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Bootstrap Standard Error Estimates for 
Linear Regression 

Silvia Gon?alves and Halbert White 

Standard errors of parameter estimates are widely used in empirical work. The bootstrap often can provide a convenient means of estimating 
standard errors. The conditions under which bootstrap standard error estimates are theoretically justified have not received much attention, 
however. This article establishes conditions for the consistency of the moving blocks bootstrap estimators of the variance of the least squares 
estimator in linear dynamic models with dependent data. We discuss several applications of this result, in particular, the use of bootstrap 
standard error estimates for bootstrapping Studentized statistics. A simulation study shows that inference based on bootstrap standard error 

estimates may be considerably more accurate in small samples than inference based on closed-form asymptotic estimates. 

KEY WORDS: Moving blocks bootstrap; Studentized statistic. 

1. INTRODUCTION 

The bootstrap is a general method for estimating the sam 

pling distribution of a statistic. Under suitable conditions, the 

bootstrap distribution is asymptotically first-order equivalent 
to the asymptotic distribution of the statistic of interest. The 

consistency of the bootstrap distribution, however, does not 

guarantee the consistency of the variance of the bootstrap dis 

tribution (the "bootstrap variance") as an estimator of the as 

ymptotic variance, because it is well known that convergence 

in distribution of a random sequence does not imply conver 

gence of moments (see, e.g., Billingsley 1995, thm. 25.12). 

For the sample median and smooth functions of sample means, 

examples of the inconsistency of bootstrap variance estimators 

in the iid context have been given by Ghosh, Parr, Singh, and 
Babu (1984) and Shao (1992). 

For time series observations, the moving blocks bootstrap 

(MBB) introduced by K?nsch (1989) and Liu and Singh 
(1992a) has been shown to consistently estimate the variance 
of the sample mean under weak dependence and heterogeneity 

assumptions (see Gon?alves and White 2002). For more gen 
eral statistics, conditions for the consistency of the bootstrap 
variance estimator do not appear to be available. 

The main purpose of this article is to provide sufficient condi 
tions for the consistency of MBB variance estimators when the 

statistic of interest is the least squares (LS) estimator in possibly 
misspecified linear regression models with dependent data. Our 
framework includes linear regression with iid observations as 

a special case. In related work, Liu and Singh (1992b) showed 
the consistency of the iid bootstrap variance estimator for re 

gressions with fixed regressors and iid errors. Our results allow 

for stochastic regressors and autocorrelated errors. Although 
the consistency of the MBB distribution of the LS estimator is 
well established in the literature (see, e.g., Fitzenberger 1997; 
Politis, Romano, and Wolf 1997), the consistency of the boot 

strap variance of the LS estimator has not received much atten 

tion. As we remarked earlier, the former does not necessarily 
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imply the latter, so that currently available results do not jus 

tify bootstrapping the standard errors of the LS estimates using 
the MBB. 

Our result is important in that many applied studies have used 

bootstrap standard error estimates as a measure of the precision 
of their parameter estimates (see, e.g., Efron 1979; Freedman 

and Peters 1984; Efron and Tibshirani 1986; Li and Maddala 

1999). We also emphasize that this result plays an important 
role in justifying bootstrap applications based on Studentized 

statistics, for which asymptotic refinements of the bootstrap can 
be expected. The construction of Studentized statistics involves 
normalization by the standard error of the estimator. Our re 

sults formally justify using the bootstrap in computing such 
standard errors. This feature is especially convenient in cases 

when asymptotic closed-form solutions are not available or are 

too cumbersome to be calculated. In addition, we present simu 

lation evidence that suggests that inference based on bootstrap 
estimates of standard errors may be considerably more accurate 

in small samples than inference based on asymptotic closed 

form standard error estimates. For a multiple linear regression 
model with autocorrelated (and heteroscedastic) errors, we find 
that confidence intervals that rely on bootstrap standard errors 

tend to perform better than confidence intervals that rely on as 

ymptotic closed-form variances. In particular, the coverage er 

rors of symmetric MBB percentile-? confidence intervals based 
on bootstrap standard error estimates are substantially smaller 

than the coverage errors typically found for other (asymptotic 
theory-based and bootstrap-based) confidence intervals in this 

setting, especially under strong autocorrelation. 

The remainder of the article is organized as follows. Sec 

tion 2 presents the theoretical results. Section 3 compares the 

accuracy of the bootstrap estimator with that of closed-form 

estimators of the variance. Section 4 provides concluding re 

marks, and an Appendix gives all of the proofs. 

2. LINEAR REGRESSION 

In this section we prove the asymptotic validity of the MBB 
for variance estimation in the context of linear regressions when 

the data-generating process (DGP) is near-epoch-dependent 

(NED) on a mixing process (Billingsley 1968; McLeish 1975; 
Gallant and White 1988). NED processes allow for consid 
erable dependence and heterogeneity. They include as a spe 

cial case the more conventional mixing processes, which can 
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be overly restrictive for applications in economics [see, e.g., 

