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Despite an obvious demand for a variety of statistical tests adapted to classification images, few have been proposed. We 
argue that two statistical tests based on random field theory satisfy this need for smooth classification images. We 
illustrate these tests on classification images representative of the literature from Gosselin and Schyns (2001) and from 
Sekuler, Gaspar, Gold and Bennett (2004). The necessary computations are performed using the Stat4Ci Matlab toolbox. 
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Introduction 
In recent years, vision research has witnessed a tremen-

dous growth of interest for regression techniques capable of 
revealing the use of information (e.g., Ahumada, 1996; 
Eckstein & Ahumada, 2002; Gosselin & Schyns 2004b). 
Reverse correlation, one such technique, has been em-
ployed in a number of domains ranging from electroreti-
nograms (Sutter & Tran, 1992), visual simple response 
time (Simpson, Braun, Bargen, & Newman, 2002), single 
pulse detection (Thomas & Knoblauch, 1998), vernier acu-
ity (Beard & Ahumada, 1998; Barth, Beard & Ahumada, 
1999), objects discrimination (Olman & Kersten, 2004), 
stereopsis (Neri, Parker & Blakemore, 1999; Gosselin, Ba-
con & Mamassian, 2004), letter discrimination (Watson & 
Rosenholtz, 1997; Watson, 1998; Gosselin & Schyns  
2003), single neuron’s receptive field (e.g., Ringach & 
Shapley,  2004; Marmarelis & Naka, 1972; Ohzawa, 
DeAngelis, & Freeman, 1990), modal and amodal comple-
tion (Gold, Murray, Bennett, & Sekuler, 2000), face repre-
sentations (Mangini & Biederman, 2004; Gold, Sekuler, & 
Bennett, 2004; Sekuler, Gaspar, Gold & Bennett, 2004; 
Konsevich & Tyler, 2004) to temporal processing (Neri & 
Heeger, 2002). Bubbles, a related technique (Gosselin & 
Schyns  2001; Gosselin & Schyns, 2002; Gosselin & 
Schyns 2004b; Murray & Gold, 2004), has revealed the use 
of information for the categorization of face identity, ex-
pression, and gender (Adolphs, Gosselin, Buchanan, Tra-
nel, Schyns & Damasio, 2005; Gosselin & Schyns 2001; 
Schyns, Bonnar & Gosselin, 2002; Smith, Cottrell, 
Gosselin & Schyns, 2005; Vinette, Gosselin & Schyns, 

2004), for the categorization of natural scenes (McCotter, 
Sowden, Gosselin & Schyns, in press), for the perception 
of an ambiguous figure (Bonnar, Gosselin & Schyns, 2002) 
and for the interpretation of EEG signals (Schyns, Jentzsch, 
Johnson, Sweinberger & Gosselin, 2003; Smith, Gosselin 
& Schyns, 2004). 

Both the Bubbles and the reverse correlation techniques 
produce large volumes of regression coefficients that have 
to be tested individually. As we will shortly discuss, this 
raises the issue of false positives: the risk of accepting an 
event that occurred by chance. Surprisingly, few classifica-
tion image researchers have taken this into account (for 
exceptions, see Abbey & Eckstein, 2002; Kontsevich & 
Tyler, 2004; Mangini & Biederman, 2004). Here, we argue 
that two statistical tests based on random field theory satisfy 
this need for smooth classification images. The core ideas 
of random field theory are presented. In particular, the 
main equations for the tests are given. Finally, the usage of 
a Matlab toolbox implementing the tests is illustrated on 
two representative sets of classification images from 
Gosselin & Schyns, (2001) and Sekuler, Gaspar, Gold & 
Bennett (2004). But first, in order to identify the critical 
properties of the proposed statistical tests, we shall discuss 
some limitations of the two statistical tests that have already 
been applied to classification images. 
 

