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Abstract

One key stylized fact in the empirical option pricing literature is the existence of an implied

volatility surface (IVS). The usual approach consists of Þtting a linear model linking the implied

volatility to the time to maturity and the moneyness, for each cross section of options data. How-

ever, recent empirical evidence suggests that the parameters characterizing the IVS change over time.

In this paper we study whether the resulting predictability patterns in the IVS coefficients may be

exploited in practice. We propose a two-stage approach to modeling and forecasting the S&P 500

index options IVS. In the Þrst stage we model the surface along the cross-sectional moneyness and

time-to-maturity dimensions, similarly to Dumas et al. (1998). In the second-stage we model the

dynamics of the cross-sectional Þrst-stage implied volatility surface coefficients by means of vector

autoregression models. We Þnd that not only the S&P 500 implied volatility surface can be success-

fully modeled, but also that its movements over time are highly predictable in a statistical sense.

We then examine the economic signiÞcance of this statistical predictability with mixed Þndings.

Whereas proÞtable delta-hedged positions can be set up that exploit the dynamics captured by the

model under moderate transaction costs and when trading rules are selective in terms of expected

gains from the trades, most of this proÞtability disappears when we increase the level of transaction

costs and trade multiple contracts off wide segments of the IVS. This suggests that predictability of

the time-varying S&P 500 implied volatility surface may be not inconsistent with market efficiency.
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1. Introduction

Volatilities implicit in observed option prices are often used to gain information on expected market

volatility (see e.g. Poterba and Summers 1986; Jorion 1995; Christensen and Prabhala 1998, and

Fleming 1998). Therefore accurate forecasts of implied volatilities may be valuable in many situations.

For instance, in derivative pricing applications, volatility characterizes the beliefs of market participants

and hence is intimately related to the fundamental pricing measure. Implied volatilities are commonly

used by practitioners for option pricing purposes and risk management.

Implied volatilities are typically found by Þrst equating observed option prices to Black-Scholes

(1973, henceforth BS) theoretical prices and then solving for the unknown volatility parameter, given

data on the option contracts and the underlying asset prices. Contrary to the BS assumption of constant

volatility, implied volatilities tend to systematically vary with the options strike price and date of

expiration, giving rise to an implied volatility surface (IVS). For instance, Canina and Figlewski (1989)

and Rubinstein (1994) show that when plotted against moneyness (the ratio between strike price and

the underlying spot price), implied volatilities describe either an asymmetric smile or a smirk. Campa

and Chang (1995) show that implied volatilities are a function of time to expiration. Furthermore,

the IVS is known to dynamically change over time, in response to news affecting investors� beliefs and

portfolios.

Practitioners have long tried to exploit the predictability in the IVS. The usual approach consists

of Þtting linear models linking implied volatility to time to maturity and moneyness, for each available

cross-section of option contracts at a point in time. The empirical evidence suggests that the estimated

parameters of such models are highly unstable over time. For instance, Dumas, Fleming and Whaley

(1998) (henceforth DFW) propose a model in which implied volatilities are a function of the strike

price and time to maturity. They observe that the coefficients estimated on weekly cross-sections of

S&P 500 option prices are highly unstable. Christoffersen and Jacobs (2004) report identical results.

Similarly, Heston and Nandi (2000) estimate a moving window nonlinear GARCH(1,1) and show that

some of the coefficients are unstable. To explain the superior performance of their GARCH-pricing

model, Heston and Nandi (2000) stress the ability of the GARCH framework to exploit the information

on path-dependency in volatility contained in the spot S&P 500 index. Thus, time variation of the

S&P 500 IVS matters for option pricing purposes.

In this paper we propose a modeling approach for the time series properties of the S&P 500 index

options implied volatility surface. Our approach delivers easy-to-compute forecasts of implied volatilities

for any strike price or maturity level. This is in contrast to the existing literature which has focused

on either modeling the cross-section of the implied volatilities, ignoring the time series dimension, or

on modeling the time series properties of an arbitrarily chosen point on the IVS, i.e. the volatility

implicit in contracts with a given moneyness and/or time-to expiration. To the best of our knowledge,

we are the Þrst to jointly model the cross-sectional features and the dynamics of the IVS for stock index

options.

We ask the following questions: Given the evidence of time variation in the IVS, is there any

gain from explicitly modeling its time series properties? In particular, can such an effort improve

our ability to forecast volatility and hence option prices? To answer these questions, we combine
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a cross-sectional approach to Þtting the IVS similar to DFW (1998) with the application of vector

autoregression (VAR) models to the (multivariate) time series of estimated cross-sectional coefficients.

Therefore, our approach is a simple extension of the DFW approach where modeling occurs in two

distinct stages. In a Þrst stage, we Þt daily, cross-sectional models that describe implied volatilities as

a function of moneyeness and time-to-maturity. Consistently with the previous literature, we report

evidence of structure in the S&P 500 IVS and Þnd that a simple model linear in the coefficients and

nonlinear in moneyness and time to maturity achieves an excellent Þt. The documented instability

of the estimated cross-sectional coefficients motivates our second step: we Þt time series models of a

VAR-type to capture the presence of time variation in the Þrst-stage estimated coefficients. We Þnd

that the Þt provided by this class of models is remarkable and describes a law of motion for the IVS

which conforms to a number of stylized facts.

To assess the performance of the proposed IVS modeling approach, we use both statistical and

economic criteria. First, we study its ability to correctly predict the level and the direction of change

of one-day-ahead implied volatility. We Þnd that our models achieve good accuracy, both in absolute

terms and relatively to a few natural benchmarks, such as random walks for implied volatilities and

Heston and Nandi�s (2000) NGARCH(1,1). Second, we evaluate the ability of our forecasts to support

portfolio decisions. We Þnd that the performance of our two-stage, dynamic IVS models at predicting

one-step-ahead option prices is satisfactory. We then simulate out-of-sample delta-hedged trading

strategies based upon deviations of volatilities implicit in observed option prices from model-based

predicted volatilities with a constant, Þxed investment of $1,000 per day. The simulated strategies that

rely on two-stage IVS models generate positive and statistically signiÞcant out-of sample returns when

low-to-moderate transaction costs are imputed on all traded (option and stock) contracts. These proÞts

are abnormal as signalled by Sharpe ratios in excess of benchmarks such as buying and holding the S&P

500 index, i.e. they are hardly rationalizable in the light of the risk absorbed. Importantly, our Þnding

of abnormal proÞtability appears to be fairly robust to the adoption of performance measures that

take into account non-normalities of the empirical distribution of proÞts and to imputing transaction

costs that account for the presence of bid-ask spreads. In particular, our approach is most accurate

(hence proÞtable) on speciÞc segments of the IVS, mainly out-of-the-money and short- to medium-term

contracts.

These results turn mixed when higher transaction costs and/or trading strategies that imply trades

on large numbers of contracts along the entire IVS are employed in calculating proÞts. We conclude that

predictability in the structure of the S&P 500 IVS is strong in statistical terms and ought to be taken

into account to improve both volatility forecasting and portfolio decisions. On the other hand, such

predictability patterns hardly represent outright rejections of the tenant that deep and sophisticated

capital markets such as the S&P 500 index options market are informationally efficient. In particular,

even when Þlters are applied to make our trading rules rather selective in terms of the ex-ante expected

proÞts per trade, we Þnd that as soon as transaction costs are raised to the levels that are likely to be

faced by small (retail) speculators, all proÞts disappear.

The option pricing literature has devoted many efforts to propose pricing models consistent with

the stylized facts derived in the empirical literature, of which the implied volatility surface is probably
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the best known example. Models featuring stochastic volatility, jumps in returns and volatility, and

the existence of leverage effects (i.e. a non-zero covariance between returns and volatility) are popular

approaches (see Garcia, Ghysels and Renault (2003) for a review of the literature). More recently,

several papers have proposed models relying on a general equilibrium framework to investigate the

economics of these stylized facts.1 For instance, David and Veronesi (2002) propose a dynamic asset

pricing model in which the drift of the dividend growth rate follows a regime switching process. In-

vestors� uncertainty about the current state of the economy endogenously creates stochastic volatility

and leverage, thus giving rise to an implied volatility surface. Because investors� uncertainty evolves

over time and is persistent, this model induces predictability in the implied volatility surface. Similarly,

Guidolin and Timmermann (2003) propose a general equilibrium model where dividends evolve on a

binomial lattice. Investors learning is found to generate asymmetric skews and systematic patterns

in the implied volatility surface. The changing beliefs of investors within a rational learning scheme

imply dynamic restrictions on how the implied volatility surface evolves over time. Finally, in Gar-

cia, Luger and Renault�s (2003) utility-based option pricing model, investors learn about the drift and

volatility regime of the joint process describing returns and the stochastic discount factor, modeled as

a bivariate regime switching model. Under their assumptions, the implied volatility surface depends on

an unobservable latent variable characterizing the regime of the economy. Persistence of the process

describing this latent variable implies predictability of the implied volatility surface. These models are

examples of equilibrium-based models that generate time varying implied volatility patterns consistent

with those observed in the data. We view our approach as a reduced form approach to model the time

variation in the implied volatility surface that could have been generated by any of these models. As

is often the case in forecasting, a simple reduced form approach as ours is able to efficiently exploit the

predictability generated by more sophisticated models.

A few existing papers are closely related to ours. Harvey and Whaley (1992) study the time variation

in volatility implied by the S&P 100 index option prices for short-term, nearest at-the-money contracts.

They test the hypothesis that volatility changes are unpredictable based on regressions of the changes

in implied volatility on information variables that include day-of-the-week dummy variables, lagged

implied volatilities, interest rate measures and the lagged index return. They conclude that one-day-

ahead volatility forecasts are statistically quite precise, but do not help devising proÞtable trading

strategies once transaction costs are taken into account. We depart from Harvey and Whaley�s analysis

in several ways. First, we look at European-style S&P 500 index options. Second, we do not reduce the

IVS to a single point (at-the-money, short term) and instead model the dynamics of the entire surface.

Noh, Engle and Kane (1994) compare mean daily trading proÞts for two alternative forecasting

models of the S&P 500 volatility, a GARCH(1,1) model (with calendar adjustments) and a regression

model applied to daily changes in weighted implied volatilities. Trading strategies employ closest-

at the money, short-term straddles. They report the superior performance of GARCH one-day ahead

volatility forecasts at delivering proÞtable trading strategies, even after accounting for transaction costs

1Bakshi and Chen (1997) derive option pricing results in a general equilibrium model with a representative agent. In

equilibrium both interest rates and stock returns are stochastic, with the latter having a systematic and an idiosyncratic

volatility component. They show that this model is able to reproduce various shapes of the smile, although the dynamic

properties of the IVS are left unexplored.
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of magnitude similar to those assumed in our paper. Although Noh, Engle and Kane�s (1994) implied

volatility-based model has a time series dimension, a generalized least-squares procedure (Day and

Lewis 1988) is applied to compress the entire daily IVS in a single, volume-weighted volatility index,

so that the rich cross-sectional nature of the IVS is lost. Instead, we evaluate our dynamic models over

the entire IVS and thus consider trading in option contracts of several alternative moneyness levels and

expiration dates. We also adopt a GARCH-type model as a benchmark, but estimate it on options

data (cf. Heston and Nandi 2000), while Noh, Engle and Kane (1994) obtain quasi-maximum likelihood

estimates from stock returns data.

Diebold and Li (2003) use a two step approach similar to ours in an unrelated application to modeling

and forecasting the yield curve. In a Þrst step, they apply a variation of the Nelson-Siegel exponential

component framework to model the yield curve derived from US government bond prices at the cross-

sectional level. In a second step, they propose ARIMA-type models for the coefficients estimated in

the Þrst step. Finally, Rosenberg and Engle (2002) propose a ßexible method to estimate the pricing

kernel. Their empirical results suggest that the shape of the pricing kernel changes over time. To model

this time variation, Rosenberg and Engle (2002) postulate a VAR model for the parameters that enter

the pricing kernel at each point in time. Using hedging performance as an indicator of accuracy, they

show that their time varying model of the pricing kernel outperforms a time-invariant model, and thus

conclude that time variation in the pricing kernel is economically important.

The plan of the paper is as follows. Section 2 describes the data and a few stylized facts concerning

the time variation of the S&P 500 IVS. We estimate a cross-sectional model of the IVS and discuss

the estimation results. In Section 3, we propose and estimate VAR-type models for the estimated

parameters obtained in the Þrst-stage. Section 4 is devoted to out-of-sample statistical measures of

prediction accuracy whereas Section 5 examines performance in terms of simulated trading proÞts,

under a variety of assumptions concerning the structure of transaction costs. Section 6 discusses some

robustness checks that help us qualify the extent of the IVS predictability previously isolated. Section

7 concludes.

