.83 94.80

1152 Mean −0.040 −0.019 0.002 −0.026 −0.012 −0.012 0.003 0.002
EE Mean −0.042 −0.021 0.000 −0.028 −0.014 −0.014 0.000 0.000

Skewness −0.179 −0.050 0.077 −0.092 −0.007 −0.009 0.078 0.075
EE Skewness −0.168 −0.042 0.083 −0.084 0.000 −0.001 0.084 0.082

Standard Error 1.007 1.004 1.004 1.005 1.004 1.004 1.004 1.004
Excess Kurtosis 0.059 0.004 0.006 0.016 −0.002 −0.001 0.006 0.006

Cov. one-sided 95% 93.96 94.55 95.19 94.35 94.77 94.76 95.19 95.17
Cov. two-sided 95% 94.86 94.91 94.96 94.90 94.92 94.93 94.96 94.94

Notes: 100,000 Monte Carlo replications. EE Mean and EE skewness denote the Egdeworth corrections for the

mean and skewness. The feasible statistic is
√

h−1

(

Rβ
2 −

(

σ2
)β

)

/βR
(β−1)
2

√

V̂ , where V̂ = 2
3R4.
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Table 6. Feasible RV-based statistics, two-factor diffusion

h−1 β = 1 β = 0 β = −1 β = 1/3 β∗∗ β̂
∗∗

β∗ β̂∗
12 Mean −0.972 −0.428 −0.085 −0.572 −0.115 −0.417 0.218 −0.234

EE Mean −0.841 −0.547 −0.253 −0.645 −0.280 −0.280 0.000 −0.385

Skewness −78.445 −1.709 1.864 −5.231 2.001 −1.687 88.892 0.272
EE Skewness −3.365 −1.601 0.163 −2.189 0.000 −1.541 1.683 −0.629

Standard Error 2.475 1.348 1.236 1.540 1.247 1.339 1.939 1.216
Excess Kurtosis 73.102 1.020 1.849 4.373 3.785 1.227 462.75 0.204

Cov. one-sided 95% 75.74 82.86 93.31 80.17 92.12 83.27 99.42 88.43
Cov. two-sided 95% 79.45 85.74 90.95 83.89 90.45 86.12 89.86 88.89

48 Mean −0.421 −0.235 −0.074 −0.293 −0.088 −0.196 0.065 −0.097
EE Mean −0.421 −0.274 −0.127 −0.323 −0.140 −0.140 0.000 −0.144

Skewness −1.609 −0.504 0.385 −0.825 0.341 −0.329 4.778 0.284
EE Skewness −1.683 −0.801 0.082 −1.095 0.000 −0.578 0.841 −0.025

Standard Error 1.373 1.158 1.111 1.207 1.112 1.138 1.225 1.114
Excess Kurtosis 5.249 0.586 0.444 1.382 0.595 0.395 54.774 0.290

Cov. one-sided 95% 84.56 88.62 93.32 87.14 92.93 89.77 97.23 92.65
Cov. two-sided 95% 88.01 90.85 92.41 90.07 92.34 91.31 92.58 92.14

288 Mean −0.166 −0.102 −0.040 −0.123 −0.046 −0.068 0.013 −0.020
EE Mean −0.172 −0.112 −0.052 −0.132 −0.057 −0.057 0.000 −0.030

Skewness −0.658 −0.307 0.109 −0.461 0.076 −0.095 0.504 0.227
EE Skewness −0.687 −0.327 0.033 −0.447 0.000 −0.121 0.343 0.162

Standard Error 1.078 1.043 1.032 1.052 1.032 1.039 1.044 1.041
Excess Kurtosis 0.910 0.226 0.125 0.381 0.111 0.145 0.583 0.244

Cov. one-sided 95% 90.84 92.57 94.30 92.01 94.13 93.46 95.83 94.81
Cov. two-sided 95% 93.22 93.89 94.22 93.70 94.21 93.99 94.24 94.04

1152 Mean −0.078 −0.047 −0.017 −0.057 −0.019 −0.024 0.009 0.002
EE Mean −0.086 −0.056 −0.026 −0.066 −0.029 −0.029 0.000 −0.007

Skewness −0.391 −0.184 0.007 −0.251 −0.010 −0.049 0.171 0.117
EE Skewness −0.343 −0.163 0.017 −0.223 0.000 −0.027 0.172 0.132

Standard Error 1.024 1.014 1.011 1.017 1.010 1.014 1.012 1.015
Excess Kurtosis 0.311 0.112 0.050 0.163 0.046 0.072 0.103 0.102

Cov. one-sided 95% 93.02 93.87 94.77 93.58 94.70 94.51 95.45 95.18
Cov. two-sided 95% 94.49 94.65 94.70 94.57 94.70 94.61 94.72 94.59

Notes: 100,000 Monte Carlo replications. EE Mean and EE skewness denote the Egdeworth corrections for the

mean and skewness. The feasible statistic is
√

h−1
(

Rβ
2 − σ2

β
)