Multiple comparisons 
In a typical classification image experiment, an observer 

has to classify objects partially revealed by additive (reverse 
correlation) or multiplicative (Bubbles) noise fields. The cal-
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culation of the classification image amounts quite simply to 
summing all the noise fields weighted by the observer’s re-
sponses (Ahumada, 2002; Murray, Bennett, & Sekuler, 
2002). By doing this, the researcher is actually performing a 
multiple regression on the observer’s responses and the 
noise fields (see Appendix: The construction of a classifica-
tion image for details). A statistical test compares this data 
against the distribution of a random process with similar 
characteristics. Classification images can thus be viewed, 
under the null hypothesis, as expressions of a random N-
dimensional process (i.e., a random field). The alternate 
hypothesis is that a signal – known or unknown – is hidden 
in the regression coefficients. 

So far, researchers have used two statistical tests to 
achieve this end: the Bonferroni correction and Abbey and 
Eckstein’s (2002) Hotelling test. We will argue that these 
tests are not adapted to some classification images. The 
former is too conservative when the elements of the classi-
fication images are locally correlated; and the latter is not 
suitable in the absence of a priori expectations about the 
shape of the signal hidden in the classification images 

Bonferroni correction 
Consider a one-regression-coefficient Z-transformed 

classification image (see Appendix: The construction of a 
classification image and Re-analyzing representative classifi-
cation images). If this Z-score exceeds a threshold deter-
mined by a specified p-value, this regression coefficient dif-
fers significantly from the null hypothesis. For example, a p-
value of .05, means that, if we reject the null hypothesis, 
that is, if the Z-score exceeds a threshold tZ = 1.64, the 
probability of a false alarm (or type-I error) is .05. Now con-
sider a classification image comprising 100 regression coef-
ficients: the expected number of false alarms is 100 * 0.05 = 
5. With multiple Z-tests, such as in the previous example, 
the overall p-value can be set conservatively using the Bon-
ferroni correction: pBON = p(Z > tBON) * N, with N the number 
of points in the classification image. Again, consider our 
hypothetical one-hundred-point classification image. The 
corrected threshold, tBON, associated with pBON = .05, is 3.29. 
Such high Z-scores are seldom observed in classification 
images derived from empirical data. In a classification im-
age of 65,536 data points (typical of those found in the lit-
erature, like the 256 x 256 classification images from 
Gosselin & Schyns, 2001, re-analyzed in the last section of 
this article) tBON becomes a formidable 4.81! For classifica-
tion images of low (or reduced) dimensionality such as 
those of Mangini and Biederman (2004) or Kontsevich and 
Tyler (2004), the Bonferroni correction prescribes thresh-
olds that can be (and have been) attained. 

A priori expectations 
Two possibilities should be considered: either these 

classification images really do not contain anything statisti-
cally significant (which seems unlikely given the robustness 
of the results obtained with no Bonferroni correction – 

e.g., Gosselin & Schyns, 2001; Schyns et al., 2002; Schyns 
et al., 2003), or the Bonferroni correction is too conserva-
tive. Do we have a priori expectations that support the lat-
ter and can we use these expectations to our advantage? 
Abbey and Eckstein (2002), for example, have derived a 
statistical test far more sensitive than the Bonferroni cor-
rection for classification images derived from a two-
alternative forced-choice paradigm when the signal is perfectly 
known. Although we often do not have such perfect a priori 
knowledge about the content of classification images, we do 
expect them to be relatively smooth. 

The goal of Bubbles and reverse correlation is to reveal 
clusters of points that are associated with the measured re-
sponse: e.g. the mouth or the eyes of a face (Gosselin & 
Schyns, 2001; Schyns et al., 2002; Mangini & Biederman, 
2004; Gold et al., 2004; Sekuler et al., 2004), illusory con-
tours (Gold et al., 2000), and so on. In other words, it is 
expected that the data points of classification images are 
correlated, introducing “smoothness” in the solutions. The 
Bonferroni correction, adequate when data points are in-
dependent, becomes far too conservative (not sensitive 
enough) for classification images with a correlated struc-
ture. 

In the next section, we present two statistical tests 
based on random field theory that provide accurate thresholds 
for smooth, high-dimensional classification images. 