2. The Implied Volatility Surface

2.1. The Data

We use a sample of daily, closing prices for S&P 500 index options (calls and puts) from the Chicago

Board Options Exchange covering the period January 3, 1992 - June 28, 1996. S&P 500 index options

are European-style and expire the third Friday of each calendar month. Each day up to six contracts are

traded, with a maximum expiration of one year. We use trading days to calculate days-to-expiration

(DTE) throughout. Given maturity, prices for a number of strikes are available. The data set is

completed by observations on the underlying index (S) and T-bill yields (r), interpolated to match the

maturity of each option contract, proxing for the risk-free rate.

For European options, the spot price of the underlying must be adjusted for the payment of discrete

dividends by the stocks in the S&P 500 basket. As in Bakshi et al. (1997) and DFW (1998), we assume

these cash ßows to be perfectly anticipated by market participants. For each contract traded on day t
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with days to expiration DTE, we Þrst calculate the present value Dt of all dividends paid on S&P 500

stocks between t and t+DTE. We then subtract Dt from the time t synchronous observation on the

spot index to obtain the dividend-adjusted stock price. Data on S&P 500 cash dividends are collected

from the S&P 500 Information Bulletin.

Five exclusionary criteria are applied. First, we exclude thinly traded options, with an arbitrary

cutoff chosen at 100 contracts per day. Second, we exclude all options that violate at least one of a

number of basic no-arbitrage conditions. Violations of these conditions are presumably due to mis-

recordings and are unlikely to derive from thick trading. Third, we discard data for contracts with

less than six trading days to maturity as their prices are noisy,2 possibly containing liquidity-related

biases, and because they contain very little information on the time dimension of the IVS. We also

exclude all contracts with more than one year to maturity. Fourth, we follow DFW (1998) and Heston

and Nandi (2000) by excluding options with absolute moneyness in excess of 10%, where moneyness is

deÞned as m ≡ strike price
forward price − 1.3 Fifth and Þnal, as in Bakshi et al. (1997) we exclude contracts with

price lower than $3/8 to mitigate the impact of price discreteness on the IVS structure. The Þltered

data correspond to a total of 48, 192 observations, of which 20, 615 refer to call contracts and 27, 577

to puts. The average number of options per day is 41 with a minimum of 5 and a maximum of 63.

Table 1 reports summary statistics for implied volatilities computed by BS formula adjusted for

dividend payments. We divide the data into several categories according to moneyness and time-to-

maturity. A put contract is said to be deep-in-the-money (DITM) if m > 0.06; in-the-money (ITM)

if 0.06 ≥ m > 0.01; at-the-money (ATM) if 0.01 ≥ m ≥ −0.01; out-of-the-money (OTM) if −0.01 >
m ≥ −0.06; and deep-out-of-the-money (DOTM) if −0.06 > m. Equivalent deÞnitions apply to calls,

with identical bounds but with m replaced with −m in the inequalities. The classiÞcation based on

time-to-expiration follows Bakshi et al. (1997): an option contract is short-term if DTE < 60 days;

medium-term if 60 ≤ DTE ≤ 180; long-term if DTE > 180 days. Roughly 61% of the data is

represented by short- and medium-term OTM and ATM contracts. DITM and long-term contracts are

grossly underrepresented.

Table 1 provides evidence on the heterogeneity characterizing S&P 500 implied volatilities as a

function of moneyness and time to expiration. For call options, implied volatilities describe an asym-

metric smile for short-term contracts, and perfect skews (i.e. volatilities increase moving from DOTM

to DITM) for medium- and long-term contracts. Similar patterns are observed for puts, with the dif-

ference that volatilities decrease when moving from DOTM to DITM: protective (DOTM) puts yield

higher prices and thus higher volatilities. Table 1 also shows that the smile is inßuenced by time to

maturity: implicit volatilities are increasing in DTE for ATM contracts (calls and puts), while they

are decreasing in DTE for DOTM puts and DITM calls.

2See Section 6 and Hentschel (2003) for measurement error related issues related to the calculation (estimation) of

implied volatilities.
3The forward price is deÞned as exp (rτ)S, where τ is time-to-maturity measured as a fraction of the year.
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2.2. Fitting the Implied Volatility Surface

In this section, we Þt an implied volatility model to each cross section of options available each day in

our sample. Given the evidence presented above, two factors seem determinant in modeling the implied

volatilities for each daily cross section of option contracts: moneyness and time to expiration. In a

second stage, we will model and forecast the estimated volatility function coefficients.

Let σi denote the BS implied volatility for contract i, with time to maturity τ i (measured as a

fraction of the year, i.e. τ i ≡ DTEi/252) and strike price Ki. We consider the following time-adjusted
measure of moneyness:4

Mi ≡
ln
³

Ki
exp(rτ i)S

´
√
τ i

.

Mi is positive for out-of-the-money calls (in-the-money puts) and negative for in-the-money calls (out-

of-the-money puts).

Each day we estimate the following cross-sectional model for the IVS by ordinary least squares

(OLS):

lnσi = β0 + β1Mi + β2M
2
i + β3τ i + β4 (Mi × τ i) + εi, (1)

where εi is the random error term, i = 1, . . . , N, and N is the number of options available in each

daily cross section. We use log implied volatility as the dependent variable. This has the advantage of

always producing non-negative implied volatilities. We estimated a variety of other speciÞcations (see

Pe�na et. al. 1999). These included models in which the IVS was only a function of moneyness (either a

linear or a quadratic function, or a stepwise linear function of moneyness), and models using both the

moneyness and time-to-expiration variables, included in the regression in the logarithmic or quadratic

form, without any interaction term. We omit the estimation outputs to save space and because these

alternative models showed a worse Þt (as measured by their adjusted R2s) than (1).

For each day in our sample, we estimate β = (β0,β1,β2,β3,β4)
0 by OLS and obtain a vector �β

of daily estimates.5 To assess the in-sample Þt of our cross-sectional model, we present in Table 2

summary statistics for the adjusted R2 as well as for the RMSE of implied volatilities. On average,

the value of R̄2 is equal to 81%, with a minimum value of 1.1% and a maximum value of 99%. The

time series of the daily values of the adjusted R2 and RMSE of implied volatilities (not reported) shows

that there is considerable time variation in the explanatory power of equation (1). The functional form

implied by this model is nevertheless capable of replicating various IVS shapes, including skews and

smiles as well as non-monotone shapes with respect to time to expiration. In the upper panel of Figure

1 we plot the implied �average� Þtted IVS model (i.e. the Þtted model evaluated at the mean values

4Gross and Waltner (1995) and Tompkins (2001) also use a similar measure of moneyness. According to this measure,

the longer the time-to-maturity of an option, the larger the difference should be between the strike price and the forward

stock price in order for it to achieve the same normalized moneyness as a short-term option.
5As recently remarked by Hentschel (2003), measurement errors may introduce heteroskedastiticy and autocorrelation

in εi, making the OLS estimator inefficient. In Section 6 we apply the feasible GLS estimator of Hentschel (2003) as a

robustness check.
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of the estimated coefficients obtained from Table 2) as a function of moneyness and time-to-maturity.

For comparison, in the lower panel of the same Þgure we present the average actual implied volatilities

for each of the Þfteen categories in Table 1, i.e. we plot the average volatility in correspondence to the

mid-point moneyness and time-to-maturity characterizing each of the table�s cells. The two plots show

close agreement between raw and Þtted implied volatilities.

Figure 2 plots the time series of the daily estimates �β. Figure 2 shows that the shape of the S&P

500 IVS is highly unstable over time, both in the moneyness and in the time to maturity dimensions.

Table 2 and Figure 3 contain some descriptive statistics for the estimated coefficients. In particular,

the Ljung-Box (LB) statistics at lags 1 and 10 indicate that there is signiÞcant autocorrelation for

all coefficients (one exception is �β4), both in levels and squares, suggesting that some structure exists

in the dynamics of the estimated coefficients. Figure 3 plots the auto- and cross-correlations for the

time series of OLS estimates. The cross-correlograms between pairs of estimated coefficients show

strong association between them, at both leads and lags as well as contemporaneously. This suggests

the appropriateness of multivariate models for the set of estimated cross-sectional coefficients, whose

speciÞcation and estimation we will consider next.6

3. Modeling the Dynamics of the Implied Volatility Surface

3.1. The Model

In this section we model the time variation of the IVS as captured by the dynamics of the OLS

coefficients entering the cross-sectional model analysed previously. More speciÞcally, we Þt VAR models

to the time series of OLS estimates
n
�βt

o
implied by equation (1), where �βt denotes day t�s coefficient

estimates. Our approach is a reduced form approach to modeling the time variation in the implied

volatility surface that results from more structural models such as the investors� learning models of

option prices. In particular, if the state variables that control the dynamics underlying the fundamentals

in these models are persistent and follow a regime switching model (such as in David and Veronesi (2002)

or Garcia, Luger and Renault (2003)), a VAR model appears to be a reasonable reduced form approach

to model the predictability in the implied volatility surface.

We consider the following multivariate model for the vector of estimated coefficients �βt:

�βt = µ+

pX
j=1

Φj�βt−j + ut, (2)

where ut ∼ i.i.d. N(0,Ω).
For later reference, let π denote the vector containing all parameters (including the elements of Ω)

entering (2). Equations (1) and (2) describe our two-stage, dynamic IVS model. We select p using the

6Although the mapping between the persistence of the cross-sectional coefficients and the persistence of (log-) implied

volatilities is a complicated one, for ATM contracts the mean-reversion speed is well-approximated by the autocorrelation

function of β0 and appears to be consistent with an AR(1) model with autoregressive coefficient of 0.9. This estimate is

lower than the volatility mean reversion parameter reported for instance by Heston and Nandi (2000). However, we note

that Heston and Nandi (2000) study the volatility of the underlying (in levels), not implied volatilities. Christensen and

Prabhala (1998) study log-implied volatilities and Þnd an autoregressive coefficient of 0.7.
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BIC criterion, starting with a maximum value of p equal to 12. This is our main model (which we label

Model 1).7 For comparison purposes, we consider DFW�s (1998) ad-hoc strawman, which has proven to

be hard-to-beat in out-of-sample horse races. Christoffersen and Jacobs (2004) have recently employed

this benchmark to show that once the in-sample and out-of-sample loss functions used in estimation and

prediction are correctly �aligned�, this practitioners� Black-Scholes model is hard to outperform even

using state-of-the-art structural models. This model (henceforth Model 2) is a special case of equation

(2) when µ = 0, p = 1, Φ1 = I5, a 5 × 5 identity matrix, Φj = 0 for j = 2, ..., p, and Ω a diagonal

matrix. It is a random walk model in which �βt = �βt−1 plus an i.i.d. random noise vector, i.e. the best

forecast of tomorrow�s IVS parameters is today�s set of (estimated) coefficients.

We estimate Model 1 by applying OLS equation-by-equation. For comparison purposes, we also

estimate on our options data a third structural model, Heston and Nandi�s (2000) NGARCH(1,1).

Heston and Nandi (2000) report the superior performance (in- and out-of-sample) of this model over

DFW�s ad-hoc strawman when estimated on weekly S&P 500 options data for the period 1992-1994. In

contrast to the dynamic IVS models considered here, the NGARCH(1,1) model does not allow for time

varying coefficients (although it implies time-varying risk neutral densities). Thus, it seems sensible to

require that Model 1 be able to perform at least as well as Heston and Nandi�s NGARCH. We estimate

Heston and Nandi�s (2000) model by minimizing the sum of the squared deviations of the BS implied

volatilities from the BS implied volatilities derived by �inverting� the NGARCH(1,1) option prices.8

This is in contrast to Heston and Nandi (2000), who apply a nonlinear least squares (NLS) method to

option prices directly. By estimating Heston and Nandi�s (2000) model in the implied volatility space,

we preserve the consistency with the dynamic IVS models.9

3.2. Estimation Results

Table 3 reports estimation results for Models 1 and 2, Þtted to the parameter estimates from the

cross-sectional model described by equation (1). Model 1 outperforms the more parsimonious Model 2

in-sample, as signalled by its high value for the log-likelihood function and the smallest RMSE values

for the Þrst-step parameter estimates �βt.We will evaluate the two models out-of-sample to account for

the possibility that the superior performance of Model 1 is due to overÞtting the data.