Andrews 1984 for an example of a simple AR(1) process that 
fails to be strong mixing]. NED processes cover a variety of 

nonlinear time series models, including the bilinear, general 
ized autoregressive conditional heteroscedastic, and threshold 

autoregressive models (see Davidson 2002). 
We define {Zt} to be L^-NED on a mixing process {Yt} pro 

vided that EiZqt) < oo and vk = supr \\Zt 
- 

E\tkkiZt)\\q tends 
to 0 as k ?> oo at an appropriate rate, where q > 2. In par 

ticular, if Vk = Oik~a~8) for some 8 > 0, then we say that 

{Zt} is LC/-NED (on {Vr}) of size ?a. Here and in what follows, 

\\Zt\\q 
= 

iE\Zt\q)xlq denotes the Lq norm of the random vec 

tor Zt, with |Z,| its Euclidean norm, and ?,'+?( ) = ?(-|Jy?j?), 
where J7^ 

? a(V/-?, > Vt+k) is the a-field generated by 
Vi_jt,..., Vi+jt. The sequence {Vr} is assumed to be strong 

mixing, that is, ak = 
supm sup^jp" ,b^T?? } I^C^ ^ #) 

~~ 

PiA)PiB)\ -> 0 as ? -> oo at an appropriate rate. 
Gallant and White (1988) studied the asymptotic properties 

of quasi-maximum likelihood estimators (QMLEs) for hetero 

geneous NED data and nonlinear dynamic models. Recently, 

Gon?alves and White (2004) established the first-order as 

ymptotic validity of the MBB for the framework of Gallant 
and White (1988). In particular, Gon?alves and White (2004) 
showed that the MBB consistently estimates the asymptotic dis 
tribution of the QMLE. But as Gon?alves and White (2004) 
remarked, their results do not justify using the variance of the 

bootstrap distribution to consistently estimate the asymptotic 
variance of the QMLE. Here we fill this gap for the special 
case of the LS estimator for linear dynamic models. In partic 
ular, we give explicit conditions that justify bootstrapping the 
variance of the LS estimator in possibly misspecified linear dy 
namic models when the DGP is NED on a mixing process. 

Assumption 1 is a version of the Gallant and White (1988) 
and Gon?alves and White (2004) assumptions specialized to the 
case of linear dynamic models. 

Assumption 1. a. Let ( , T, P) be a complete probability 
space. The observed data are a realization of a strictly stationary 
stochastic process {Zt 

= 
iYt,X't)' 

: Q -> Rp+\t 
= 

1,2,...}, 

peN; Zti ) = 
Wf(..., \t-\(co), Yt(co), \t+i(co), ...), 

(o e Q, where V, : Q -> Rv, v e N, and W, : X^^ 
-> 

M^+1 are such that Zt is measurable, t = 1, 2,_ 

b. Yt 
= 

X't?? + ?t, t = I, 2,..., for some ?? e Rp, where 

X; 
= 

(Xn,...,X^)and?(X^) 
= 0. 

c. For some r > 2, H^l^r < A < oo, ||X??||6r < A < oo, for 
/ = l,...,p,t 

= 
1,2,.... 

d. For some small 8 > 0, the elements of {Zt} are L2+$-NED 
on {Vr} with NED coefficients Vk of size ? _ A ; {V^} is an 

a -mixing sequence with otk of size 
?^y?^ 

e. A? = EiXtXft) is nonsingular, that is, A.mm(A?) > rj > 0 
for some n > 0, where Amin(A?) denotes the smallest eigen 
value of A?. 

f. B? = linVz^ooB^ is positive definite, where B^J 
= 

varin-'^E^X,*). 

According to Assumption 1 .a, we observe data on ip -f 1) x 1 
random vectors Zt 

= 
iYt,X't)f, each of which is viewed 

as a transformation of some underlying process {Vr}. Here 

Yt denotes the observation t on the dependent variable and 

Xt 
= 

(Xfi,..., XtpY 
is the p x \ vector of regressors for ob 

servation t; Xt may include lagged dependent variables. For 

simplicity, we assume that the DGP for Zt is strictly station 

ary. Without stationarity, results analogous to ours can still be 

derived under additional conditions controlling the degree of 

heterogeneity in the data. Assumption Lb specifies a linear dy 
namic model that may be mis specified in the sense that for all 

? g W, it is true that P(E(Yt\Xt) ^ X't?) > 0. Such models 
are relevant for forecasting, because in this misspecified con 

text ?? is the parameter that minimizes the mean squared er 
ror of the linear approximation to the unknown E(Yt\Xt). In 

particular, under Assumption Le, ?? is uniquely defined by 
?? = (E(XfX))-lE(X,Y), where we let Y = (Y{,..., Yn)f and 
X = 

(Xi,...,Xw)/. 

We estimate ?? by the LS estimator ?n = (X'X^X'Y. 
Under our assumptions, ?n consistently estimates ?? and 

y?C?n 
- 

??) =* N(0, A^B^A0"1); that is, the limiting dis 

tribution of the LS estimator ?n is the multivariate normal 
distribution with asymptotic variance-covariance matrix C? = 

A0_1B?A0_1. The bootstrap can be used to estimate the distri 

bution of yfn~(?n 
? 

??) and to estimate C?. 

Let ?* = (X^T^'Y* be the LS estimator of ?? based 
on the bootstrap data {Z*r 

= 
(F^X^)') obtained with the 

MBB as follows. Let i = ln e N (1 < ? < n) denote the length 
of the blocks and let Br^ = {Zt, Zt+\,..., Z?+?_i} be the block 
of i consecutive observations starting at Zt ; i ? 1 corresponds 
to the standard iid bootstrap. The MBB resamples k ? n/i 
blocks randomly with replacement from the set of n ? ? + 1 

overlapping blocks {Bi^,..., Bw_^+i^}, where for simplicity 
we assume that n ? ki. 

One bootstrap variance-covariance matrix estimator of ?n 
is given by the bootstrap population variance-covariance ma 

trix of y/n(?* 
? 