Random field theory 
Adler (1981) and Worsley (e.g. 1994, 1995a, 1995b, 

1996) have shown that the probability of observing a cluster 
of pixels exceeding a threshold in a smooth Gaussian ran-
dom field is well approximated by the expected Euler 
Characteristic. The Euler Characteristic (EC) basically 
counts the number of clusters above a sufficiently high 
threshold in a smooth Gaussian random fields. Raising the 
threshold until only one cluster remains brings the EC 
value to 1; raising it still further until no cluster exceeds the 
threshold brings it to 0. Between these two thresholds, the 
expected EC approximates the probability of observing one 
cluster. The formal proof of this assertion is the centerpiece 
of Random Field Theory (RFT). 

Next we present the main equations of two statistical 
tests derived from RFT: the so-called Pixel and Cluster tests, 
which have already been successfully applied for more than 
15 years to brain imaging data. Crucially, these tests take 
into account the spatial correlation inherent to the data set, 
making them well suited for classification images. 

Pixel test 
Suppose that Z is a Z-transformed classification image 

(see Appendix: The construction of a classification image). 
In RFT, the subset of Z searched for unlikely clusters of 
regression coefficients – e.g., the face area – is called the 
search space (S). The probability of observing at least one 
regression coefficient exceeding t is well approximated by 
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where D is the dimensionality of S; ECd(t) is the d-
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The resels is given by 

Resels
d
S( ) =

V
d
S( )

FWHM
d

,  (5) 

where V0(S)=1 for a connected search region, V1(S)=half 
perimeter length of S, V2(S)=caliper area of S (a disk of the 
same area as S gives a good approximation and allows to 
derive the volumes of the lower dimension – see Cao & 
Worlsey, 2001). The FWHM is the Full Width at Half 
Maximum of the filter f used to smooth the independent 
error noise in the image. If the filter is Gaussian with stan-
dard deviation σb then 

FWHM = !
b
8 ln2 . (6) 

The filter f should be chosen to give the best discrimi-
nation, or in other words, to maximize the detection of 
signal in Z. There is a classic theorem in signal processing, 
the Matched Filter Theorem, which states that to detect 
signal added to white noise, the optimum filter should 
match the shape of the signal. This implies that to opti-
mally detect, say 10 pixel features, we should smooth the 
data with a 10 pixels FWHM filter. But if for instance it was 
felt that larger contiguous areas of the image were involved 
in discrimination, then this might be better detected by 
using a broader filter at the statistical analysis stage (see 
Worsley, Marrett, Neelin, Vandal, Friston, & Evans, 1996). 

This dependency of the Pixel test on the choice of an 
adequate filter has led to a generalization of the test in 
which an extra dimension, the scale of the filter, is added 
to the image to create a scale space image (Poline & Ma-
zoyer, 1994; Siegmund and Worsley, 1995). The scale space 

search reduces the uncertainty of choosing a filter FWHM 
but at the cost of higher thresholds. 

Cluster test 
The Pixel test computes a statistical threshold based on 

the probability of observing a single pixel above the thresh-
old. This test has been shown to be best suited for detecting 
focal signals with high Z-scores (Poline, Worsley, Evans & 
Friston, 1997). But if the region of interest in the search 
space (the mouth in a face for example) is wide, it has usu-
ally a lower Z-score and cannot be detected. We could im-
prove detection by applying more smoothing to the image. 
The amount of smoothing will depend on the extent of the 
features we wish to detect (by the Matched Filter Theorem), 
but we do not know this in advance. 

Friston, Worsley, Frackowiak, Mazziotta and Evans 
(1994) proposed an alternative to the Pixel test in order to 
improve the detection of wide signals with low Z-scores (see 
Poline et al., 1997, for a review). The idea is to set a low 
threshold (t ≥ 2.3 – in the next section, we used t = 2.7) and 
base the test on the size of clusters of connected pixels 
above the threshold. The Cluster test is based on the prob-
ability that, above a threshold t, a cluster of size K (or more) 
pixels has occurred by chance which is calculated in the 
D=2 case as follows (Cao & Worsley 2001; Friston at al., 
1994): 

 
P K > k( ) !1 ! e

!Resels
2
S( )EC2 t( ) p( ) , (7) 

where 

p = e
! 2"EC2 t( )k( ) FWHM 2P Z >t( )( )( )  (8) 