7(2) allows for a variety of dynamic speciÞcations of the implied volatility surface (as described by the cross-sectional

coefficient estimates �βt), depending on the choice of p and on the restrictions imposed on its coefficients. In an earlier

version of this paper, we considered two further model speciÞcations: one in which the lag order was selected by a sequential

likelihood ratio testing algorithm, and one in which exogenous information in the form of lagged returns on the S&P 500

index entered the VAR model. Since the out-of-sample performance of these models turned out to be inferior to Model 1,

we omit related results (see Gonçalves and Guidolin (2003) for details).
8We obtained the following estimates: rt = rf − 1

2

√
ht +

√
htz

∗
t , with ht = (0.83 × 10−6) + (0.67 ×

10−6)
£
z∗t−1 +

¡
1
2
+ 316.5 + 2.45

¢√
ht−1

¤2
+ 0.91ht−1, where we use notation similar to Heston and Nandi (2000). The

implied nonlinear GARCH process has high persistence (β + αξ2 = 0.98), as typically found in the literature (Heston

and Nandi (2000) found persistence levels of roughly 0.9-0.95 on their S&P 500 index options weekly data). Also the

estimate of the risk premium is standard (Heston and Nandi�s estimates are between 0.5 and 2). The NGARCH(1,1)

models reaches an average root-mean squared implied volatility error of 2.01%, which is quite impressive considering that

the model speciÞes Þve parameters only.
9For an example of NLS estimation based on a distance metric based on BS implied volatilities, see Jackwerth (2001).
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In order to obtain an idea of the predictions implied by our two-stage IVS model, Figure 4 plots

the sequence of IVS snapshots over the period January 3, 1992 through June 28, 1996 implied by

Model 1�s estimates. In particular, in the Þrst row we plot Þtted implied volatilities against time and

moneyness, given two distinct maturities (DTE = 30 and DTE = 120), whereas in the second row we

plot Þtted implied volatilities against time and maturity, given two distinct moneyness levels (m = 0

and m = 0.05, i.e. ATM and ITM puts (and ATM and OTM calls)). Figure 4 shows that Model

1 is capable of generating considerable heterogeneity in the implied volatility surface, consistent with

well-known stylized facts: skews for short-term contracts; relatively higher implied volatilities in 1992,

early 1994 and at the Spring of 1996; less accentuated skews, which become asymmetric smiles when

higher implied volatilities are observed, etc. For medium-term contracts, Model 1 implies instead a

ßatter and practically linear IVS; skews dominate.

The bottom row of plots in Figure 4 shows that some heterogeneity affects also the Þtted IVS in

the term structure dimension. Although positively sloping shapes dominate, ßat and even downward

sloping schedules occasionally appear. For instance, between the end of 1992 and early 1993, the Þtted

term structure is steeply upward sloping, implying volatilities in the order of almost 30% for ATM,

long-term contracts (vs. 10% for short-term ones); on the opposite, early 1995 is characterized by ßat

term structures. For ITM puts (OTM calls), we Þnd ßatter schedules on average, although substantial

heterogeneity remains. Interestingly, in this case many schedules are actually non-monotone, i.e. they

are at Þrst decreasing (for very short maturities, less than one month) and then slowly increasing

in time to expiration. We interpret Figure 4 as evidence of the possibility to accurately model not

only the cross-sectional structure of the S&P 500 IVS but also its dynamics. The conceptually simple

vector autoregressive Model 1 provides a very good Þt and produces implied volatility surfaces that are

plausible both in their static structure and in their evolution.

4. Statistical Measures of Predictability

Our approach to modeling the IVS dynamics proves successful in-sample, as previous results show.

Nevertheless, a good model of the IVS should not only Þt well in-sample, but also provide good out-

of-sample predictions. The main goal of this section is thus to analyze the out-of-sample forecasting

performance of Models 1 and 2 at forecasting one-step ahead, daily implied volatilities (and option

prices). For comparison purposes, we include Heston and Nandi�s (2000) NGARCH(1,1) model, as

well as a random walk model for daily implied volatilities (henceforth called the �random walk model�).

According to this random walk model, today�s implied volatility for a given option contract is the best

forecast of tomorrow�s implied volatility for that same contract. Harvey and Whaley (1992, p. 53)

comment that �(...) while the random walk model might appear naive, discussions with pratictioners

reveal that this model is widely used in trading index options.�

We estimate each of the models using data for the periods January 1, 1992 through December 31,

1992; January 1, 1992 - December 31, 1993; and so on, up to January 1, 1992 - December 31, 1995. This

yields four distinct (and expanding) estimation windows. For each day in a given estimation window, we

estimate the cross-sectional IVS parameters βt by OLS. We obtain a time series
n
�βt

o
, which we then

use as raw data to obtain estimates of π, the parameters of the multivariate models described by (2). We
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allow the model�s speciÞcation (e.g. the number of lags p) to change in each estimation window. For the

NGARCH(1,1) benchmark, we follow Heston and Nandi�s (2000) approach and estimate its parameters

(which we also denote by π to simplify notation) by NLS, except that our objective function is deÞned

in the implied volatility space. Let �π denote the parameter estimates for each of these models and for

a given estimation window. We then hold �π constant for the following six months � i.e. January 1,

1993 through June 30, 1993; January 1, 1994 - June 30, 1994, etc. up to January 1, 1996 - June 28,

1996 � and produce daily one-step ahead forecasts of the estimated coefficients �β. Because the IVS on

day t+1 depends on �βt+1, forecasting �βt+1 allows us to forecast implied volatilities (and option prices)

for each of these four six-month prediction windows, given moneyness levels and time-to-maturity.

Importantly, non-overlapping estimation and prediction windows guarantee that only past information

on the dynamic properties of the S&P 500 IVS are used for prediction purposes.

To assess the out-of-sample performance of the Þtted models for the second half of each of the

four years under consideration, each day in a given prediction window we compute the following six

measures for each model:

(i) The root mean squared prediction error in implied volatilities (RMSE-V) is the square root of the

average squared deviations of BS implied volatilities (obtained using actual option prices) from

the model�s forecast implied volatilities, averaged over the number of options traded.

(ii) The mean absolute prediction error in implied volatilities (MAE-V) is the average of the absolute

differences between the BS implied volatility and the model�s forecast implied volatility across

traded options.

(iii) The mean correct prediction of the direction of change in implied volatility (MCP-V) is the average

frequency (percentage of observations) for which the change in implied volatility predicted by the

model is of the same sign as the realized change in implied volatility.10

(iv) The root mean squared prediction error in option prices (RMSE-P) is computed as in (i) but with

reference to option prices.

(v) The mean absolute prediction error in option prices (MAE-P) is computed as in (ii) but with

reference to option prices.

(vi) The mean correct prediction of the direction of change of option prices (MCP-P) is computed as

in (iii) but with reference to option prices.

In computing (iv) - (vi) above, we compare actual option prices with the model�s forecast of option

prices. We use the BS formula to compute the model�s forecast of option price, using the corresponding

implied volatility forecast as an input (conditional on the current values of the remaining inputs such as

index value, interest rate and the contract�s features). Our use of the BS model is obviously inconsistent

with the volatility being a function of moneyness and/or time to maturity. Nevertheless, such a pricing

scheme is often used by market makers (cf. Heston and Nandi (2000)). It is our goal here to see whether

10When computing this measure, we consider only contracts that are traded for two consecutive days.
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a theoretically inconsistent but otherwise ßexible approach can deliver statistically and economically

signiÞcant forecasts. We follow Harvey and Whaley (1992) and view our IVS models as a �black box�,

which is Þrst used to obtain implied volatilities from option prices for forecasting purposes, and then

transforms implied volatilities back into prices.11

Table 4 (panel A) contains the average values of the out-of-sample daily performance measures

(i) - (vi) aggregated across all four out-of-sample periods.12 The aggregated out-of-sample root mean

squared error in annualized implied volatilities is 1.43%, 2.30%, 2.07% and 1.49% for Models 1 and 2,

the NGARCH(1,1) model and the random walk model, respectively. The values for the out-of-sample

measures related to forecasting option prices are $1.00, $1.75, $1.71, and $1.64, respectively. The best

performing model according to these measures is Model 1, the VAR model for �βt. Similar results are

obtained in terms of average percentage of correct predictions for the sign of the change of volatilities

between two consecutive trading days: the best performance is provided by Model 1 (62.2%), followed by

Model 2 (55.8%). Modeling the dynamics of the IVS offers real advantages over a simpler, static DFW-

type speciÞcation (Model 2) in which the structure of the IVS is predicted not to change from one day

to the next. Model 1 also compares favorably with the two benchmarks considered, outperforming both

the NGARCH(1,1) model and the practitioners� random walk model for implied volatilities. Similarly

to Heston and Nandi (2000), we Þnd that the NGARCH(1,1) model outperforms Model 2.13

To formally assess the statistical signiÞcance of the difference in out-of-sample performance of Model

1 compared to each of the remaining models, we employ the equal predictive ability test proposed by

Diebold and Mariano (1995). We consider three types of performance indicators: the difference in

squared forecast errors (corresponding to measures (i) and (iv)); the difference in absolute forecast

errors (corresponding to measures (ii) and (v)); and the difference between two indicator functions,

where each indicator function takes the value one if the realized change in the variable being predicted

(e.g. the implied volatility) has the same sign as the predicted change (i.e. the forecast error), and zero

otherwise. This last performance indicator is consistent with the out-of-sample measures given in cases

(iii) and (vi). To compute the Diebold and Mariano (1995) test, we use the Newey-West (1987) HAC

(heteroskedasticity and autocorrelation consistent) variance estimator. Table 4 (panel B) reports the

values of the statistic and associated signiÞcance levels. With very few exceptions, we reject the null

hypothesis of equal forecast accuracy of Model 1 compared to the benchmark models. We conclude

that the out-of-sample superior performance of Model 1 is statistically signiÞcant. Moreover, in the

11The forecasting exercises underlying our computation of the performance measures (iv) through (vi) are subject to

Christoffersen and Jacobs� (2003) critique that the loss function used in estimation (based on implied volatility matching)

differs from the out-of-sample loss function (based on BS option prices). Since BS is non-linear in implied volatility, severe

biases may be introduced. Based on the results of Christoffersen and Jacobs� (2003), we expect that the use of the �correct

loss� function in estimation will reduce the values of the out-of-sample statistics in Table 4 for our approach.
12Note that it is not possible to calculate the mean percentage of correct prediction of the direction of change of implied

volatility for the random walk model since this model implies zero predicted changes in implied volatility by construction.
13In unreported results, we also studied out-of-sample performance for each of the four prediction windows. The

overall picture remains favorable to our approach, although years of higher volatility and turbulent markets (like 1994)

deteriorate the performance of our approach. We also investigated the forecasting accuracy in multi-step ahead forecasting.

We considered horizons of 2, 3 and 5 trading days. The ranking across models remains identical to the one from Table

4: Model 1 outperforms Model 2 and the NGARCH(1,1) benchmarks at all horizons. However, although superior, the

accuracy of Model 1 declines faster than Model 2 and the NGARCH as the prediction horizon is increased.
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rare occasions in which Model 1 underperforms the benchmarks, the difference is not only rather small

in absolute terms, but we cannot reject the hypothesis of equal predictive accuracy.

The superior out-of-sample performance of Model 1 relative to Model 2, the static ad hoc model

heavily used by practitioners, conÞrms that time variation in the implied volatility surface is statis-

tically important. Importantly, economic models of the IVS such as those that allow for investors�

learning to affect equilibrium option prices can explain these Þndings. If on a learning path beliefs

are persistent because the updating occurs in a gradual fashion, the stochastic discount factor should

inherit these properties and imply predictability of the IVS. This implies that Model 2 which ignores

such predictability − i.e. a random walk for the Þrst-stage coefficients − has a hard time capturing

the dynamics of the IVS. Instead, Model 1 represents a reduced form framework able to capture the

dynamic properties of the IVS. As often documented in forecasting applications, such a reduced form

approach works very well, outperforming the more complex structural model of Heston and Nandi

(2000).

In order to further analyze the nature of the forecasting ability of Model 1, Table 5 reports out-of-

sample average prediction errors by different option moneyness and maturity categories. SpeciÞcally,

for each category we report the average out-of-sample root mean squared error for implied volatilities

(and option prices), expressed as a percentage of the mean implied volatility (and mean option price)

in that category. Scaling by mean volatility and price is important to gain comparative insight on the

sources of Model 1�s out-performance. For comparison purposes, we also include Model 2, the restricted

(static) version of the more ßexible dynamic Model 1. In addition, we consider a simple AR(1) model

for (log-) implied volatilities, as in Christensen and Prabhala (1998). Contrary to Model 1, this model

does not exploit the panel structure of options data as it applies to a single time series of (log-) implied

volatilities. In particular, for a given options class, we create a time series of (log-) implied volatilities

by selecting each day the contract that is closest to the mid-point in this category.14 Since this simple

AR(1) model does not utilize any cross-sectional restrictions on implied volatilities, we expect it to

perform worse than Model 1.