?n), conditional on the original data, C* = 

var*(^/n~(?* 
? 

?n)). Because in general there is no closed 

form expression for C*, we compute an approximation to C* by 

Monte Carlo simulation, that is, C* = lim?_>oo ? Y.f=\C?*nl) 
~ 

?n)C?f] 
- 
kY, where fa = 

l?f=1 ?*?\ with f?l) the 
bootstrap LS estimator evaluated on the ith bootstrap replica 
tion and B the total number of bootstrap replications. 

In this article we focus on an alternative bootstrap variance 

covariance matrix estimator of ?n, namely the bootstrap popu 

lation variance-covariance matrix of y/n(?* 
? 

?n). Following 
Liu and Singh (1992b) and Shao and Tu (1995, chap. 7, 
sec. 7.2.2), we define /?* as 

?n 

(X*'X*)-'X*'Y* ifAmin(^^)>^ n ) 2 (l) 

?n otherwise 

for some S > 0, where A.m?n(A) denotes the smallest eigenvalue 
of A for any matrix A. Given the foregoing definition, ?* is 

equal to ?* whenever is nonsingular. Because for any 

? > 0 and sufficiently large n, there exists S > 0 such that 
/ /X*'X*\ 8\ I 

P*Umin\?-) >-)>!-? 
>l-e, (2) 

this modification affords considerable convenience without 

adverse practical consequences by greatly simplifying the 
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theoretical study of the bootstrap variance estimator, C* = 

var*(>?*). 
An important intermediate step toward proving the consis 

tency of C* for C? is to establish the first-order asymptotic 

validity of the bootstrap distribution of ?fn~i?* 
? 

?n). This fol 
lows by an application of theorem 2.2 of Gon?alves and White 

(2004) for the special case of the LS estimator of (possibly) 
misspecified linear dynamic models and the fact that condi 
tion (2) holds under Assumption 1. Assumption 1 also ensures 
that the elements of {Xtet} satisfy assumptions 2.1 and 2.2 of 

Gon?alves and White (2004). In particular, assumption 2.2 of 

Gon?alves and White (2004) is automatically satisfied because 

EiXtst) = 0 for all t given the stationarity assumption and the 
definition of ??. Alternatively, for assumption 2.1 we could 
have assumed that \\Xti?t hr < A < oo for some r > 2, and that 
for some 8 > 0, the elements of {Xtst} are ?2+5-NED on {V?} 
with NED coefficients vk of size ?fE^ 

Our main result establishes the consistency of C* for C? = 

A<?-i?oAo-i un(ier Assumption 1. 

Theorem 1. Under Assumption 1, if in = oinx?2) and 

in -> 00, then C* -4- C?, where C* = 
var*(V^/?*) and C? = 

A?~lB0A?-1. 

Theorem 1 justifies the use of C* as an heteroscedasticity 
and autocorrelation-consistent (HAC) variance estimator of C?. 

Given the first-order asymptotic validity of the bootstrap distri 

bution of^/ni?*-?n), we show that E*i\y/ni?*-?n)\2+s) 
= 

Op il), which is a sufficient condition for the uniform integra 

bility of the sequence [\^i?* -?n)\2) 
Although we have focused on the LS estimator for linear 

regression models, several extensions of our results are possi 
ble. First, we can generalize our results to the &-step QMLEs 
as proposed by Davidson and MacKinnon (1999). To illus 

trate, consider the one-step QMLE as defined by Gon?alves and 
White (2004), 

n 

fin =?n- K(0n)~ln-1 ] >;,(<??). 
f=l 

We use the same notation as Gon?alves and White (2004). 
In particular, 0n is the QMLE of a pseudoparameter 0%, 

Alien) 
= n~l Y!?=1 V2log/?* (4) is the MBB resampled es 

timated Hessian, and {s*ti?n)} are the MBB resampled esti 
mated scores. Under the assumptions of Gon?alves and White 

(2004), the bootstrap distribution of y/?i?*n 
- 

0n) is first 
order asymptotic equivalent to the asymptotic normal distri 

bution of the QMLE ^?i?n 
- 

e?n) (cf. their thm. 2.2 and 
cor. 2.1). Therefore, it suffices to show that ?,*(|A/^(fJ*n 

? 

?n)\2+s) 
? Opi\). As with the LS estimator, here it is con 

venient to consider a truncated version of the one-step boot 

strap estimator, namely 0*n 
= 

0*n 
when A*(^)_1 exists and 

Q*n 
= 0n otherwise. To prove that E*i\y/n(?*n 

- 
0n)\2+s) = 

Op il), we can use reasoning similar to that underlying the 

proof of our Theorem 1. In particular, it suffices to show that 

E*\n~xl2 Y!?=\ Snt(?n)\2+S 
= Opil). To maintain our focus on 

the case of linear regression, we do not provide further details 

here, but we will take up formal statements of /?-step QMLE 
results elsewhere. 

Another useful extension of the results presented here 

is to quantile regression. Because the asymptotic variance 

covariance matrix of the quantile regression estimator depends 
on the density of the error term, bootstrapping the standard 
error estimate is particularly convenient, because it avoids 

nonparametric density estimation. For cross-sectional quan 

tile regression, Buchinsky (1995) investigated the finite-sample 
performance of several bootstrap standard error estimates, in 

cluding a pairwise bootstrap standard error estimate. Never 

theless, no formal justification for these bootstrap applications 
was provided. Also in the cross-sectional context, Hahn (1995) 
proved the first-order asymptotic validity of the bootstrap dis 
tribution of the quantile regression estimator. As Hahn (1995, 
p. 107) remarked, his results provide a theoretical justification 
for bootstrap percentile confidence intervals, but they do not 

justify using the bootstrap to estimate standard errors. Similarly, 
although Fitzenberger (1997) proved that the MBB consistently 
estimates the asymptotic distribution of the quantile regression 
estimator, his results do not apply to bootstrap standard error 

estimates. Thus, establishing theoretical results that justify the 

application of the bootstrap to variance estimation for the quan 
tile regression estimator is an important area of future research. 