Cluster vs. Pixel test 
The Cluster and the Pixel test presented above provide 

accurate thresholds but for different types of signal. The 
Pixel test is based on the maximum of a random field and 
therefore is best adapted for focal signal (optimally the size 
of the FWHM) with high Z-scores (Siegmund and Worsley, 
1995; Poline et al., 1997). The Cluster test is based on the 
size of a cluster above a relatively low threshold and there-
fore is more sensitive for detecting wide regions of contigu-
ous pixels with relatively low Z-scores. The two tests poten-
tially identify different statistically significant regions in 
smooth classification images. Figure 1 illustrates this point 
with a one-dimensional classification image comprising 257 
pixels convolved with a Gaussian kernel with a FWHM 
equals to 11.8 pixels. For a p-value equals to .05, the Pixel 
test gives a threshold of 3.1 (green line) whereas the Cluster 
test gives a minimum cluster size of 6.9 above a threshold 
of 2.7 (red line). 
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Figure 1. Regions revealed by the Cluster (red) vs. the Pixel 
(green) test. See text for details. 

Furthermore the interpretation of the results following 
the application of the Pixel and the Cluster test differs dras-
tically. On the one hand, the Cluster test allows the infer-
ence that the clusters of Z-scores larger than the minimum 
size are significant, not that the individual Z-scores inside 
these clusters are significant. On the other hand, the Pixel 
test allows the conclusion that each individual Z-score 
above threshold is significant (Friston, Holmes, Poline, 
Price, Frith, 1996; Friston et al., 1994; Poline et al., 1997). 

Accuracy 
Since the late 1980’s, Random Field Theory (RFT) has 

been used to analyze Positron Emission Tomography (PET) 
images, galaxy density maps, cosmic microwave background 
data and functional Magnetic Resonance Imaging (fMRI) 
data. In fact, the RFT is at the heart of two popular fMRI 
data analysis packages: SPM2 (Frackowiak, Friston, Frith, 
Dolan, Price, Ashburner, Penny & Zeki, 2003) and fmristat 
(Worsley, 2003). 

Not surprisingly, the accuracy of RFT has been exam-
ined extensively. An accurate statistical test must be both 
sensitive (i.e., high hit rate) and specific (i.e., high correct 
rejection rate). In particular, RFT has been evaluated in the 
context of so-called “phantom” simulations (Poline, et al., 
1997; Hayasaka & Nichols, 2003, Hayasaka, Luan Phan, 
Liberzon, Worsley & Nichols, 2004, Nichols & Hayasaka, 
in press; Worsley submitted). A “phantom” simulation ba-
sically consists in generating a lot of smooth random regres-
sion coefficients, in hiding a “phantom” in them (i.e., a 
known signal – usually a disc or a Gaussian), in attempting 
to detect the “phantom” with various statistical tests, and in 
deriving, per statistical test, a measure of accuracy such as a 
d-prime or a ROC area. We singled-out “phantom” simula-
tions for a reason: If we were to compare the accuracy of 
various statistical tests for the detection of a “phantom” 
template (e.g., used by a Linear Amplifier Model) in a 
smooth classification images this is exactly what we would 
have to do. In other words, these “phantom” simulations 

inform us just as much about the accuracy of RFT for fMRI 
data than about its accuracy for classification images. 

To summarize these accuracy assessments: The p-values 
given by RFT appears to be more accurate than those given 
by the Bonferroni, the Hochberg, the Holm, the Sidák and 
the False Discovery Rate provided that the size of the search 
space is greater than about three times that of the FWHM 
(Hayasaka & Nichols, 2003), that the FWHM is greater 
than about 5 pixels (Taylor, Worsley, & Gosselin, 
submitted) and that the degree of freedom is greater than 
about 200. Also, the Cluster test is more sensitive and less 
specific than the Pixel test. 

Re-analyzing representative 
classification images 

In the final section of this article, we apply the Pixel 
and Cluster tests to classification images representative of 
the literature from Gosselin and Schyns (2001) and Seku-
ler, Gaspar, Gold & Bennett (2004). We give sample com-
mands for the Stat4Ci Matlab toolbox throughout. 