Our Þndings are as follows. We start with Model 1. For any given moneyness level, medium-term

contracts are associated with the smallest prediction errors, both in implied volatilities and in option

prices. The ranking between short-term and long-term contracts depends on moneyness. For in-the-

money and ATM options, long term contracts have smaller prediction errors than short-term contracts

(in both the volatility and price metrics). For out-the-money options the opposite is true. For a given

maturity level, RMSE�s (in volatilities and option prices) are generally decreasing when moving from

DITM to DOTM, i.e. it is easier to predict out-the-money than in-the-money implied volatilities and

option prices. The only exception to this pattern is when forecasting implied volatilities for long term

14For a given options class, on each day for which there are options available in that class we select the contract that

solves the following problem:

min
mi,τi

·
(mi −mc)

2

σ2m
+
(τ i − τc)2

σ2τ

¸
,

where mc and τc are the mid-points of the moneyness and maturity intervals deÞning the class, and σ
2
m and σ2τ are the

variances of moneyness and time to expiration for all contracts in the class traded that day.
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contracts, for which a U-shaped pattern of RMSE-V emerges.

In sum, the forecasting strength of Model 1 seems to originate mainly from the short- and medium-

term, out- and at-the-money segments of the market.

For the AR(1) model, RMSE�s tend to decrease with maturity, given moneyness. One exception

is the DOTM class, for which short-term options have the lowest RMSE-P. For any maturity level,

the AR(1) model achieves in general lower RMSE-V for ATM implied volatilities than in-the-money or

out-of-the-money contracts. For short-term and medium term options, the RMSE-P decreases mono-

tonically when moving from DITM to DOTM.

Table 5 shows that Model 1 generally beats the AR(1) model across all moneyness and time to

expiration classes.15 Thus, the gain in forecasting from our two-stage approach seems to come from

the cross-sectional restrictions. The greatest improvements in RMSE-V occur for out-the-money, short-

and medium-term contracts; instead, the greatest gains in RMSE-P occur for in-the-money, short- and

medium-term contracts. The smallest gains are obtained for ATM contracts. This conÞrms that the

additional information contained in the segments of the IVS far from at-the-money may be crucial in

improving the forecasting performance of IVS models.

Model 1 also outperforms Model 2 for all categories. The largest reductions in average prediction

errors are obtained for ATM and out-the-money, short- and medium-term options, when forecasting

implied volatilities, whereas ATM and in-the-money, short- and medium-term options show the largest

reductions in RMSE-P. DITM options are in general associated with smaller reductions in implied

volatilities prediction errors, suggesting that for this class of options the dynamics in the coefficients

capturing the IVS shape is stable enough to allow accurate forecasting from Model 2.

For out-the-money, short- and medium-term options, Model 2 yields lower average prediction errors

than the AR(1) model, which suggests that for these classes it is more important to model the cross-

section dimension of the options data than the time series dimension. Instead, for ATM options, the

simple AR(1) model outperforms Model 2, suggesting that it is important to model the dynamics of

implied volatilities for this class of options.

5. Economic Analysis

The results of Section 4 suggest that implied volatilities (and corresponding option prices) are highly

predictable in a statistical sense. The good out-of-sample statistical performance of our model, and

the fact that our approach can be viewed as a reduced-form approach that captures the dynamics in

the IVS that could be generated by equilibrium-based economic models suggest some robustness of our

results to data mining. However, we cannot exclude entirely the possibility that our results are subject

to mining biases. Therefore, as an additional test, we now examine the economic consequences and

signiÞcance of this predictability. In particular, we ask: Would a hypothetical market trader be able

to devise any proÞtable trading strategies based on the implied volatility forecasts produced by our

two-stage dynamic IVS models? We follow Day and Lewis (1992), Harvey and Whaley (1992), and

Noh, Engle and Kane (1994) and evaluate the out-of-sample forecasting performance of a number of

15The AR(1) model outperforms Model 1 only in two cases: for ITM, long-term options (when it achieves a smaller

%RMSE-P), and for OTM, long-term options (with a smaller %RMSE-V).
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competing models by testing whether certain trading rules may generate abnormal proÞts, i.e. proÞts

that are not accounted for by the risk of the positions required by the strategies.16

5.1. Trading Strategies and Rate of Return Calculations

The trading strategies we consider are based on out-of-sample forecasts of volatility. More speciÞcally,

if on a given day implied volatility is predicted to increase (decrease) the following day, the option is

purchased (sold). Each day we invest $1,000 net in a delta-hedged portfolio of S&P 500 index options,

which is held for one trading day.17 The trading exercise is repeated every day in the out-of-sample

period and a rate of return is calculated.

Implied volatility forecasts are obtained as in Section 4: on day t we use the time series of estimated

coefficients �β describing the IVS, up to and including day t, to predict day�s t + 1 coefficients �βt+1
by means of the VAR-type models estimated from the appropriate estimation window. The forecast

of �βt+1 is then used to predict day�s t+ 1 implied volatility associated with a given option. Since the

index price and interest rate at t+ 1 are not known as of time t, we assume that today�s prices of the

primitive assets are tomorrow�s best forecasts. To delta hedge our options position, per each unit of call

(put) options bought, we sell (buy) an amount of the underlying index equal to the Black-Scholes delta

ratio (∆), calculated using the implied volatility forecast. Similarly, if we sell one call (put) option, we

buy (sell) an amount of the underlying index equal to the corresponding Black-Scholes hedge ratio.18

To compute the rate of return, we assume funds may be freely invested at the riskless interest rate.

Suppose that one particular trading rule has indicated that a certain subset of contracts Q should be

traded at time t. Let Cit denote the price of a call contract i at time t and Pit the price of a put

contract i at time t. The delta ratios corresponding to call and put options are denoted ∆Cit and ∆
P
it ,

respectively. If no options are traded (i.e. Q is empty), we force the trader to invest her $1,000 in the

riskless asset for one trading period. We distinguish between two cases: a Þrst case in which the overall

time t net cost of the delta-hedged portfolio is positive, and a second case in which the cost is negative.

Consider Þrst the case in which the portfolio requires an injection of funds. Let Vt denote the price

of a unit portfolio in which all contracts are sold or purchased in one unit:

Vt =
X

i∈Qcall+

¡
Cit − St∆Cit

¢
+
X
i∈Qput+

¡
Pit + St∆

P
it

¢− X
i∈Qcall

¡
Cit − St∆Cit

¢− X
i∈Qput

¡
Pit + St∆

P
it

¢
, (3)

where Qcall+ (Qcall− ) is the subset of Q for which a buying (selling) signal on calls was obtained; similar

deÞnitions apply to puts. Then $1,000 are invested in a portfolio in which all options in Q (and their

16These experiments might be also constructed as tests of the informational efficiency of the S&P 500 index options

market. An efficient market ought to be able to produce option prices consistent with the implied volatility forecasts

from our two-step estimation procedure. If abnormal proÞts can be made, the efficient market hypothesis is rejected.

Alternatively, the most likely explanation is to be found in microstructural features that make the underlying index and

option prices adjust to the ßow of news at different speeds.
17Delta hedging is intended to render the portfolio�s value insensitive to market movements so that our computed proÞts

truly reßect proÞts in �trading in volatility�.
18In practice hedging is accomplished by trading in S&P 500 futures with appropriate maturities. The resulting hedging

is imperfect as the underlying consists of the spot index, and index and futures fail to be perfectly correlated (basis risk).

For the sake of simplicity we ignore the complications arising from hedging with futures.

15



associated delta hedging positions in the S&P 500 index) are traded in the quantity Xt =
1,000
Vt
, with a

total cost of $1,000. Hence the resulting portfolio is value-weighted. The net gain between t and t+ 1

can be determined as:

Goutt+1 = Xt

 X
i∈Qcall+

(Ci,t+1 −Cit) +
X
i∈Qput+

(Pi,t+1 − Pit)


+Xt

 X
i∈Qcall

(Cit − Ci,t+1) +
X
i∈Qput+

(Pit − Pi,t+1)


−Xt(St+1 − St)

 X
i∈Qcall+

∆Cit +
X
i∈Qput

∆Pit

+Xt(St+1 − St)
 X
i∈Qcall

∆Cit +
X
i∈Qput+

∆Pit

 . (4)

Next, consider the case in which the portfolio generates cash inßows, e.g. most or all of the trading

signals are selling signals. DeÞne Vt as in (3), except for the fact that now Vt < 0. In this case a

portfolio worth $1,000 is created by trading each contract for which there exists an active signal in the

quantity Xt =
1,000
|Vt| . We assume that the $1,000 option portfolio generated inßows plus the additional

$1,000 originally available are invested at the riskless interest rate rt. The resulting net gain between

t and t+ 1 can be calculated in a manner similar to (4):

Gint+1 = G
out
t+1 + 2, 000 exp(rt/252).

We consider several trading rules. In order to avoid noisy signals, all our trading strategies use

a price deviation Þlter of 5 cents.19 This implies that trading occurs only when the price difference

between the predicted option price (i.e. the BS predicted price based on our volatility forecast) and

today�s observed price is larger than the Þlter.20 First, following Harvey and Whaley (1992), we consider

a trading rule (henceforth Trading Rule A) in which trades only occur on closest-at-the-money, shortest-

term contracts (thus Q ≤ 1). Second, we consider a strategy (Trading Rule B) for which trading occurs
only in two contracts, those for which the expected selling and the expected buying proÞts, respectively,

are maximum. In this case Q ≤ 2 obtains at all times. In a third set of simulations (Trading Rule C ),
we consider trading only in one contract, the one giving the highest expected trading proÞt, so that

Q ≤ 1 again.

5.2. Trading ProÞts Before Transaction Costs

Table 6 presents summary statistics for proÞts deriving from Trading Rules A-C. We consider two mea-

sures of abnormal returns (proÞtability): the Sharpe ratio and a risk measure due to Leland (1999). The

Sharpe ratio is an appropriate measure of proÞtability when investors have mean-variance preferences.

19Later we will increase the value of this Þlter.
20Since the theta of a European option (the rate of change of its value as time to maturity decreases) is normally

negative, comparing predicted and current implied volatilities contains a small bias, in the sense that ceteris paribus the

option price implied by predicted volatility will be normally slightly smaller than the current price because of the mere

passage of time. By applying some minimal Þlter to the differences in implied prices adjusts for this bias.
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This is hard to rationalize under non-normal returns. Instead, Leland�s (1999) risk measure allows for

deviations from normality by taking into account skewness, kurtosis and other higher-order moments

of the returns distribution. It derives from a marginal utility-based version of the single-period CAPM,

as follows:

A = E

·
Gt+1
1, 000

¸
− rt −B (E[rmkt]− rt) ,

where rmkt denotes the return on the market portfolio and B is conceptually similar to a preference-

based CAPM beta (under power utility). Crucially, a positive A indicates performance which is abnor-

mal even when the features of higher-order moments (like negative skewness or excess kurtosis) of the

empirical distribution of trading proÞts are taken into account. Appendix 1 provides further details on

the calculations underlying A and its inputs.

Three benchmarks are considered. One is the random walk model for implied volatilities. Since this

model predicts tomorrow�s implied volatility to be equal to today�s value, it does not provide buy or sell

signals, and therefore the resulting strategies trivially correspond to buying and holding T-bills every

day in the prediction window. In this case, mean proÞts are negligible and the Sharpe ratio is zero by

construction. One might wonder whether it is simply possible to make abnormal proÞts by randomly

trading option contracts. We therefore include a random (delta-hedged) buy & sell option strategy as

a benchmark: according to this rule, each option has a 0.5 probability of being traded; if selected, the

option is sold with probability 0.5, otherwise it is purchased. The third benchmark we consider is the

�S&P 500 Buy & Hold� rule, by which each day the $1,000 are simply invested in the underlying S&P

500 index, thus obtaining Sharpe ratios and A coefficients which are typical of the CAPM.

Table 6 shows that our two-step approach to modeling and forecasting the S&P 500 IVS is successful

at generating proÞtable strategies. Indeed, Model 1 yields statistically signiÞcant positive mean proÞts

under all three trading rules. Trading Rule A, based on trading the closest ATM, shortest maturity

contract, implies a daily mean proÞt of 0.083%, with a t-ratio of 4.2, followed by Trading Rule C (mean

proÞt equal to 1.322% and t-ratio equal to 11.03) and by Trading Rule B (mean proÞt of 2.18%, with

a t-ratio equal to 3.9). As expected, Trading Rule A is less successful than the remaining trading rules

as it is constrained in terms of moneyness. All trading rules yield Sharpe ratios that easily outperform

the 4.7 ensured by the S&P 500 buy-and-hold strategies, i.e. they do reward risk in excess of the

market portfolio. This conclusion is robust to the CAPM-based performance evaluation delivered by

the coefficient A for Trading Rules A and C, for which A is positive. For Trading Rule B, a negative

value of A is obtained, despite the large value of the Sharpe ratio (17.4). The empirical distribution of

trading proÞts for this trading rule reveals that it is associated with very high values of excess kurtosis,

which is negatively weighted under the A coefficient. Since the Sharpe ratio only takes into account the

mean and variance of proÞts, it fails to include this feature, explaining the large value obtained. The

negative value of A suggests that daily rewards in excess of 2% per day are insufficient to compensate

for the risk absorbed under Trading Rule B.