In his study, Fitzenberger (1997) treated the quantile regres 
sion estimator in a setting analogous to the LS case. Therefore, 
we conjecture that verification of the uniform integrability con 
dition for the quantile regression estimator could be pursued 
along the same lines as for the LS estimator in Theorem 1. 
As for the ?-step QMLE results, we take up formal treatment 
of quantile regression elsewhere. 

3. MONTE CARLO RESULTS 

In this section we conduct a Monte Carlo experiment that 

highlights the potential gains in accuracy from using boot 

strap standard error estimates in the context of a multiple linear 

regression with serially dependent and heteroscedastic errors. 

Important examples of linear regression models in the applied 
econometrics literature are long-horizon regressions. Such re 

gression models have been applied in, for example, the context 
of testing the predictability of exchange returns or, more gener 

ally, asset returns based on economic fundamentals (see Mark 

1995; Hodrick 1992; Kirby 1998; Kilian 1999). 
We consider the problem of building a confidence interval for 

a single regression parameter. We use the finite-sample cover 

age probability of symmetric 95% confidence intervals as our 

performance criterion. Our study is analogous to the simulation 

studies of Fitzenberger (1997) and Politis et al. (1997), follow 

ing the basic setup of Andrews (1991) (see also Romano and 
Wolf 2003 for a similar design). 

In particular, we consider the linear regression model 

Yt =X't?? + st9 where X, 
= 

(Xt\,Xft2) 
contains five regres 

sors, the first of which is a constant (Xt\ = 1). We con 
sider two of the DGPs proposed by Andrews (1991), namely 

AR(l)-HOMO and AR(1)-HET2. The regressors and errors 
of the DGP AR(l)-HOMO are generated as mutually indepen 
dent AR(1) models with variance 1 and AR parameter p, 

Xti =pXt-ij +y 
1 - p2vti, i =2, ...,5, 

and 

st = pst-\ 
+y 

1 
- 

p2ut, 
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where et =?t. The innovations vt? and ut are generated as inde 

pendent standard normal distributions. We set the true parame 

ter ?? equal to 0 (without loss of generality) and consider the 

following values for the AR parameter p: .3, .5, .9, and .95. The 

DGP AR(1)-HET2 is obtained from the AR(l)-HOMO model 

by introducing conditional heteroscedastiticy in the errors st. 
In particular, we let et 

? 
\X't2y\?t 

with y 
= 

(.5, .5, .5, .5). 

In the simulations, 5,000 random samples are generated for the 

sample sizes n g {64, 128, 256, 512, 1,024}. The bootstrap in 
tervals are based on 999 replications for each sample. 

The goal is to build a confidence interval for ?2. The as 

ymptotic normal theory-based confidence interval for ?2 is 

given by ?2n ? n~xf2\.96y Cn,22, where Cn,22 is the ele 

ment (2,2) of Cn, a consistent estimator of the asymptotic 
variance-covariance matrix C? = A?~lB?A?~K We consider 

two different choices of Cn Our first choice exploits the sand 
wich form of C? and is given by Cw,qs 

= 
A^B^qsA"1 , where 

An = ^p and BW?qs is the quadratic spectral (QS) kernel vari 
ance estimator of Andrews (1991). This yields the following 
asymptotic normal theory-based confidence interval for ?2 : 

C/qs =?2n ?n-V2l.96Jcn,Qs,22 

A second choice of Cn is C* = var*(y/n(?* 
- 

?n)), the boot 

strap covariance matrix of the distribution of *Jn(?* ??n)- Our 
Theorem 1 provides a formal justification for this choice. Here 

?* is the truncated version of the LS estimator /?*, which re 

places ?* with ?n whenever (X^X*)-1 does not exist. As it 
turned out, for our Monte Carlo design we never encountered 

any singularity problems. Thus in our simulations, ?* = ?*, 
and C* coincides with C* = vzr*(y/n(?* 

- 
?n)). Notice that 

C* does not rely on the sandwich form of C?n and is typically 
evaluated with Monte Carlo simulation methods. In particular, 
the bootstrap variance estimator based on B bootstrap replica 
tions is 

B _ 
r* ? n 

\^(a*(i? a* \2 
^n,22,B 

- 
B ?J^P2n 

~ 
^2n ) ' 

i = \ 

where ?2n denotes the (truncated) LS estimator of ?2 evalu 

ated on the z'th bootstrap replication and ?2n 
? 

j? J2i=\ ?2n 
When B ? 

oo, C* 22 B approximates C* 22, the "ideal" boot 

strap variance estimator based on B = oo. Here we let B = 999. 

A bootstrap variance, asymptotic normal theory-based confi 

dence interval for ?2 can be obtained as 

C/var* =fhn ? AT1'2 
1.96^(5* 22>5, 

where the critical value of the t-statistic is still obtained with 
the asymptotic normal distribution. 

We also consider bootstrap percentile-i confidence intervals, 

for which asymptotic refinements can be expected. A 95% level 

symmetric bootstrap percentile-i confidence interval for ?2 
takes the form 

CIpQT-t 
? 