Matlab implementation 
A mere four pieces of information are required for the 

computation of the significant regions using the Pixel and 
the Cluster tests: a desired p-value, a threshold t (only used 
for the Cluster test), a search space, and the FWHM – or, 
equivalently, the sigma – of the Gaussian kernel used to 
smooth the classification image. The main function from 
the Stat4Ci Matlab toolbox – StatThresh.m – inputs this 
information together with a suitably prepared classification 
image (i.e., smoothed and Z-transformed), performs all the 
computations described above, and outputs a threshold for 
the Pixel test as well as the minimum size of a significant 
cluster for the Cluster test. The StatThresh.m function makes 
extensive use of the stat_threshold.m function, which was 
originally written by Keith Worsley for the fmristat toolbox. 
 t size resels Zmax x y 
 ----------------------------------------- 
C [2.70] 970 0.44 4.17 122 129 
 [2.70] 917 0.41 3.95 162 129 
 ----------------------------------------- 
P 3.30 - 
p-value = 0.05 
FWHM = 47.1 
Minimum cluster size = 861.7 

Figure 2. Sample summary table produced by DisplayRes.m 
(from the re-analysis of classification images from Gosselin and 
Schyns, 2001; see next section). The numbers between brackets 
were set by the user. C = Cluster test; P = Pixel test; t = thresh-
old; size = size of the cluster; Zmax, x and y = maximum Z-score 
and its coordinates. 

Other functions included in the Stat4Ci toolbox per-
form a variety of related computations: e.g., ReadCid.m 
reads a Classification Image Data (CID) file; BuildCi.m con-
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structs classification images from a CID file; SmoothCi.m 
convolves a raw classification image with a Gaussian filter; 
ExpectedSCi.m computes the expected mean and standard 
deviation of a smooth classification image (see Appendix: 
The construction of a classification image); ZTransSCi.m Z-
transforms a smoothed classification image (see Equation 9 
and Appendix: The construction of a classification image); 
DisplayRes.m displays the thresholded Z-transformed 
smooth classification image and ouputs a summary table 
(see Figure 2). All of these functions include thorough help 
sections. 

Sekuler, Gaspar, Gold and Bennett 
Sekuler, Gaspar, Gold and Bennett (2004) examined 

the effect of face inversion on the information used by hu-
man observers to resolve an identification task. Four classi-
fication images extracted using reverse correlation are re-
analyzed: one for each combination of two subjects (MAT 
and CMG) and two conditions (UPRIGHT and 
INVERTED). Each classification image cumulates the data 
from 10,000 trials. We will not further describe this ex-
periment. Rather we will limit the presentation to what is 
required for to application of the Pixel and Cluster tests. 

First, the raw classification images must be convolved 
with a Gaussian filter, i.e. smoothed. The choice of the ap-
propriate Gaussian filter depends essentially on the size of 
the search space (see Worsley, submitted, for a discussion). 
We chose a Gaussian filter with a standard deviation of σb = 
4 pixels; its effect are similar to those of the filter used by 
Sekuler, Gaspar, Gold and Bennett (2004). Second, the 
smooth classification images must be Z-transformed. This 
can sometimes be achieved analytically (see Appendix: The 
construction of a classification image). However, if the 
number of trials is greater than 200 – as is usually the case 
with classification images – the Z-transformation can be 
approximated as follows: 

ZSCi =
SCi ! SCi

"
SCi

, (9) 

where the mean and standard deviation are estimated di-
rectly from the data, preferably from signal-less regions of 
the classification images (e.g., regions corresponding to a 
homogeneous background). In the Stat4Ci toolbox, classi-
fication image preparation can be done as illustrated in 
Figure 3. 