A comparison between Model 1 and the remaining models reveals that Model 1 yields in general

higher mean daily proÞts than Model 2 and NGARCH(1,1). One exception is Trading Rule C, for

which the NGARCH(1,1) model performs best, yielding a mean proÞt of 2.21% per day, against mean
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proÞts of 1.35% for Model 2 and 1.32% for Model 1. Nevertheless, the high proÞts obtained by the

NGARCH(1,1) under Trading Rule C are abnormally low as signalled by a negative value of A. Instead,

Models 1 and 4 are associated with large values of Sharpe ratios and positive values of A, suggesting

that their performance is truly abnormal.

5.3. Trading Results After Transaction Costs

The results from Section 5.2 suffer of two limitations. First, they ignore the effect of transaction costs.

Second, Trading Rules A-C may be so narrowly deÞned as to imply that a very limited (typically,

Q = 1) number of contracts are traded. Therefore, it is possible that a model that poorly predicts

volatilities and prices out-of-sample, does manage to provide correct buy and sell signals, either for

ATM short-term contracts or for the most aberrant misspricings (maximizing expected proÞts).

Table 7 presents results that take transaction costs into account. We re-compute rate of returns

for Trading Rules A-C when the payment of a Þxed transaction cost per contract traded (both options

and the S&P 500 index) is imposed. We apply two different levels of unit cost, $0.05 (Panel 1) and

$0.125 (Panel 2). Panel 1 shows that low transaction costs barely change the conclusions reached in

Table 6. As expected, after-transaction costs proÞts are lower on average, but the ranking of models is

the same as in Table 6. Model 1 outperforms Model 2 and the NGARCH(1,1) for Trading Rules A and

B, achieving the highest daily mean percentage proÞts and Sharpe ratios. For Trading Rule C, Model

1�s performance is similar to that of Model 2. Although both models yield lower daily mean proÞts

than the NGARCH(1,1) model, they both guarantee positive A coefficients, with Model 1 achieving

the largest percentage abnormal return. In contrast, the NGARCH(1,1) implies a negative value of A.

To test the robustness of our results, Panel 2 increases transaction costs to $0.125 per traded

contract (round-trip). In this case, positive and signiÞcant mean daily proÞts result for all models

under Trading Rule C, with the best performing model being the NGARCH(1,1) model, followed by

Model 2 and Model 1. As before, the performance of the NGARCH(1,1) model cannot be considered

abnormal as signalled by the (negative) value of the A coefficient, whereas the performance of Models

1 and 2 can. None of the models is nevertheless able to produce signiÞcantly positive proÞts under the

other two trading strategies (Trading Rules A and B).

One of the strengths of our two-step approach is that it allows to model and forecast the entire S&P

500 IVS. The trading rules analyzed thus far are designed to pick a small number of option contracts

(typically Q = 1 or 2), and therefore do not exploit entirely the ßexibility provided by our approach. In

order to allow for trade in a larger set of option contracts, we introduce a fourth type of trading strategy

(Trading Rule D), which applies Þlter rules to the price deviation for selecting options to be traded.

In particular, we consider Þlters equal to $0.125, $0.25, and $0.50, and allow trades in all contracts for

which the absolute value of the price deviation exceeds the Þlter. Under these Þlter arrangements, Q

can contain a large number of contracts, not being constrained to be at most one or two contracts, as in

Trading Rules A-C. In addition to the price Þlters, we apply transaction costs of the same magnitude

on each contract traded on a round-trip basis, as in Table 7.21 High transaction costs such as $0.50

21Transaction cost-based Þlter strategies (i.e. strategies that discount the presence of a cost that is actually to be paid

on each traded contract) have two opposing effects. On one hand, they may raise trading proÞts as they constrain Q to
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are designed to represent the situation faced by retail customers, who often pay substantial commission

fees in addition to the bid-ask spread.

Table 8 reports the results for Trading Rule D. It shows that the proÞtability of Þltered-based trading

rules depends heavily on the magnitude of the Þlter/transaction cost employed. For a Þlter/transaction

cost of $0.125, Model 1 is the only model that is able to guarantee signiÞcant (statistically and econom-

ically) positive proÞts. This is in contrast with the static IVS model (Model 2) and the NGARCH(1,1)

model, which predict negative (statistically signiÞcant) proÞts. Results, not reported here, show that

most of Model 1�s proÞts come from trading short-term ATM and OTM contracts. Instead, DITM

contracts yield losses on average, with proÞts being statistically signiÞcantly negative for medium-term

contracts. This is consistent with our previous Þndings of smaller RMSE-P for out-of-the-money as

compared to in-the-money options for Model 1 (cf. Table 5). When we increase the Þlter/transaction

cost to $0.25, Model 1 predicts positive proÞts, but these are not statistically signiÞcant, the implied

Sharpe ratio is single-digit, below what would be guaranteed by a simple buy & hold daily strategy

applied to the S&P 500 index, and the value of A becomes negative. All models predict negative proÞts

when the Þlter/transaction cost of $0.50 is applied. Therefore, it seems that as the level of transaction

costs is progressively raised above $0.25 (on a round-trip basis), mean daily proÞts for all models dis-

appear, i.e. for the levels of frictions that are most likely to be faced by small (retail) speculators, the

strong statistical evidence of predictability in the IVS dynamics fails to be matched by equally strong

evidence of a positive economic value.

To shed further light on the relationship between the proÞtability of trading rules that rely on our

predictability Þndings and transaction costs, we perform a further experiment: we calculate the exact

level/structure of transaction costs such that mean daily proÞts are either zero or stop being statistically

signiÞcant at conventional levels. In particular, we apply a Þxed $10 commission to all transactions

(i.e. an ex-ante -1% return on a $1,000 investment) and proceed to vary the per-contract (round-trip)

cost between $0.02 and $0.75. For comparison purposes with Table 8, we apply this range of friction

levels to Trading Rule D. We also apply the same structure of transaction costs to the underlying stock

index. Results are reported in Figure 5, where the upper panel reports mean daily percentage returns

as a function of the per-contract cost, and the lower panel shows related t-statistics. Clearly, the plots

illustrate that both mean proÞts and their statistical signiÞcance disappear (and turn negative) as

transaction costs are raised. In particular, it seems that for Model 1 proÞts disappear when the cost

per contract is around $0.12-$0.14, consistently with the Þndings in Table 8. In practice trading proÞts

stop being signiÞcant already for $0.10, while they eventually become signiÞcantly negative for per

contract costs of approximately $0.40. Interestingly, Model 1 systematically outperforms both Model 2

and the NGARCH model. In fact, Model 2 never produces signiÞcantly positive proÞts, once the Þxed

commission is deducted.22

contain only signals that, at least in expectation, imply positive after-transaction-cost proÞts. On the other hand, and

because we apply transactions costs of the same magnitude as the Þlter, they obviously depress after-transaction costs

realized proÞts. Which effect turns out to be stronger is an empirical issue. For instance, Harvey and Whaley (1992, table

5) Þnd that high enough transaction costs used as Þlters induce positive and signiÞcant proÞts (however, their simulation

does not apply transaction costs equal to Þlters).
22The plots display some nonlinear patterns that ought not be entirely surprising, as when transaction costs are raised,
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6. Robustness

In this section, we present some additional results intended to check the robustness of our previous

Þndings to two issues. One is the existence of measurement errors in the inputs entering the BS

formula (such as the S&P 500 index level and/or in option prices). The second check we consider refers

to the effects of bid-ask spreads on the rate of returns calculations.

6.1. Effects of Measurement Errors

Hentschel (2003) has recently stressed that even small measurement errors in option prices or in the

S&P 500 index level can produce large errors in implied volatilities for options away from the money.

Thus, it is important to investigate whether the presence of such measurement errors is driving our

predictability results. As Hentschel (2003) shows, the existence of measurement errors in the underlying

prices induces heteroskedasticity and autocorrelation in the errors of the cross-sectional IVS model

(equation (1) above). This implies that OLS estimates of β are inefficient. To obtain more efficient

estimates of β, and thus of implied volatilities, we follow Hentschel (2003) and re-estimate equation

(1), day by day, using a feasible GLS method. The details of the implementation of this method are in

Appendix 2.

Table 2 (bottom panel) presents summary statistics for the feasible GLS estimates as well as for

the adjusted R2 and RMSE of implied volatilities. The estimates are on average similar to those

obtained by OLS, with the exception of �β2 and
�β4. The in-sample goodness of Þt (as measured by

R̄2 and RMSE) deteriorates only slightly under GLS estimation as compared with OLS. As before,

the signiÞcant values of the LB statistics indicate that there is strong serial correlation (in levels and

squares) in the estimates, suggesting a second stage multivariate modeling approach.

Table 4 (panel A) presents the out-of-sample forecasting measures (i) through (vi) deÞned in Section

4 when the GLS estimates are used as the raw data in the second-stage. On average, the RMSE and

MAE of implied volatilities are slightly higher for all models, although interestingly the pricing RMSE

and MAE are often lower than those obtained by OLS. Model 1 remains the best model out-of-sample,

yielding a RMSE-V of 1.516 (vs. 1.429 under OLS) and a RMSE-P of 93 cents (vs. $1 under OLS). It

still clearly outperforms the benchmarks in terms of BS pricing (MAE-P and RMSE-P) and percentage

accuracy at predicting the direction of change.

In Table 9 we present summary statistics for trading proÞts before transaction costs for Trading

Rules A-C under GLS estimation. As obtained before under OLS (cf. Table 6), Model 1 performs best

for Trading Rules A and B, yielding the highest average proÞt rates, with statistically signiÞcant t-ratios,

large Sharpe ratios and positive values of A. However, the use of GLS estimates implies a reduction

on the mean proÞts for these trading rules, which is especially large in the case of Trading Rule B (the

mean proÞt is now equal to 0.84% per day whereas before it was equal to 2.18%). Interestingly, for

Trading Rule C, Models 1 and 2 yield higher mean proÞts under GLS than under OLS.

Table 10 shows that these results are largely robust to the introduction of transaction costs, similarly

the implied Þlters are also increased in a way that makes trading (under rule D) more selective and possibly more proÞtable.

This explains the ßat (or even upward sloping) segments generally obtained for intermediate costs, $0.30 - $0.40.
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to Table 7. Even a commission fee of 12.5 cents per contract fails to completely remove the proÞtability

of some of the trading rules, especially the selective rule C. Surprisingly enough, GLS estimation does

even increase mean daily returns for Trading Rule C. This Þnding suggests that efficient estimation of

the IVS may be important to improve the prediction accuracy in the segments of the IVS over which

selective trading rules are most likely to produce buy and/or sell signals.

6.2. Effects of Bid-Ask Spreads

Although we have attempted to take into account the effects of transaction costs in computing trading

proÞts, we have so far ignored the effects of bid-ask spreads as our simulated trading strategies have

used observed closing prices (calculated as mid-points of the spread). Since actual transactions would

have to take place inside the bid-ask spread but not necessarily at its midpoint, it is reasonable to

assume that on average half of the bid-ask spread must be incurred as an additional transaction cost

in the options market when a trade takes place, in addition to Þxed commission costs. In this section,

we try to take into account the effects of bid-ask spreads in our rate of return calculations.

Given that our data set does not include bid-ask spreads, we resort to DFW�s (1998) data set, which

contains (transaction-based) information on bid-ask spreads at a weekly frequency (every Wednesday).23

In order to complete our data set, we impute to all days within the same week of each Wednesday

in DFW�s data set the bid-ask spreads sampled for that Wednesday.24 Daily returns are computed

as before, with the difference that we now simulate purchases at the ask (minus one quarter of the

spread) and sales at the bid (plus one quarter of the spread), in addition to Þxed unit transaction

cost. Obviously, these additional frictions represent an upper bound to the costs that would be actually

incurred by a specialized trader, both because wholesale traders and market makers may essentially

avoid the spread, and because at times trades do take place well inside the spread.

Table 11 presents a summary of trading proÞts for Trading Rules A-C, under OLS and GLS esti-

mation, when bid-ask spreads are taken into account. In addition to half of the bid-ask spread, we also

apply a Þxed commission of 5 cents per contract traded. The top panel of Table 11 (OLS) is directly

comparable to the top panel of Table 7. Clearly, incorporating bid-ask spreads lowers mean daily re-

turns. Nevertheless, the strength of this reduction varies across strategies and models, as a function of

the moneyness and time-to-maturity of the contracts traded. Out-of-sample results for Trading Rule

C are particularly robust to the effects of bid-ask spreads. For this rule, large positive and abnormal

returns remain after introducing bid-ask spreads, with the more efficient GLS estimation yielding better

out-of-sample results than OLS (compare bottom and top panels of Table 11).