/βR
(β−1)
2

√

V̂ , where V̂ = 2
3R4.
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Table 7. Summary statistics for the infeasible and feasible versions of the optimal power

GARCH(1,1) diffusion

Infeasible statistic Feasible statistic

h−1 Statistics β∗ β̂
∗

β∗∗ β̂
∗∗

β∗ β̂∗
12 Mean 0.331 0.482 −0.338 −0.036 −1.007 −0.554

St. Error 0.002 0.045 0.004 0.089 0.006 0.134
Max 0.333 0.591 −0.334 0.182 −1.004 −0.226
Min 0.310 0.323 −0.381 −0.354 −1.071 −1.032

48 Mean 0.331 0.407 −0.338 −0.187 −1.007 −0.780
St. Error 0.002 0.069 0.004 0.138 0.006 0.206
Max 0.333 0.542 −0.334 0.083 −1.004 −0.376
Min 0.310 0.061 −0.381 −0.877 −1.071 −1.816

288 Mean 0.331 0.351 −0.338 −0.298 −1.007 −0.947
St. Error 0.002 0.067 0.004 0.133 0.006 0.200
Max 0.333 0.477 −0.334 −0.046 −1.004 −0.569
Min 0.310 −0.409 −0.381 −1.817 −1.071 −3.226

1152 Mean 0.331 0.336 −0.338 −0.327 −1.007 −0.991
St. Error 0.002 0.045 0.004 0.089 0.006 0.134
Max 0.333 0.439 −0.334 −0.122 −1.004 −0.684
Min 0.310 −0.344 −0.381 −1.688 −1.071 −3.032

Notes: 100,000 Monte Carlo replications.

Table 8. Summary statistics for the infeasible and feasible versions of the optimal power

Two-factor diffusion

Infeasible statistic Feasible statistic

h−1 Statistics β∗ β̂
∗

β∗∗ β̂
∗∗

β∗ β̂∗
12 Mean 0.057 0.482 −0.886 −0.036 −1.828 −0.554

St. Error 0.120 0.043 0.240 0.086 0.359 0.129
Max 0.297 0.596 −0.407 0.192 −1.110 −0.211
Min −1.031 0.325 −3.061 −0.350 −5.092 −1.025

48 Mean 0.057 0.373 −0.886 −0.254 −1.828 −0.882
St. Error 0.120 0.076 0.240 0.152 0.359 0.229
Max 0.297 0.561 −0.407 0.122 −1.110 −0.318
Min −1.031 0.038 −3.061 −0.925 −5.092 −1.887

288 Mean 0.057 0.216 −0.886 −0.567 −1.828 −1.351
St. Error 0.120 0.136 0.240 0.271 0.359 0.407
Max 0.297 0.464 −0.407 −0.072 −1.110 −0.608
Min −1.031 −0.615 −3.061 −2.230 −5.092 −3.845

1152 Mean 0.057 0.126 −0.886 −0.748 −1.828 −1.622
St. Error 0.120 0.164 0.240 0.327 0.359 0.491
Max 0.297 0.412 −0.407 −0.177 −1.110 −0.765
Min −1.031 −1.458 −3.061 −3.916 −5.092 −6.373

Notes: 100,000 Monte Carlo replications.

21



0.6 0.8 1 1.2 1.4 1.6 1.8
0

5

10

15

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

5

10

15

0.6 0.8 1 1.2 1.4 1.6 1.8
0

5

10

15

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

5

10

15

0.6 0.8 1 1.2 1.4 1.6 1.8
0

5

10

15

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

5

10

15

0.6 0.8 1 1.2 1.4 1.6 1.8
0

5

10

15

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

5

10

15

GARCH(1,1) diffusion Two-factor diffusion

h
−

1
=

12

h
−

1
=

12

h
−

1
=

48

h
−

1
=

48

h
−

1
=

28
8

h
−

1
=

28
8

h
−

1
=

11
52

h
−

1
=

11
52

Figure 1: The left-hand-side panel shows the kernel densities of the infeasible and feasible power
statistics for the GARCH(1,1) diffusion. The right-hand-side panel shows these statistics

for the two-factor diffusion. The dashed line refers to σ2 σ6

(σ4)
2 and the solid line refers to its

realized version RV (R6/15)
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Figure 2: The left-hand-side panels give the QQ-plots for the infeasible statistics for the GARCH(1,1)

diffusion when β = 1, β = 0 and β = 1/3, and when β = β∗, β = β̂
∗
, respectively. The

right-hand-side panels give the QQ-plots for the two-factor diffusion.
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Figure 3: QQ-plots for feasible statistics for the GARCH(1,1) diffusion.
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Figure 4: QQ-plots for feasible statistics for the two-factor diffusion.
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Figure 5: Coverage probabilities of confidence intervals across several values of β, GARCH(1,1) diffu-
sion.
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Figure 6: Coverage probabilities of confidence intervals across several values of β, two-factor diffusion.
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Appendix A − Details on the Monte Carlo experiment
We consider the following stochastic volatility model

d log St = µdt + σt

[

ρ1dW1t + ρ2dW2t +
√

1 − ρ2
1 − ρ2

2dW3t

]

,

where W1t, W2t and W3t are three independent standard Brownian motions. Since we assume no drift and no
leverage, µ = ρ1 = ρ2 = 0, implying that d log St = σtdW3t.