 

SCi = double(imread('GenderCi.tiff')); 
sigma_b = 20; %std of smoothing filter 
S_r = double(imread('faceMask.tif')); 
 
vecSCi = SCi(eq(S_r,0)); 
ZSCi = ZTransSCi(SCi,... 
   [mean(vecSCi(:)),std(vecSCi(:))]); 
ZSCi = ZSCi .* S_r; 
 
p = .05; %p-value 
tC = 2.7;  %threshold (for Cluster test) 
Res = StatThresh(ZSCi,p,sigma_b,tC,S_r); 
 
background = double(imread('w1H.JPG')); 
tCi = DiplayRes(Res,background); 

Figure 3. Sample commands for the Stat4Ci Matlab toolbox 
(from the re-analysis of classification images from Gosselin and 
Schyns, 2001). 

Once the classification image has been smoothed and 
Z-transformed, it must be inputted into the StatThresh.m 
function together with the four additional required pieces 
of information: a p-value (p ≤ .05), the sigma of the Gaus-
sian filter used during the smoothing phase (σb = 4 pixels 
for this re-analysis), a threshold for the Cluster test (equal to 
2.7 for this re-analysis) and a search space (i.e., the face re-
gion). 

 

Figure 4. Sekuler, Gaspar, Gold and Bennett’s (2004) classifica-
tion images re-analyzed using the Stat4Ci Matlab toolbox. 

The statistical threshold obtained using the Pixel test is 
very low compared with that obtained using the Bonferroni 
correction (i.e., 3.67 rather than 4.5228; see section The 
Bonferroni correction). In fact, the stat_threshold.m function 
outputs the minimum between the Bonferroni and the 
Pixel test thresholds. Figure 4 displays the thresholded clas-
sification images for both the Pixel and Cluster tests. For the 
Cluster test, only the clusters larger than the minimum size 
(i.e., 66.6 pixels) are shown. Red pixels indicate the regions 
that attained significance in the UPRIGHT condition; 
green pixels, in the INVERTED condition; and yellow pix-



Journal of Vision (2005) 5, 1-3 Smith & Jones 6 

 

els, in both. A face background was overlaid to facilitate 
interpretation. 

Gosselin and Schyns 
Gosselin and Schyns (2001, Experiment 1) examined 

the information used by human observers to resolve a 
GENDER and an expressive vs. not expressive (EXNEX) 
face discrimination task. They employed the Bubbles tech-
nique to extract two classification images per observer, one 
per task. Each of the two classification images re-analyzed in 
this section combines the data from 500 trials executed by 
subject FG. The classification images can be built either 
from the opaque masks punctured by Gaussian holes and 
applied multiplicatively to a face on each trial, or from the 
center of these Gaussian holes. The former option naturally 
results in smooth classification images; and the latter op-
tion calls for smoothing with a filter, just like the classifica-
tion images of Sekuler, Gaspar, Gold and Bennett (2004). 
For this re-analysis, we used a Gaussian filter identical to 
the one used to sample information during the actual ex-
periment (σb = 20 pixels). In this case, both options are 
strictly equivalent. These smooth classification images (see 
SCi in Figure 3) were Z-transformed using Equation 9 with 
estimations of the expected means and standard deviations 
based on the signal-less pixels outside the search region (see 
S_r in Figure 3). 

Next, the Z-transformed smooth classification image 
(see ZSCi in Figure 3) is inputted into the StatThresh.m 
function with the four additional required pieces of infor-
mation: a p-value (p ≤ .05), the sigma of the Gaussian filter 
used during the smoothing phase (σb = 20 pixels for this re-
analysis), a threshold for the Cluster test (equal to 2.7 for 
this re-analysis – see tC in Figure 3) and a search space (see 
S_r in Figure 3). See Figure 3 for all the relevant Stat4Ci 
toolbox commands. 

Again, the statistical threshold obtained using the Pixel 
test is extremely low compared with that obtained using the 
Bonferroni correction: 3.30 rather than 4.808 (see section 
The Bonferroni correction). Figure 5 displays the thresh-
olded classification images for both the Pixel and Cluster 
tests. For the Cluster test, only the clusters larger than the 
minimum size (i.e. 861.7 pixels) are shown. Red pixels in-
dicate the regions that attained statistical significance. A 
face background (see background in Figure 3) was overlaid to 
facilitate interpretation. 