7. Conclusion

Observed S&P 500 index option prices describe non-constant surfaces of implied volatility both vs.

moneyness and time to maturity. The state-of-the-art practitioners� framework relies on simple linear

regression models in which implied volatility is regressed on time to maturity and moneyness. The

23The data were kindly provided by Bernard Dumas.
24On average, the vector of spreads is (0.83 0.62 0.43 0.32 0.27)0 for DITM, ITM, ATM, OTM, and DOTM contracts,

respectively.
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empirical evidence suggests that the coefficients of this model are strongly time varying. In fact,

structural models that have proposed economic justiÞcations for the existence of an implied volatility

surface also imply time variation in the IVS. When persistent latent variables drive the fundamental

pricing equation, not only smiles, skews and term structure effects in implied volatility are derived

in equilibrium, but the resulting IVS is time-varying and therefore forecastable based on information

related to the latent factors. In this paper, we try to exploit this predictability by proposing a simple

extension of the ad hoc practitioners model. We propose a two-step procedure for jointly modeling the

cross-sectional and time series dimensions of the S&P 500 index options implied volatility surface. In

the Þrst step, we model the cross-sectional variation of implied volatilities as a function of polynomials

in moneyness and time to expiration (or functions thereof). Although the cross-sectional Þt achieved by

this step is largely satisfactory, we document the presence of considerable time variation and instability

in the estimated coefficients. In the second step, we model the dynamics of the implied volatility

surface by estimating parametric VAR-type models. We Þnd that the two-step estimators produce a

high-quality Þt of the surface and of its changes over time.

We evaluate the forecasting accuracy of our modeling approach using both standard statistical

measures and proÞtability-based criteria. In particular, the economic criteria assess the ability of

generating abnormal proÞts by performing volatility-based trading that reßects the one-step ahead

predictions produced by the models.

Under a statistical perspective, we Þnd that two-stage models provide accurate forecasts of future

implied volatility and also satisfactory option price predictions (using Black-Scholes formula, similarly

to Noh, Engle, and Kane (1994)). These performances are competitive (often superior) to hard-to-beat

benchmarks, such as a contract-by-contract random walk model.

Under an economic perspective, our evidence is mixed and depends heavily on the magnitude of

transactions costs employed in the rate of return calculations, and on how selective trading rules are. For

less selective trading rules that imply a potentially large number of trades along the entire IVS (such as

Trading Rule D), our volatility forecasts can support proÞtable trading strategies under low-to-moderate

transaction costs only. However, when more selective rules are employed (such as Trading Rule C), we

Þnd that even under realistic assumptions on commission fees and bid-ask spreads, mean daily returns

remain positive, statistically signiÞcant, and often truly in excess of what could be justiÞed by their

co-variation with the returns on the market portfolio. Thus, our Þnding that abnormal proÞtability

depends on Þne details of the trading rules and on assumptions on the strength of market frictions

conÞrms that the existence of predictability patterns is not necessarily in contradiction with the notion

of market efficiency.

There are a number of directions for future research that this paper leaves open. First, in this paper

we have followed a two-step approach, by Þrst estimating the cross-sectional IVS coefficients each day,

and then modeling and forecasting the time series of these coefficients. An alternative method of

estimation would consist of the simultaneous estimation of the cross-sectional coefficients and their

dynamics by writing the IVS model in a state-space form and applying the Kalman Þlter to obtain

maximum likelihood estimates. The one-step, Kalman Þlter approach is theoretically more efficient than

our two-step approach. Our main motivation for pursuing a two-step approach instead of an optimal,
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one-step approach, is simplicity: we view our method as a simple extension of what practitioners do

already in practice and we show it works well. We nevertheless realize that further gains in forecasting

the IVS could potentially be obtained with a Kalman Þlter approach. We leave this interesting extension

for future research. Second, additional experiments could be useful in terms of specifying the most useful

prediction models. For instance, both Harvey and Whaley (1992) and Noh, Engle and Kane (1994) Þnd

that there are substantial days-of-the-week effects in ATM implied volatility. It might be important to

account for these kinds of effects also when modeling the entire surface. Additionally, Noh, Engle and

Kane (1994) show that there are considerable advantages in separately modeling the implied surface

for call and put options. In this paper we have used data from both calls and puts, but we do not claim

that this is an optimal choice. Finally, in our approach we estimate an unrestricted VAR model which

does not exploit any non-arbitrage restrictions. Imposing such restrictions in our framework would

entail writing a structural model for the IVS, which is beyond the scope of the present paper. We note

however that imposing no-arbitrage conditions does not necessarily entail better forecasts. Indeed, our

results suggest that our model (which does not exploit non-arbitrage conditions) outperforms Heston

and Nandi�s (2000) model, which is arbitrage-free.

Appendix 1: Details on the calculation of Leland�s A coefficient

This appendix provides additional details on the computation of Leland�s (1999) risk measure. Following Rubin-

stein (1976) and Leland (1999), we assume the two fairly general assumptions: (i) the agent has power utility

characterized by constant relative risk aversion coefficient γ, and (ii) the returns on the market portfolio are

i.i.d. over time. Notice that (ii) requires i.i.d.-ness of market portfolio returns only, not of the returns on all the

existing assets, so that arbitrary patterns of dependence may be accommodated. Under these assumptions, it

can be shown that for a generic portfolio characterized by gain process G:

E

·
Gt+1
1, 000

¸
= r +B (E[rmkt]− r)

where

B ≡
Cov

³
E
h
Gt+1

1,000

i
, (1 + rmkt)

−γ
´

Cov (rmkt, (1 + rmkt)−γ)
.

This is a marginal-utility based version of the single-period CAPM, whose closed-form solution depends on the

assumption of power utility and the identiÞcation of Þnal wealth with the market portfolio. Interestingly, no

assumptions are required for the preference parameter γ, as it turns out that

γ =
ln (E[1 + rmkt])− ln(1 + r)

V ar[ln(1 + rmkt)]
.

Once γ and B are estimated from the data, it is straightforward to calculate a marginal utility adjusted abnormal

return measure A as:

A = E

·
Gt+1
1, 000

¸
− r −B (E[rmkt]− r) .

A > 0 implies a return that exceeds what is accounted for by the quantity of risk absorbed by the agent, taking

into account the shape of her utility function and therefore all higher order moments of the her wealth process.

For the purposes of our application, we proceed Þrst to estimate γ from sample moments implied by 1992-

1996 S&P 500 index returns, obtaining a plausible �γ = 6.81. Next, we calculate B using data on daily trading

strategy returns and the S&P 500. At that point calculation of (percentage) A is straightforward.

23



Appendix 2: Details on the GLS method used to Þlter measurement errors

This appendix gives some details on how to apply the GLS method proposed by Hentschel (2003) to obtain

more efficient estimates of the parameters describing the cross-sectional IVS model used in the Þrst-stage of our

approach. Consider the following equation

lnσi = X
0
iβ, (5)

where Xi =
¡
1,Mi,M

2
i , τ i,Mi × τ i

¢0
and β = (β0,β1, . . . ,β4)

0
. Here, σi denotes the true BS implied volatility

and it is a function of the option pricing inputs (S, r, τ i,Ki) and of the option price Pi. The presence of mea-

surement errors in the observed prices (such as S and Pi) implies that in practice we do not observe σi. Instead,

we observe σi with an error. In our context, one way to formalize this idea is to suppose that the observed

log-implied volatility, ln �σi, is equal to the true log volatility, lnσi , plus an error d lnσi :

ln �σi = lnσi + d lnσi. (6)

Replacing (6) into (5), we obtain

ln �σi = X
0
iβ+d lnσi. (7)

(7) is the cross-sectional IVS model that we will estimate in practice. It corresponds to our previous equation

(1), with σi replaced by �σi and where εi = d lnσi , i.e. we identify the error term with the measurement error

in implied volatility. Assumptions on the source and nature of this measurement error will enable us to further

characterize the structure of the regression error. In particular, suppose that only measurement errors in S and

Pi are present.
25 Then, it follows that

d lnσi =
1

σi
dσi =

1

σi

∂σi
∂Pi

·
dPi +

∂Pi
∂S

dS

¸
=
1

σi

∂σi
∂x0i

dxi ≡ ∂ lnσi
∂x0i

dxi,

where xi=(Pi, S)
0
collects the underlying prices and dxi denotes the vector of corresponding measurement errors.

Notice that

∂σi
∂x0i

=

µ
∂σi
∂Pi

,
∂σi
∂S

¶
=

µ
∂σi
∂Pi

,
∂σi
∂Pi

∂Pi
∂S

¶
=
¡V−1i ,V−1i ∆i

¢
,

where Vi ≡ ∂Pi
∂σi

is the option�s BS vega, and ∂Pi
∂S = ∆i is the option�s BS delta. As in Hentschel (2003), we

assume measurement errors are mean zero and independent of each other, implying that

V ar[d lnσi] =
1

σ2i

∂σi
∂x0i

E (dxidx
0
i)
∂σi
∂xi

=
1

σ2i

∂σi
∂x0i

Λi
∂σi
∂xi

≡ ∂ lnσi
∂x0i

Λi
∂ lnσi
∂xi

,

where Λi is a diagonal matrix with V ar[dPi] and V ar[dS] on the diagonal i.e. diag (Λi) = (V ar[dPi], V ar[dS])
0.

Because σi and the elements entering
∂σi
∂x0i

(such as Vi, ∆i and Pi) are option-speciÞc, the above formula shows
that the existence of measurement errors in option prices and index prices introduces heteroskedasticity. More-

over, measurement errors in observed underlying prices (such as S) induce correlation among errors in implied

volatilities. Thus, OLS is inefficient and we should instead use GLS to obtain more efficient estimates of β (and

hence of Þtted implied volatilities).

For a cross-section of N options, we can re-write (7) in a compact form as follows:

ln �σ = Xβ + d lnσ,

25Hentschel (2003) argues that this is the case for plausible values of the parameters.
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with obvious deÞnitions (e.g. ln �σ is the vector of the N observed implied volatilities). In particular, we can

write

d lnσ =
∂ lnσ

∂x0
dx,

where x =(P1, . . . , PN , S)
0
and ∂ lnσ

∂x0 is the Jacobian matrix of log-implied volatility derivatives, ∂ lnσi∂xj
, with xj

denoting the jth element of x. The variance-covariance matrix of the error vector d lnσ is given by

Σ = E (lnσ lnσ0) =
∂ lnσ

∂x0
Λ
∂ lnσ

∂x
,

where Λ =E (dxdx0) is a diagonal matrix with diag (Λ) = (V ar (dP1) , . . . , V ar (dPN) , V ar (S))
0
. The GLS

estimator of β is given by the well-known GLS formula

�β =
¡
X0Σ−1X

¢−1
X0Σ−1 ln �σ.

In practice, this GLS estimator is not feasible as Σ is unknown. In particular, it depends on the measurement

error variances (i.e. on Λ) and on the unobserved values of S and σi.

In our application, we implement a data-driven choice of the elements of Λ. For the choice of V ar (dS),

we follow Hentschel (2003, p. 8) in computing an implicit �bid-ask spread� for the index level, and then setp
V ar (dS) equal to one quarter of this bid-ask spread. More speciÞcally, if returns are an i.i.d. random walk in

calendar time with annual volatility σ2, then the standard deviation of half-hour returns is approximately σ2h =

σ2/ (365× 48) . An implicit �bid-ask spread� can then be calculated as σ2h×S so that
p
V ar (dS) = 1

4

¡
σ2h × S

¢
.

In practice, we make
p
V ar (dS) explicitly time-varying by using each day the actual, closing S&P 500 index

level, and by calculating a time-varying σ2 as the one-step ahead predicted, annualized GARCH(1,1) forecast

obtained by using a rolling window of 10 years of daily S&P 500 returns data.26 This feature accommodates

the fact that time mis-alignments are bound to create larger measurement errors in days in which stock prices

are more volatile, while GARCH models seem to offer on average good forecasting performance for volatility. As

for our choice of V ar (dPi) , our main difficulty lies in the fact that our data set does not have options bid-ask

spreads. We proceed as in Section 6.2. by resorting to DFW�s (1998) data set to impute bid-ask spreads to our

data. We follow Hentschel (2003) and set
p
V ar (dPi) to one-quarter of the bid-ask spread. The time variation

observed in the options spreads carries over to V ar (dPi), which thus becomes time-varying.

We choose to replace the unobserved value of S by its observed level �S. This is consistent with the idea

that measurement errors are zero mean so that the true, unobservable index is likely to be distributed around �S

itself. As for σi, we resort to the iterative approach of Hentschel (2003). We calculate Þrst-step GLS estimates

�β
(1)
(�σ) that use the �observed� implied volatilities �σ; based on these Þrst-step estimates, we obtain Þtted implied

volatilities �σ(1) = exp
³
X�β

(1)
(�σ)
´
, which are then used to calculate a second-step GLS estimate �β

(2)
³
�σ(1)

´
.