$2n ? ^s*tud,.95V^'22' ^ 

where q*tud 95 is the 95% bootstrap percentile of the absolute 
value of the Studentized bootstrap statistic 

(4) 

Here C* 22 is a consistent estimator of the bootstrap population 
variance of 

->Jn?2n- (Note the use of Cn22 rather than C* 22, 
for reasons elaborated on later.) A bootstrap percentile-i con 

fidence interval requires the choice of two standard error es 

timates, one for studentizing the t-statistic evaluated on the 

real data [cf. vCn,22 in (3)] and the other for studentizing the 

?-statistic evaluated on the bootstrap data [cf. v C* 22 in (4)]. 
As discussed by Davison and Hall (1993) and G?tze and 

Kiinsch (1996), for the MBB with dependent data, a careful 
choice of these standard error estimates is crucial if asymp 
totic refinements are to be expected. In particular, for smooth 

functions of means of stationary mixing data, to studentize the 

bootstrap statistic, G?tze and Kiinsch (1996) suggested a vari 
ance estimator that exploits the independence of the bootstrap 
blocks and that can be interpreted as the sample variance of 
the bootstrap block means. To studentize the original statistic, 

G?tze and Kiinsch (1996) used a kernel variance estimator with 

rectangular weights and warned that triangular weights would 

destroy second-order properties of the block bootstrap. 
In our Monte Carlo simulations, to studentize the origi 

nal t-statistic, we consider the same two choices as before, 

namely C?5qs,22, which relies on the sandwich form of C? and 
uses the QS-kernel to estimate B?, and 

C*22B, 
which esti 

mates the standard error of ?2n with the bootstrap. To studen 

tize the bootstrap ?-statistic, we use the multivariate analog of 

the G?tze and Kiinsch (1996) variance estimator, adapted to the 
LS context. In particular, we let C* 22 be the element (2, 2) of 

C* = A*"lB*A*-', where k* = 
^ 

and 

K = *"' 
?(V1/2 ?x,+/(y,+r 

- 
x>u~?*n)\ 

i = l \ t=\ 

where {/?} are iid random variables uniformly distributed on 

{0, 1,..., n ? I}. Another possibility would be to use the boot 

strap to estimate the bootstrap variance of 
<s/n?2n. 

This would 

correspond to a double bootstrap, where the bootstrap is used 

to simulate the distribution of the Studentized estimator, which 
is based on a standard error estimate that in turn has been es 

timated by the bootstrap. Implementing the double bootstrap 
would be extremely computationally intensive, and therefore 

we do not consider this alternative here. Nevertheless, we note 

that our theoretical results formally justify such an approach. 
To summarize, we consider the following two 95% level 

symmetric bootstrap percentile-i confidence intervals: 

<^per-f,QS 
= 

?ln ? 
<3,s*tud,.95V d,QS,22 

and 

CTper-i,var* 
? 

?ln ? 
^stud,.95V ^n,22,B' 
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For comparison purposes, we also include the 95% bootstrap 

percentile confidence interval given by 

CI per 
? 

?2n i<7.95> 

where q *95 is the 95% bootstrap percentile of the absolute value 

of 
s/n~(?2n 

? 
?in)- In contrast to the bootstrap percentile-i con 

fidence interval, the bootstrap percentile confidence interval 
does not require any standard error estimate. However, because 

it is not based on an asymptotically pivotal statistic, this boot 

strap method does not promise any asymptotic refinements. 

The choices of the bandwidth for the QS-based confidence 
interval and of the block size for the MBB confidence inter 
vals are critical. We use Andrews's (1991) automatic procedure 
based on approximating AR(1) models for the elements ofXtst 
to compute a data-driven bandwidth for the QS kernel. Given 
the asymptotic equivalence between the MBB and the Bartlett 
kernel variance estimators, we choose the block length as the 

integer part of the data-driven bandwidth chosen by Andrews's 
automatic procedure for the Bartlett kernel. This choice is easy 
to implement and affords meaningful comparison of our results. 

Figures 1 and 2 present results for the DGP AR(l)-HOMO, 
and Figures 3 and 4 present results for the DGP AR(1)-HET2. 
Each figure contains two panels, corresponding to two different 

values of p. Each panel depicts the actual coverage rate of each 

confidence interval as a function of the sample size. 

All methods tend to undercover; the larger the p, the worse 
the undercoverage. One exception is C7per-i,var*, which shows 

a slight tendency to overcover for small n. The QS kernel 
based confidence interval shows the worst performance among 

all methods. The bootstrap variance-based confidence inter 

val C/yar* shows improved coverage rates when compared 

with CIqs, especially for small n and large p. This im 

provement may be quite substantial. For instance, for DGP 

AR(l)-HOMO, when n = 64 and p 
= .9, the coverage rate 

of CIqs is 67.34%, whereas that of CIyax* is 79.06%. Because 
both confidence intervals rely on the asymptotic normal ap 

proximation, using the bootstrap does not eliminate the un 

dercoverage. However, these results suggest that replacing the 

asymptotic closed-form standard error estimates by bootstrap 
standard error estimates may by itself significantly improve the 

finite-sample performance of asymptotic normal theory-based 
confidence intervals. The finite-sample performance of CIwar* 

is similar to that of C7per. 
As expected from the bootstrap theory, bootstrap percentile-? 