 

Figure 5. Two of Gosselin and Schyns’ (2001) classification im-
ages re-analyzed using the Stat4Ci Matlab toolbox. 

Take-home message 
We have presented two statistical tests suitable for 

smooth, high-dimensional classification images, in the ab-
sence of a priori expectations about the shape of the signal. 
The Pixel and the Cluster tests, based on Random Field The-
ory, are accurate within known boundaries discussed in the 
article. These tests require only four pieces of information 
and their computation can be performed easily using the 
Stat4Ci Matlab toolbox. We expect these tests to be most 
useful for researchers applying Bubbles or reverse correlation 
to complex stimuli. 
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Appendix: The construction of a 
classification image 

In a reverse correlation or Bubbles experiment, an ob-
server is presented with a noise field on trial i (i = 1, ..., n) 
and produces the response Yi. 

At a particular pixel v, we suppose that some feature of 
the noise field, Xi(v), is correlated with the response. In a 
reverse correlation experiment, Xi(v) might be the added 
noise at pixel v; in a Bubbles experiment, Xi(v) might be the 
actual bubble mask at pixel v. We aim to detect those pixels 
where the response is highly correlated with the image fea-
ture of interest. The sample correlation at pixel v is 

C v( )=
X
i
v( ) ! X v( )( ) Yi ! Y( )

Xi v( ) ! X v( )( )
2

i

" Yi !Y( )
2

i

"i

" , (10) 

where bar indicates averaging over all n trials. It is straight-
forward to show that if there is no correlation between im-
age features and response, then 

 

Z v( )=
n-2C v( )

1!C v( )
2
! nC v( )  (11) 

has a Student-t distribution with n-2 degrees of freedom 
provided Xi(v) is Gaussian, but in any case n is usually very 
large so the standard normal distribution will be a very 
good approximation, by the Central Limit Theorem. 

Provided that ∑Xi=0 and ∑Yi=0, the ZTransSCi.m func-
tion from the Stat4Ci toolbox implements Equation 10. In 
this case, the numerator is simply the sum of all the noise 
fields weighted by the observer’s responses. The remaining 
term in C(v) can be approximated if Xi(v) is white noise 
Wi(v) (i.e. independent and identically distributed noise at 
each pixel) convolved with a filter f(v), that is if 

Xi v( ) = f v! u( )Wi u( )
u

" . (12) 

In the case of reverse correlation, Wi(v) is usually a 
Gaussian random variable and often there is no filtering, so 
f(v) is zero except for f(0)=1. In the case of Bubbles, Wi(v) is a 
binary random variable taking the value 1 if there is a bub-
ble centered at v, and 0 otherwise. The 

 

Xi v( ) ! X v( )( )
2

! n"
2

f v( )
2

u

#
i

# , (13) 

where σ2 is the variance of the white noise. For reverse cor-
relation, σ2 is the variance of the Gaussian white noise. For 
Bubbles it is the Binomial variance 

 

! 2 =
Nb

N
1"

Nb

N

#
$%

&
'(
!
Nb

N
, (14) 

where Nb is the number of bubbles and N is the number of 
pixels. 

The Central Limit Theorem ensures that, at the limit, 
Z(v) is a Gaussian random field with an effective FWHM 
equals to the FWHM of the filter f(v). The rate of conver-
gence toward Gaussianity depends partly on the predictive 
variable and partly on the total number of bubbles per Re-
sels. Worsley (in preparation) has examined the exactness 
of the p-values given by the Gaussian procedures presented 
in this article in function of these two factors: At 10,000 
bubbles per Resels, the p-values given by the Gaussian 
procedures depart from the true p-values by less than +/- 
0.04 logarithmic unit; at 500 bubbles per Resels, a figure 
more often encountered in practice (e.g., Gosselin & 
Schyns, 2001), the discrepancy can be as much as +/- 0.3 
logarithmic unit. If the predictive variable has a positively 
skewed distribution, the Gaussian procedure is liberal; and 
if it has a negatively skewed distribution, as is usually the 
case in practice (e.g., Gosselin & Schyns, 2001), the 
Gaussian procedure is conservative. 
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