We consider two different models for σt. Our first model is the GARCH(1,1) diffusion studied by An-
dersen and Bollerslev (1998): dσ2

t = 0.035 (0.636 − σt) dt + 0.144σ2
t dW1t. We also consider the two-factor

diffusion model analyzed by Huang and Tauchen (2006): σt =s-exp
(

−1.2 + 0.04σ2
1t + 1.5σ2

2t

)

, where dσ2
1t =

−0.00137σ2
1tdt+dW1t, dσ2

2t = −1.386σ2
2tdt+

(

1 + 0.25σ2
2t

)

dW2t, and where the function s-exp is the usual

exponential function with a linear growth function splined in at high values of its argument: s-exp(x) = exp (x)

if x ≤ x0 and s-exp(x) = exp(x0)√
x0

√

x0 − x2
0 + x2 if x > x0, with x0 = log (1.5).

The explicit form of a confidence interval for σ2 based on the Box-Cox transform statistic depends on

whether β > 0 or β < 0. For β > 0, a lower one sided (1 − α)% confidence interval for σ2 based on

the infeasible statistic Sβ is given by

(

0,
[

Rβ
2 − zαvβ

]1/β
)

, where vβ = βσ2
β−1√

hV , with V = 2σ4,

is the scaling factor for Sβ , and where zα is such that Φ(zα) = α for any α. For β < 0, it is given by
(

0,
[

Rβ
2 − z1−αvβ

]1/β
)

. When β > 0, a two-sided symmetric (1 − α) % confidence interval based on Sβ is

given by

(

[

Rβ
2 − z1−α/2vβ

]1/β
,
[

Rβ
2 + z1−α/2vβ

]1/β
)

, whereas for β < 0, it is given by
(

[

Rβ
2 + z1−α/2vβ

]1/β
,
[

Rβ
2 − z1−α/2vβ

]1/β
)

. The confidence intervals for σ2 based on the feasible statistic

Tβ are defined similarly with vβ replaced with v̂β = βRβ−1
2

√

hV̂ , where V̂ = 2
3R4.

Appendix B − Proofs
Proof of Proposition 3.1. We apply Lemmas S.1 and S.2 in GM (2008).

Proof of Corollary 3.1. The goal is to characterize the value of β such that the leading term of κ1 (Sβ) (resp

κ3 (Sβ)) equals zero; given that g′′(σ2, β)/g′(σ2, β) = (β−1)
(

σ2
)−1

, and given Proposition 3.1, the solution

is β = 1 (resp β = β∗). The Cauchy-Schwartz inequality implies (σ4)2 ≤ σ2 σ6, which leads to β∗ ≤ 1/3.

Proof of Proposition 3.2. We have

pgβ
(x) = − 1√

2

(σ4)1/2

σ2
((β − β∗)(x2 − 1) + (β − 1)) = − 1√

2

(σ4)1/2

σ2
((β − β∗)x2 + (β∗ − 1))

=
1√
2

(σ4)1/2

σ2
((β∗ − β)x2 + (1 − β∗)).

When x is fixed and non-zero, the function that appears in the last equation is positive and decreasing when β
varies with β ≤ β∗ < 1; therefore,

∣

∣pβ∗ (x)
∣

∣ <
∣

∣pβ1
(x)

∣

∣ <
∣

∣pβ2
(x)

∣

∣. When x = 0, pgβ
(x) does not depend

on β; hence, pβ∗ (0) = pβ1
(0) = pβ2

(0).

Proof of Proposition 3.3. See GM (2008).

Proof of Corollary 3.2. The goal is to characterize the value of β such that the leading term of κ1 (Tβ) (resp

κ3 (Tβ)) equals zero; given that g′′(σ2, β)/g′(σ2, β) = (β − 1)σ2
−1

, and given Proposition 3.3, the solution is

β = β∗ (resp β = β∗∗). The Cauchy-Schwartz inequality implies (σ4)2 ≤ σ2 σ6, which leads to β∗ ≤ −1 and
β∗∗ ≤ −1/3.
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Proof of Proposition 3.4. We have

qgβ
(x) =

√
2

3

σ6

(σ4)3/2
(2x2 + 1) +

(σ4)1/2

√
2

g′′β(σ2)

g′β(σ2)
=

1√
2

(σ4)1/2

σ2
((β − β∗∗)x2 +

1

2
(1 − β∗∗)).

When x is fixed and non-zero, the function that appears in the last equation is positive and increasing when β
varies with β∗∗ < β; therefore,

∣

∣qβ∗∗ (x)
∣

∣ <
∣

∣qβ1
(x)

∣

∣ <
∣

∣qβ2
(x)

∣

∣. When x = 0, qgβ
(x) does not depend on

β; hence, qβ∗∗ (0) = qβ1
(0) = qβ2

(0) .
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