confidence intervals have smaller coverage distortions com 

pared with the percentile confidence interval and the asymptotic 
normal theory-based confidence intervals. For AR(l)-HOMO, 
when the degree of autocorrelation is weak (i.e., for p 

= .3 

and p 
= 

.5), C/per-r,var* tends to overcover for the smaller sam 

ple sizes, whereas C/per-r,Qs always undercovers. Both meth 

ods tend to be within one percentage point of the desired 95% 
level. When the degree of autocorrelation is strong (i.e., p = .9 

and p 
= 

.95), the undercoverage of 
C/per-/,Qs 

worsens. In con 

trast, C7per-r,var* shows coverage rates that are closer to the 

nominal 95% level, with slight overcoverages for n = 64 and 
n = 128 and slight undercoverages for the larger sample sizes. 
Thus our results show that the choice of the standard error esti 

mate used to studentize the ?-statistic evaluated on the original 

1 
0.99 
0.98 

>> 0.97 
= 0.96 
? 0.95 
? 0.94 
o. 0.93 
? ?-92 
S5 0.91 
g> 0.9 
o 0.89 

? 0.88 
0.87 
0.86 
0.85 

Figure 1. Coverage Probabilities of 95% Nominal Symmetric Confidence Intervals. Regression errors are homoscedastic AR(1) with autoregres 
sion coefficient equal to p. For (a), p = .30; for (b), p = .50 (n CIQS; 0 Clvar* ; o Clper; * Clper.t!QS; 

& 
Clper_tvar*). 
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0.98 
0.95 

>> 0.92 
= 0.89 
? 0.86 
o 0.83 
Q- 0.8 

8)0.77 
2 0.74 
? 0.71 

S 0.68 
0.65 
0.62 
0.59 

Figure 2. Coverage Probabilities of 95% Nominal Symmetric Confidence Intervals. Regression errors are homoscedastic AR(1) with autoregres 
sion coefficient equal to p. For (a), p = .90; for (b), p = .95 (n CIqS; 0 Clvar*; o Clper; * 

Clper.tiQS; 
& 

Clper<var*). 

Figure 3. Coverage Probabilities of 95% Nominal Symmetric Confidence Intervals. Regression errors are heteroscedastic AR(1) with autore 

gression coefficient equal to p. For (a), p = .30; for (b), p = .50 (a CIqs; 0 Clvar* ; o Clper; * Clper.tiQS; 
* 

Clper.tvar*). 
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Figure 4. Coverage Probabilities of 95% Nominal Symmetric Confidence Intervals. Regression errors are heteroscedastic AR(1) with autore 

gression coefficient equal to p. For (a), p = .90; for (b), p = .95 (n CIqS; 0 Clvar*; o Clper; * 
Clper-t,Qs; 

* 
Clper-t,var*) 

data is important. Using the bootstrap standard error estimate 

instead of the QS kernel-based standard error estimate results 
in better finite-sample performance, especially under strong au 

tocorrelation in the errors. The presence of heteroscedastic 

ity [i.e., for AR(1)-HET2] leads to smaller coverage rates for 
both bootstrap percentile-/ confidence intervals, which results 

in worse undercoverage for 
C/per-r,QS and some undercoverage 

for C/per-r.var*- Nevertheless, here too replacing the QS-kernel 
standard error used to studentize the original /-statistic by the 

bootstrap standard error estimate helps reduce the coverage er 

ror of bootstrap percentile-/ confidence intervals. 

4. CONCLUSIONS 

This article gives conditions under which the MBB of 
Kunsch (1989) and Liu and Singh (1992a) provides consistent 
estimators of the asymptotic variance of the LS estimator in 

(possibly misspecified) linear regression models. Although we 
have focused on the MBB, similar results hold for the station 

ary bootstrap of Politis and Romano (1994) (also see Gon?alves 
2000). The Monte Carlo results obtained in this article indicate 
that bootstrap variance-based percentile-/ confidence intervals 

have coverage rates closer to the desired levels in the context 

of a particular linear regression model. This is an interesting 

finding. An important topic for future research would be to 
obtain formal conditions under which bootstrap standard er 

ror estimates have better higher-order asymptotic accuracy than 

conventional first-order asymptotic theory-based standard er 

ror estimates. This could help explain the improved accuracy 
of bootstrap standard error-based confidence intervals found in 
our Monte Carlo experiments. 

APPENDIX: PROOFS 

Throughout this appendix, C denotes a generic constant that does 

not depend on n, and 1(A) denotes the indicator function of any set A. 

In obtaining our results, we use the mixingale property of processes 
NED on a mixing process. The concept of L2-mixingales was in 

troduced by McLeish (1975) and generalized to 
Lq -mixingales (for 

q > 1) by Andrews (1988). Let ( , Q, P) be a probability space on 

which a sequence of random variables 
[Zt}?^] 

is defined, and let 

\G' be a nondecreasing sequence of sub-cr -fields of Q. We say that 

{Zt, G*}?^.] 
is an 

Lq -mixingale (for some q > 1) if there exist nonneg 
ative constants 

{q}^j 
and 

{i/fml^-Q 
such that \?/m -> 0 as m oo, 

and 

; ctirmjr\. We make use of the following re 

and for all t > 1 and m > 0 we have \\EiZt\Gt~m)\\q 
< ctfn 

\\Zt 
- 

EiZt\Gt+m)\\q 
suit. 