The iterative process is applied until convergence of the resulting (feasible) GLS estimates is obtained, i.e. when

�β
(k+1) ' �β(k).
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TABLE 1 Summary Statistics for Implied Volatilities by Maturity and Moneyness 
 

  Short-term Medium-term Long-term 
  Call Put Call Put Call Put Total % 

Obs. 146 2,550 771 2,423 442 825 7,157  
Avg. IV 0.124 0.185 0.109 0.164 0.117 0.156 0.163 14.85

 
DOTM 

SD IV 0.014 0.027 0.015 0.018 0.015 0.015 0.032  
Obs. 4,608 7,366 3,105 4,515 606 1,233 21,433  
Avg. IV 0.105 0.145 0.109 0.139 0.126 0.143 0.129 44.47

 
OTM 

SD IV 0.018 0.025 0.018 0.019 0.017 0.015 0.027  
Obs. 3,187 3,186 1,804 1,774 290 310 10,551  
Avg. IV 0.113 0.117 0.122 0.124 0.135 0.130 0.118 21.89

 
ATM 

SD IV 0.019 0.022 0.018 0.018 0.015 0.018 0.020  
Obs. 3,162 1,896 1,474 815 388 379 8,114  
Avg. IV 0.135 0.121 0.132 0.117 0.146 0.122 0.129 16.84

 
ITM 

SD IV 0.036 0.035 0.022 0.023 0.019 0.018 0.031  
Obs. 312 71 218 137 102 97 937  
Avg. IV 0.220 0.213 0.162 0.116 0.160 0.104 0.171 1.94 

 
DITM 

SD IV 0.078 0.086 0.035 0.028 0.022 0.018 0.068  
 Obs. 26,484 (55.0%) 17,036 (35.4%) 4,672 (9.6%) 48,192  

Total Avg. IV 0.131 0.133 0.139 0.132 100 
 SD IV 0.035 0.023 0.020 0.032  

 

NOTE. - The sample period is January 3, 1992 - June 28, 1996 for a total of 48,192 observations (after applying 
exclusionary criteria). Moneyness (m) is defined as the ratio of the contract strike to forward spot price minus one. 
DOTM denotes ‘deep-out-of-the-money’ (m< -0.06 for puts and m> 0.06 for calls), OTM ‘out-of-the money’ (-
0.06 < m ≤ -0.01 for puts and 0.01 < m ≤0.06 for calls), ATM denotes ‘at-the-money’ (-0.01 ≤ m ≤ 0.01), ITM ‘in-
the-money’ (0.01 ≤ m< 0.06 for puts and -0.06< m≤ -0.01 for calls), and DITM ‘deep-in-the-money’ (m >0.06 for 
puts and m<-0.06 for calls). Short-term contracts have less then 60 (trading) days to maturity, medium-term 
contracts time-to-maturity in the interval [60, 180] days, and long-term contracts have more than 180 days to 
expiration. 
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TABLE 2 Summary Statistics for the Parameter Estimates of the Cross-sectional Model 
 iiiiiii MMM ετβτββββσ +×++++= 43

2
210ln

 

Coeff./ 
Stat Mean Std. Dev. Min. Max. Skew Kurtosis LB(1) LB(10) 

LB(1)-
squares

LB(10)-
squares

 OLS Estimates 

0β̂  -2.186 0.164 -2.658 -1.618 0.368 2.582 927.0** 6550** 922.7** 6516** 

1β̂  -1.265 0.690 -8.854 1.518 -0.985 15.75 116.4** 855.3** 23.28** 202.0** 

2β̂  1.689 2.107 -8.601 14.33 1.090 6.052 56.29** 288.9** 7.23** 116.5** 

3β̂  0.292 0.246 -0.558 2.993 1.471 16.65 341.4** 2026** 18.79** 174.7** 

4β̂  -1.140 2.466 -22.30 39.09 2.840 70.34 14.74** 95.08** 0.028 1.353 

2R  0.810 0.133 0.011 0.990 -1.373 5.518 28.81** 112.3** 33.70** 128.0** 

RMSE 0.010 0.005 0.001 0.044 1.701 7.100 55.41** 114.6** 54.62** 77.22** 

 GLS Estimates 

0β̂  -2.144 0.165 -3.040 -1.589 0.074 3.117 756.8** 5,700** 727.6** 5,488** 

1β̂  -1.597 0.855 -3.394 48.21 -3.394 48.21 65.31** 584.1** 1.783 20.07 

2β̂  0.147 2.648 -29.67 19.49 -1.146 24.36 32.53** 96.79** 20.89** 53.49** 

3β̂  0.224 0.246 -0.995 4.737 5.750 103.9 131.0** 845.3** 0.272 5.508 

4β̂  -0.379 2.816 -18.70 65.42 10.51 268.1 0.015 30.65** 0.004 6.632 

2R  0.717 0.284 0.001 0.989 -4.497 42.92 6.956** 37.50** 5.376 35.43** 

RMSE 0.012 0.007 0.002 0.056 2.100 9.595 50.86** 115.6** 45.36** 75.99** 
 

NOTE. - For each trading day, estimation is constrained by the availability of a sufficient number of observations. 
The first panel concerns OLS estimates, while the second panel reports GLS estimates that adjust for the effects 
of measurement error involving option prices and the underlying index. The data covers the period Jan. 3, 1992 - 
June 28, 1996, for a total number of daily estimated vector coefficients equal to 1,136. 2R denotes the adjusted 

2R , while LB(j) denotes the Ljung-Box statistics testing for the absence of autocorrelation up to lag j. RMSE 
denotes the RMSE of (log) implied volatilities. 
** Significantly different from zero at the 1% level. 
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TABLE 3 Estimation Results for VAR Models of Cross-sectional OLS Estimates 
 

Model Log-likelihood BIC RMSE 

  
0β̂  1β̂  2β̂  3β̂  4β̂  

Model 1 -583.714 0.710 0.064 0.600 1.98 0.183 2.40 
Model 2 -2203.256 2.002 0.161 0.692 2.12 0.245 2.48 

 
NOTE. - Model 1 corresponds to equation (2) (in the main text), with p selected by the BIC criterion (starting 
with a maximum value of p equal to 12). Model 2 is the DFW (1998) ad-hoc strawman. All results pertain to the 
period January 3, 1992-June 28, 1996, for a total of 1,136 daily observations. 

 
  TABLE 4 Out-of-sample Average Prediction Errors and Forecast Accuracy Tests 
 

 RMSE-V MAE-V RMSE-P MAE-P MCP-V MCP-P 
 Panel A: Prediction Error Measures 
 OLS Estimates 
Model 1 1.429 0.971 1.00 0.64 62.23 51.61 
Model 2 2.305 1.947 1.75 1.33 55.78 46.02 
 GLS Estimates 
Model 1 1.516 1.048 0.93 0.65 61.07 49.60 
Model 2 2.386 2.051 1.68 1.35 55.19 45.51 
 Benchmarks 
NGARCH(1,1) 2.074 1.721 1.71 1.36 54.51 49.68 
Random walk 1.490 1.041 1.64 1.27 NA NA 
 Panel B: Forecast Accuracy Tests (Against Model 1) 
 OLS Estimates 
Model 2 -20.212*** -14.205*** -11.591*** -14.455*** 6.594*** 6.400*** 
NGARCH(1,1) -6.770*** -10.286*** -8.455*** -16.990*** 8.759*** 2.652*** 
Random walk -1.947* -3.411*** -7.620*** -13.492*** NA NA 
 GLS Estimates 
Model 2 -11.265*** -14.363*** -12.474*** -14.745*** 6.653*** 5.420** 
NGARCH(1,1) -6.063*** -9.103*** -9.026*** -16.016*** 7.825*** -0.099 
Random walk 0.288 0.277 -8.037*** -12.813*** NA NA 

 

NOTE. - Model 1 corresponds to equation (2) (in the main text), with p selected by the BIC criterion (starting 
with a maximum value of p equal to 12). Model 2 is the DFW (1998) ad-hoc strawman. NGARCH(1,1) is Heston 
and Nandi’s (2000) model, estimated in the implied volatility space. The random walk model sets tomorrow’s 
implied volatility forecast equal to today’s value. Each model is estimated using data in four expanding estimation 
windows (Jan.1, 1992 - Dec. 31, 1992; up to Jan. 1, 1992 - Dec. 31, 1995), and then used to forecast implied 
volatilities and option prices in the second half of each year 1992 through 1996. RMSE-V (RMSE-P) is the root 
mean squared error in implied volatilities (option prices) averaged across all days in the four prediction windows. 
MAE-V (MAE-P) is the mean absolute error between BS implied volatilities (observed option prices) and forecast 
implied volatilities (forecast option prices using BS, given forecast implied volatilities) across all days in the out-of-
sample period. MCP-V (MCP-P) is the mean percentage of correct predictions of changes in implied volatilities 
(option prices) across all days. The forecast accuracy tests are based on the Diebold and Mariano (1995). A * 
means the test is statistically significant at the 10% level, ** at 5%, and *** at 1%. 
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  TABLE 5 Out-of-sample Average Prediction Errors by Moneyness and Maturity 
 

  Short-term Medium-term Long-term 

  %RMSE-V %RMSE-P %RMSE-V %RMSE-P %RMSE-V %RMSE-P

Model 1 26.66 15.31 10.73 9.98 11.41 15.55 

Model 2 28.37 30.85 14.70 20.78 12.76 24.46 DITM 

AR(1) 26.74 49.35 19.61 32.63 22.08 18.03 

Model 1 12.64 12.24 6.63 6.61 7.19 9.19 

Model 2 16.85 27.40 10.76 14.53 12.79 14.96 ITM 

AR(1) 15.62 37.09 11.52 14.23 10.70 7.62 

Model 1 6.08 6.47 4.84 4.93 5.83 5.71 

Model 2 13.19 14.30 10.28 10.42 9.37 9.23 ATM 

AR(1) 6.63 7.08 6.05 6.09 6.32 6.27 

Model 1  5.39 4.26 4.26 4.05 6.46 5.17 

Model 2 11.71 5.98 9.39 6.62 10.75 9.20 OTM 

AR(1) 16.53 5.47 9.55 7.09 5.44 7.62 

Model 1 4.23 2.97 3.98 2.95 7.24 4.40 

Model 2 8.16 3.12 8.54 3.91 11.70 4.86 DOTM 

AR(1) 12.5 3.43 13.89 5.22 9.15 8.94 

 
NOTE. - Model 1 corresponds to equation (2) (in the main text), with p selected by the BIC criterion (starting with 
a maximum value of p equal to 12) and without any exogenous regressors. Model 2 is the DFW (1998) ad-hoc 
strawman. The third model is an AR(1) model applied to each (log-) implied volatility time series. Each model is 
estimated on four expanding windows of observations and then used to forecast implied volatilities on four 
successive windows of six months each. %RMSE-V and %RMSE-P are RMSE’s for volatility and option prices, 
expressed as a percentage of the mean implied volatility and option price within the class, respectively. Each time 
series is formed by sampling contracts that in each available day come closer to class definitions based on 
moneyness and maturity. 
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  TABLE 6 Simulated Trading Profits Before Transaction Costs 
 

 Mean 
moneyness 

Mean time 
to maturity

Mean 
profit (%)

Daily % 
standard dev.

t-ratio Sharpe 
ratio %

A coeff. %

 Trading Rule A 
Model 1 0.0009 38.83 0.0830 0.0198 4.198 14.800 0.0418 
Model 2 0.0009 38.39 0.0477 0.0196 2.435 6.886 0.0065 
NGARCH(1,1) 0.0009 38.90 0.0545 0.0194 2.805 8.511 0.0135 
 Trading Rule B 
Model 1 -0.0170 91.04 2.1809 0.5551 3.929 17.394 -2.8445 
Model 2 -0.0199 103.05 -0.1166 0.9415 -0.1239 -0.6357 -14.5058 
NGARCH(1,1) -0.0127 85.43 0.7056 0.3477 2.029 8.832 -1.2875 
 Trading Rule C 
Model 1 0.0004 133.31 1.322 0.1198 11.034 48.599 1.0548 
Model 2 -0.0119 113.25 1.3553 0.1597 8.489 37.400 0.9076 
NGARCH(1,1) 0.0117 90.31 2.2146 0.3751 5.905 26.146 -0.0982 
 Benchmarks 
S&P 500 buy & hold NA NA 0.0166 0.0287 0.578 4.670 0 
Random option 
portfolio -0.0119 51.23 -0.1483 0.1848 -0.803 -4.008 -0.7027 

T-bill portfolio 
(random walk) 