Lemma A.l. For q > 2, let {Z?,5r} be an 
L^-mixingale with 

bounded mixingale constants {ct} and mixingale coefficients {i//m} sat 

isfying J^^Li V^m < oo. Let {Z*r :t = 1,..., n] denote a bootstrap 

resample of {Zt : t = 1,..., n) obtained with the MBB. If in = o{n) 
with in -> oo, then EiE*\Y!}=\ Kt\q) = Oin?/2) + O(^). 

Proof. We follow K?nsch (1989) and write Y!?= 7* 
_ 

E/=i Yn,i, where 

zy'+0 
= 

n-tn + \ 

{Ynj} are iid with P*(yrtjl- 
= 

Zj+[ + + 

.7=0, ?n. Hence, 

?* 

/=1 
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<2q 
Y](Yn,i-E*(Yn,i)) 

i = \ 

+ E*\kE*(Yny)\?\ 

=:2Cl-l(An+Bn), 

by an application of the cr-inequality (see, e.g., Davidson 1994, 

p. 140). First, consider An. By an extension of Burkholder's in 

equality to martingale difference arrays, An < 
CE*\Yj?=i \Ynj 

? 

E*(YnA)\2\v/2, 
and by Holder's inequality, 

q/2 

J2\Yn,i-E*(Yn,\)\ 
i = \ 

(^\YnJ-E*(Ynil)A 

2/q 
kl-Vq 

q/2 

:2qkq/2E*\YnJ\q (A.l) 

where the last inequality follows by a simultaneous application of 

the cr-inequality and Jensen's inequality. Because E*\Yn,i\q 
? 

(n 
? 

? + irI?":o"in=.z'+ii'/<weha have 

n-tn 

E(E*\YnA\q) 
= (n-ln + \yX J2 

E 

7=0 
Ez 

t=i 
t+j 

<(n-ln + \rl J2(Cln2)q 
7=0 

= (C)qC 
q/2 

(A.2) 

by a maximal inequality for mixingales (Hansen 1991, lemma 2; 

1992), and by the boundedness assumption on the mixingale con 

stants {ct}. Because k = n/ln, it follows from (A.l) and (A.2) 
that E(An) = 

0(n^l2). Next, consider Bn. Noting that ?*(Z*) 
= 

in E*(Yni), we can write 

E(Bn) = 
E{E*\kE*(YnA)\1) 

= 
{Un)lE{\l-lE*{YntX)\1) 

= 
nlE(\E*{Z*)\cl). 

By the properties of the MBB, we can write 

1 lln~X / t \ "-i"+1/i\ 

\t=\ 

+ E 
t=n-in+2 

t=in 

n-t-r-l 

1 

n-in + l LZ' 
- 

n-in + \ 
?J V 

" 
Tn)Zt 

1 
^ + : ? 

t=n-?[n+2 

An\ 
- 

An2 
- 

An3, 

n-t+\ 

i-n 
Zt 

which implies that E(Bn) = nq E[\Ani 
- 

An2 
- 

An3\^] 
< 3q~l x 

n(i(E\Ani\q + ?|A?2I^ + ?|A?3|*). By the maximal inequality 
for mixingales, E\An\\q 

= 
0{n~ql2) if tn 

? 
o(n). Similarly, by 

the cr-inequality and the fact that E\Zt\q < A < oo (given the 

L^-mixingale assumption), we have that 

in-I 

E\An2\? <(n-in + l)-?(in-l)q-1 J^ 
t=\ 

t 
E\Zt\q 

= O 
in -in + 1)* 

By a similar argument, E\An-$\q 
? 

Oi( _n'\\\q ) Hence, because 

?n = o(w), ?(??) < Oin?l2) + 0(4), completing the proof. 

Proof of Theorem 1 

The proof proceeds in three steps. 

Step 1. We first show that for any ? > 0 and for all n sufficiently 

large, there exists rj > 0 such that 

V /X*fik,c?)X*ik,co)\ \ ~| 

^:P^[k:kmm^ n 'j<>//2J>gj<g. 
(A.3) 

For clarity in the argument that follows, it is important to make ex 

plicit the dependence of the bootstrap probability measure P* on 

co G Q, as was done by Gon?alves and White (2004). Similarly, we 

write X*ik,co) to emphasize the fact that for each co e Q and for 

t = 1, 2,..., n, we let X* = 
XTt(x)ico), 

where rtik) is a realization 

of the random index chosen by the MBB. Fix ? > 0 arbitrarily. For 

6 > 0 (to be chosen shortly), define A?,e 
= {co: \kminiXf 

(?))X{?)) 
) 
- 

*min(A?)| 
< e}. Note that for any co G A?,e, ?mrn(^r) 

> V 
~ 

^ 

given that ?mjn(A?) > r? > 0, under Assumption I.e. Next, for any co, 

define Cn>iB, se {X: |Xmin(^^f!I^)) 
- 
^(X^M), 

< } 
and note that for co G AWi , Cn,a),e implies Bn^ ^ 

= 
{k: 

?mini**^^*^) ^ >? 
- 

261- Thus An,e H C*,^ C Z^,6, 
which implies that P*iB^ ) < P*iAcne) + /'?(C^). Choosing 
e = n/4, it follows that 

< 
PKK.v/4) 

> ?/2) + nnK,^) 
> ?/2) 

2 2 9 

where the last inequality holds because PiP*iAcn /4) 
> ?/2) = ' 

X7X 
P(A^ /4) 

< ?/2 for all n sufficiently large (by convergence of ?^ 

to A?) and because PiP*iCcn(? rj/4) 
> ?/2) < f for all n suffi 

ciently large [by lemma A.5 of Gon?alves and White 2004, given that 

?n 
? 

oin)]. This proves (A.3). 