NA NA 0.0175 0.0002 86.638 0 -0.0174 

 
NOTE. - Model 1 is a VAR model. Model 2 is the DFW (1998) ad-hoc strawman. NGARCH(1,1) is Heston and 
Nandi’s (2000) model, estimated in the implied volatility space. Each model is estimated on four expanding 
windows of observations and then used to forecast implied volatilities on for successive windows of six months 
each. Given implied volatility forecasts, BS option prices are computed. If the observed option price of a contract is 
below (exceeds) the theoretical price, $1,000 of the options are purchased (sold) and the options position is hedged. 
According to Trading Rule A, trading only occurs on closest-at-the-money, shortest-term contracts; in Trading Rule 
B trading occurs only in two contracts, those for which the expected selling and the expected buying profits, 
respectively, are maximum; in Trading Rule C trades concern only one contract, the one giving the highest expected 
profit. 
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TABLE 7 Simulated Trading Profits After Transaction Costs 
 

 Mean 
moneyness 

Mean time 
to maturity

Mean 
profit (%)

Daily % 
standard dev.

t-ratio Sharpe 
ratio % 

A coeff. %

Panel 1 – Transaction cost of 5 cents roundtrip 
 Trading Rule A 
Model 1 0.0009 38.83 0.0554 0.0198 2.799 8.557 0.0141 
Model 2 0.0009 38.39 0.0182 0.0196 0.927 0.160 -0.0230 
NGARCH(1,1) 0.0009 38.90 0.0257 0.0195 1.319 1.880 -0.0154 
 Trading Rule B 
Model 1 -0.0170 91.04 0.3940 0.5530 0.713 3.039 -4.5923 
Model 2 -0.0199 103.05 -1.7938 0.5382 -3.333 -15.021 -6.5190 
NGARCH(1,1) -0.0127 85.43 -1.3928 0.3702 -3.762 -17.002 -3.6472 
 Trading Rule C 
Model 1 0.0004 133.31 1.2989 0.1197 10.850 47.775 1.0319 
Model 2 -0.0119 113.25 1.3321 0.1596 8.349 36.773 0.8849 
NGARCH(1,1) 0.0117 90.31 2.1868 0.3758 5.820 25.768 -0.1345 

Panel 2 – Transaction cost of 12.5 cents roundtrip 
 Trading Rule A 
Model 1 0.0009 38.83 0.0140 0.0198 0.705 -0.780 -0.0273 
Model 2 0.0009 38.39 -0.0261 0.0196 -1.331 -9.914 -0.0673 
NGARCH(1,1) 0.0009 38.90 -0.0177 0.0195 -0.908 -8.053 -0.0588 
 Trading Rule B 
Model 1 -0.0170 91.04 -2.3246 0.7328 -3.172 -14.264 -11.0556 
Model 2 -0.0199 103.05 -3.3199 0.3497 -9.494 -42.598 -5.3348 
NGARCH(1,1) -0.0127 85.43 -3.6611 0.4567 -8.017 -35.953 -7.0729 
 Trading Rule C 
Model 1 0.0004 133.31 1.2638 0.1195 46.534 46.534 0.9975 
Model 2 -0.0119 113.25 1.2974 0.1594 35.831 35.831 0.8509 
NGARCH(1,1) 0.0117 90.31 2.1452 0.3768 25.200 25.200 -0.1894 
 

NOTE. - The table reports trading profits when transaction costs of 5 cents (Panel 1) and 12.5 cents (Panel 2) per 
contract traded, on a roundtrip basis, are imposed. Model 1 is a VAR model, Model 2 is the DFW (1998) ad-hoc 
strawman. NGARCH(1,1) is Heston and Nandi’s (2000) model, estimated in the implied volatility space. Each 
model is estimated on four expanding windows of observations and then used to forecast implied volatilities on 
for successive windows of six months each. Given implied volatility forecasts, BS option prices are computed. If 
the observed option price of a contract is below (exceeds) the theoretical price, $1,000 of the options are 
purchased (sold) and the options position is hedged. According to Trading Rule A, trading only occurs on closest-
at-the-money, shortest-term contracts; in Trading Rule B trading occurs only in two contracts, those for which the 
expected selling and the expected buying profits, respectively, are maximum; in Trading Rule C trades concern 
only one contract, the one giving the highest expected profit. 
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TABLE 8 Simulated Trading Profits under Trading Rule D After Transaction Costs  
 

 Mean 
moneyness 

Mean time 
to maturity

Mean 
profit (%)

Daily % 
standard dev.

t-ratio Sharpe 
ratio % 

A coeff. %

 Filter = Transaction Cost = 12.5 cents roundtrip 
Model 1 -0.0034 48.33 0.3118 0.0896 3.479 14.657 0.1468 
Model 2 -0.0056 52.08 -2.5551 0.7851 -3.255 -14.626 -12.5705 
NGARCH(1,1) -0.0045 43.69 -0.7388 0.1392 -5.309 -24.257 -1.0874 
 Filter = Transaction Cost = 25 cents roundtrip 
Model 1 -0.0025 55.99 0.0621 0.1530 0.406 1.303 -0.3521 
Model 2 -0.0045 55.90 -2.9678 0.7093 -4.184 -18.785 -11.1492 
NGARCH(1,1) -0.0045 45.07 -2.4101 0.6435 -3.745 -16.837 -9.1506 
 Filter = Transaction Cost = 50 cents roundtrip 
Model 1 -0.0009 74.79 -0.5466 0.1187 -4.606 -21.213 -0.8096 
Model 2 -0.0021 62.03 -4.807 0.6988 -6.879 -30.814 -12.7497 
NGARCH(1,1) -0.0032 48.96 -5.1207 1.1002 -4.655 -22.655 -7.8994 

 
NOTE. - The table reports trading profits from Trading Rule D. This strategy applies filter rules to price 
deviations for selecting options to be traded. In particular, we consider filters equal to $0.125, $0.25 and $0.50, 
and allow trade in all contracts for which the absolute value of the price deviation exceeds the filter. Transaction 
costs are set at the same three roundtrip levels. Model 1 is a VAR model and Model 2 is the DFW (1998) ad-hoc 
strawman. NGARCH(1,1) is Heston and Nandi’s (2000) model, estimated in the implied volatility space. Each 
model is estimated on four expanding windows of observations and then used to forecast implied volatilities on 
for successive windows of six months each. Given implied volatility forecasts, BS option prices are computed. If 
the observed option price of a contract is below (exceeds) the theoretical price, $1,000 of the options are 
purchased (sold) and the options position is hedged. 
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TABLE 9 Trading Profits Before Transaction Costs - Effects of Measurement Errors 
 

 Mean 
moneyness 

Mean time 
to maturity 

Mean 
profit (%)

Daily % 
standard dev.

t-ratio Sharpe 
ratio % 

A coeff. % 

 Trading Rule A 
Model 1 0.0019 38.97 0.0773 0.0194 3.982 13.758 0.0363 
Model 2 0.0019 38.51 0.0480 0.0197 2.436 6.913 0.0068 
NGARCH(1,1) 0.0009 38.90 0.0545 0.0194 2.805 8.511 0.0135 
 Trading Rule B 
Model 1 -0.0124 87.51 0.8416 0.1837 4.582 20.023 0.2624 
Model 2 -0.0136 103.66 0.0588 0.1663 0.354 1.110 -0.4239 
NGARCH(1,1) -0.0127 85.43 0.7056 0.3477 2.029 8.832 -1.2875 
 Trading Rule C 
Model 1 0.0052 115.92 1.6890 0.1779 9.497 41.948 1.1419 
Model 2 0.0086 123.51 1.6530 0.1868 8.847 39.070 1.0528 
NGARCH(1,1) 0.0117 90.31 2.2146 0.3751 5.905 26.146 -0.0982 
 Benchmarks 
S&P 500 buy & 

hold NA NA 0.0166 0.0287 0.578 4.670 0 

Random option 
portfolio -0.0119 51.23 -0.1483 0.1848 -0.803 -4.008 -0.7027 

T-bill portfolio 
(random walk) NA NA 0.0175 0.0002 86.638 0 -0.0174 

 
NOTE. – This table reports trading profits deriving from various trading rules and models, as in Table 6. The 
difference is that here we apply a feasible GLS procedure to estimate the cross-sectional parameters of the IVS each 
day. This method is more efficient than the OLS method applied before, under the presence of measurement error. 
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TABLE 10 Simulated Trading Profits under Trading Rule D After Transaction Costs - 
Effects of Measurement Errors 

 

 Mean 
moneyness 

Mean time 
to maturity 

Mean 
profit (%)

Daily % 
standard dev.

t-ratio Sharpe 
ratio % 

A coeff. 
% 

 Filter = Transaction Cost = 12.5 cents roundtrip 
Model 1 -0.0013 51.46 0.0089 0.2277 0.039 -0.168 -0.8659 
Model 2 -0.0035 50.84 -1.8572 0.4698 -3.953 -17.808 -5.4667 
NGARCH(1,1) -0.0045 43.69 -0.7388 0.1392 -5.309 -24.257 -1.0874 
 Filter = Transaction Cost = 25 cents roundtrip 
Model 1 0.0008 57.09 -0.5682 0.3554 -1.599 -7.354 -2.6487 
Model 2 -0.0029 53.50 -2.2630 0.3665 -6.175 -27.773 -4.4726 
NGARCH(1,1) -0.0045 45.07 -2.4101 0.6435 -3.745 -16.837 -9.1506 
 Filter = Transaction Cost = 50 cents roundtrip 
Model 1 0.0026 69.45 -0.9700 0.2321 -4.179 -18.987 -1.8774 
Model 2 -0.0020 57.18 -5.0065 0.6158 -8.130 -36.411 -11.1828 
NGARCH(1,1) -0.0033 49.38 -3.5660 0.5152 -6.921 -31.042 -7.8994 

 
NOTE. – This table reports trading profits deriving Trading Rule D for various models, as in Table 8.  The 
difference is that here we apply a feasible GLS procedure to estimate the cross-sectional parameters of the IVS 
each day. This method is more efficient than the OLS method applied before, under the presence of measurement 
errors. 
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TABLE 11 Simulated Trading Profits – Effects of Bid-Ask Spreads  
 

 Mean 
moneyness 

Mean time 
to 

maturity 

Mean 
profit (%) 

Daily % 
standard dev.

t-ratio Sharpe 
ratio % 

                              Filter=Transaction Cost= 5 cents 

    OLS cross-sectional estimates 
Model 1 -0.0026 78.43 0.0005 0.0747 0.007 -1.012 
Model 2 -0.0028 64.42 -3.4873 0.7377 -4.728 -21.206 
NGARCH(1,1) -0.0045 49.48 -2.8843 0.5609 -5.143 -23.092 

               GLS cross-sectional estimates 
Model 1 0.0022 72.99 -0.0093 0.1504 -0.614 -3.258 
Model 2 -0.0022 59.12 -3.6985 0.5278 -7.007 -31.423 
NGARCH(1,1) -0.0045 49.48 -2.8843 0.5609 -5.143 -23.092 

                              Filter=Transaction Cost= 25 cents 
 OLS cross-sectional estimates 
Model 1 -0.0005 78.84 -0.2765 0.0915 -3.022 -14.339 
Model 2 -0.0028 64.46 -4.1461 0.8433 -4.916 -22.035 
NGARCH(1,1) -0.0045 49.48 -4.3600 0.9486 -4.596 -20.596 
 GLS cross-sectional estimates 
Model 1 0.0022 72.99 -0.5833 0.1803 -3.236 -14.867 
Model 2 -0.0022 59.16 -4.0547 0.6412 -6.323 -28.344 
NGARCH(1,1) -0.0045 49.48 -4.3600 0.9486 -4.596 -20.596 

 
NOTE. - Transaction costs are set at 25 cents per contract, while bid-ask spreads are a function of the contract 
moneyness. Bid-ask spreads and transaction costs are applied on a roundtrip bases as filters to obtain Buy and Sell 
signals. The first-stage cross-sectional IVS coefficients are estimated either by OLS or by GLS (adjusting for the 
likely effects of measurement errors involving option prices and the underlying index). 
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FIG. 1 – Fitted and actual S&P 500 implied volatility surface (average over  
January 3, 1992 – June 28, 1996) 
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FIG. 2 - Time variation in the OLS estimates for the cross-sectional model 

January 3, 1992 – June 28, 1996 ,)(ln 43
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FIG. 3 - Auto- and cross-correlations of the OLS estimates for the cross-sectional model 
,)(ln 43

2
210 iiiiiii MMM ετβτββββσ +×++++= January 3, 1992 – June 28, 1996 
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FIG. 4 – Model 1: fitted S&P 500 implied volatility surfaces. 
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Trading Profits (Rule D) as a Function of 
Transaction Costs: Mean % Profits
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Trading Profits (Rule D) as a Function of 
Transaction Costs: t-stats of Mean % Profits
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FIG. 5 – Mean percentage daily profits (with filters, rule D) as a function of the transaction cost 

per contract (plus a $10 fixed cost). 
 

42 