Step 2. B?-l/2A?y/n(f? 
- 

?n) =*?p*N(0,Ip) 
in probability. 

We can write 7^(0* 
- 

?n) = y?i?* 
- 

?n) + R*, with R* = 

-v^CjSj 
- 

^)l{?min(^^) 
< rj/2], given the definition of ?*n 

[with 8 = rj/2 > 0 and 77 such that Amin(A?) > r? > 0]. Because under 

our assumptions, by an application of theorem 2.2 of Gon?alves and 

White (2004), B?-^2A?^/ni?* 
- 

?n) =>dP*N(0,Ip) 
in probabil 

ity, it suffices to show that R* = op* il) in probability. For this, note 

that y/ni?* 
? 

?n) 
= 

Op*il), except in a set with probability tend 

ing to 0. Moreover, E*(l{A.min(^) 
< ^/2}) 

= 
P*(?mm( ) < 

p x*'x* 
77/2) -> 0, as we showed in Step 1. This implies that t{km[ni ) < 

P* 
n/2} -> 0 in probability, proving Step 2. 

Step 3. For some S > 0, E*i\^i~?* 
- 

?n)\2+8) 
= 0P(\). Given 

the definition of ?*, we can write 

V^C?n-?n) 

x*/x*\~1 / /x*'x 

l^min(^) >ri/2y-l'2J2KtKt. 
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By a well-known inequality for matrix norms (see, e.g., Strang 1988, 

p. 369, ex. 7.2.3), it follows that 

\^C?t~?n)\2+8 
x*/x* 2+5 

1 ? 
x*/x* 

>V/2 

-1/2 
?x?V 

t=\ 

2+8 

Here, for any matrix A, ||A||i denotes the matrix norm defined by 

al to t 

/X*'X: 
A||2 = maxx_?o 

X 
Zi For A symmetric, ||A|| \ is equal to the largest 

eigenvalue of A, that is, ||A|| \ 
? 

A.max(A). When A.m?n( -)>ri/2, 
X*'X* is symmetric and positive definite and we have that 

?) ,=w((?) ) 

Thus 

l^C?n-?n) 

= k. 

12+5 

-1 

n 

X*'X* 

n 

<C -1/2 
^ntbnt 

t=\ 

= c. 

2+5 

and it suffices to show that E*(\n~xl2 Y!?=i X?AI2+5) 
= ?p(l) 

M?* ^y*_x*r? and f* 
? Y* ?^*f f?0 ^CL fcrc? 

? 
1nt ^ntPn dllu fcrcr 

~" 
Lnt 

and applying the cr -inequality yields 

n |2+5 

nt-X*ft?n and e*r 
= 

Y*t-X^t??. Using these definitions 

-1/2 / ̂nt?nt 

<2 

t=\ 

1+5 -1/2 
/ j^nt?nt 
t=\ 

2+5 

?-?-^C?n-??) 

2+5 \ 

^C(A* + A*). 

By Lemma A.l, we can show that 

E(E*(Al)) < Cn -(2+5)/2, 
?x?v 

f=i 

2+5 v 

= 0(1) +O 
((!r'_) 

which is 0(1) because t2/n -> 0. To apply Lemma A.l, we need 

{Xf?r} to be a mean-0 L2+?-mixingale with bounded mixingale con 

stants {ct} and absolutely summable mixingale coefficients {i/>m}, 
which holds under our assumptions. Thus, by Markov's inequality, 

E*(A*) 
= 

0P(\). For A*, note that 

II2+5 

A2 ^ 
/x*/x*x 

\Jn(?n-??) 
12+5 

implying that 

?*(A*)<?* 

2+5/ X^X* 

\V^(?n-??) 
12+5 

2+5 X*'X* 

I??-/n 
2+5 

Because \fn(?n 
? 

??) converges in distribution, it follows that 

\y/n(?n -??)\2+8 = 0p(\). Thus, to prove that ?*(A*) = 0P(\),it 
suffices that E*(\^?{^^)) 

= 0P(\). For this, note that 

0<?max( )<tr(^) 
= 

Ef=!(?-1E^i^f)5 
where, for 

any matrix A, A./(A) denotes its ith eigenvalue and tr(A) denotes its 

trace. Thus 

E*lk: 2+5 x*/x* 
v*/v* \ \ 2+5-j 

<E* 

<cY,n~(2+S)E* 
i = l i=l 

*2 
2+5\ 

, (A.4) 

by an application of the cr -inequality. Adding and subtracting appro 

priately yields 

?* E*? 
t=\ 

*2 = E* 

< CE* 

^(X*2-/x2/)+w/x2/ 
t=l 

2+5\ 

En 
t=\ 

2+5 

+ /#V+?, (A.5) 

where we let W* = 
X*?? 

? 
?2i be the resampled version of Wt? 

= 

Xji 
~ 

M2/> with ?2i ? 
EiX-ti)- 

Under Assumption 1, we can show 

that {WfiiF*} is an L2+?-mixingale with bounded mixingale con 

stants [ct] and absolutely summable coefficients {x//m}. Thus, by 
Lemma A. 1, we have that 

i=l 

2+5 

= 
0(/i<2+5>/2) + 0(^+?). (A.6) 

From (A.4), (A.5), and (A.6), it follows that 

^ Amax 

= 0(n 

in 

-(2+5)/2 ) + ?((t 
2+5 

+ 0(1), 

which is 0(1) because -* -> 0. This completes the proof of Step 3. 

[Received August 2003. Revised November 2004.] 
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