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Montréal QC, H3C 3J7, Canada and 5Department of

Neurocognition, Faculty of Psychology, Maastricht University,

6200 MD Maastricht, the Netherlands

Face perception is a complex process involving a network of brain
structures, dynamically processing information to enable judgments
about a face to be made (e.g., familiarity, identity, and expression).
Here we introduce an analysis methodology that makes it possible
to directly study this information processing in the brain from
spatially and temporally resolved magnetoencephalographic sig-
nals. We apply our methodology to the study of 2 face cate-
gorization tasks, gender and expressiveness, and track the
processing of 3 key visual features that underlie behavioral
performance, over time and throughout the cortex. We find
information processing correlates beginning from 90 ms following
stimulus onset, where features are processed in isolation in
occipital extrastriate regions. Over time, processing of successively
more features and feature combinations takes place in occipito-
temporal regions, with maximal information processing of visual
information coinciding with the well-established face-selective
M170 component at 170 ms. Later still, around 250--400 ms, cortical
activity responds significantly more to task-specific features and
their complex combinations. These results indicate a complex
process of visual information processing during face perception
with face parts processed in isolation at very early stages, and
task-specific processing of combinations of features taking place
within 300 ms. Crucially, our approach specifically establishes
which information in the visual stimulus the brain signal is
responding to and how this varies with time, cortical location,
and task demands to establish a more precise tracking of
information processing mechanisms in the cortex during face
perception.
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Introduction

In the search for a deeper understanding of the workings of the

human brain, researchers are increasingly looking to brain

imaging methods to provide the answers. Thanks to these

methodologies the framework of distributed processing net-

works has emerged (Haxby et al. 2001), with neuronal

oscillations potentially playing an important role for interac-

tions among network nodes (Varela et al. 2001; Fries 2005). Of

critical importance in understanding the functional role of

these networks is to establish the information that they process

and how this information is distributed and transferred

throughout the different brain areas involved (Sheng et al.

2007). Through the careful control of cognitive parameters

during experimentation and by making use of advanced

multivoxel pattern analysis methods, considerable insight into

what information is represented by the brain has been possible

(for a review, see Norman et al. 2006). However, although

subtle differences in experimental conditions (e.g., a happy vs.

a fearful face) may tell us which brain areas respond to

a particular condition, they cannot inform us about the

information processing that subsumes these critical catego-

rizations. For example, What visual information is being

extracted? Where in the brain is this taking place? Is the

information processing content of a particular brain region

changing over time? Is the same information extracted by

a particular brain region irrespective of task? or is it extracted as

a function of its diagnosticity for the task (Schyns et al. 1998)?

Here we sought to address these questions by establishing an

analysis methodology that allows us to ascribe specific in-

formation processing content to temporally and spatially re-

solvedmagnetoencephalography (MEG) signals. In essence, with

centimeter and millisecond precision, we decode the brain

activity into the underlying stimulus information and track how

this processing evolves over time across the cortex. To illustrate

our approach, we apply it to facial expressiveness (happy vs.

neutral) and gender categorizations. Whereas traditional analysis

methods have established a network of brain regions that are

activated during face processing such as this, including bilateral

regions in the fusiform gyrus (FG), the superior temporal sulcus

(STS), occipital, and temporal regions (Haxby et al. 2000), here

we seek to establish the dynamics of information processing in

these regions during the 2 categorization tasks.

To accurately depict the dynamics of information processing

within the cortex, it is necessary to take into account the

complex relationship between the signals recorded on the

scalp (with an electroencephalography [EEG] electrode or

MEG sensor) and the underlying neuronal sources. As the scalp-

recorded signal constitutes the linear sum of the projections of

individual brain sources, potentially originating in different

regions throughout the cortex, it is not appropriate to simply

assume that the activity measured on a given electrode/sensor

can be directly attributed to the underlying cortical area

(Nunez and Srinivasan 2006). For applications of our approach

to single-sensor scalp EEG activity, see Schyns et al. (2003,

2007) and Smith et al. (2004, 2006, 2007). Determining the

cortical locations and independent activity of each individual

source is typically termed the EEG/MEG inverse problem and

a number of approaches to its solution have been proposed (for

a review, see Baillet et al. 2001). Beamforming methods in

particular are becoming increasingly popular as a means of

generating a so-called virtual electrode or spatial filter (Van

Veen et al. 1997; Robinson and Vrba 1999; Gross et al. 2001).

This virtual electrode can then be placed at any number of

different locations within the cortex to accurately estimate the
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time course of neuronal activity generated by each location in

turn. Here we will develop these methods to establish the

information processing of the cortical regions themselves and

track how this changes over time.

In order to establish the relationship between specific high-

level visual information and brain activity, we randomly

sampled the input image space with circularly symmetric

Gaussian apertures (Gosselin and Schyns 2001) to generate so-

called subsampled stimuli (see Fig. 1 for 2 such examples). By

randomly varying the positions of the apertures over a sufficient

number of trials, this sampling approximates a uniform random

sampling of the space and constitutes a viable solution to the

bias--variance dilemma (Smith et al. 2004). By relating the

locations of the random samples of information presented on

each trial with behavioral response, it is possible to reveal,

independently per subject and task, the visual information (i.e.,

the facial features) correlated with correct classifications of

faces by gender and expressiveness (see Gosselin and Schyns

2001; Schyns et al. 2003; and for more details, see Smith et al.

2004). Such planes of correlation coefficients are often called

classification images (CIs) (Eckstein and Ahumada 2002).

These random information samples can also be correlated

with any dependent variable (e.g., the brain signal measured by

a virtual electrode) to establish the sensitivity of that variable to

the input visual information space (see Fig. 2 for an outline of

the methodology). Using beamformer methods, we estimate

the single-trial activity at the nodes of a regularly spaced grid

throughout the cortex and establish this information sensitivity

mapping directly in the source space. This representation

depicts any significant systematic relationship between the

level of activity in the cortex and specific visual information.

Thus, for the first time, we can dynamically track the

processing of specific high-level visual information directly

within the cortex.

Materials and Methods

Subjects
Four healthy paid volunteers (1 male, mean age 26, all right handed)

participated in the experiment. All subjects gave informed written

consent in accordance with the institutional guidelines of the local

ethics committee (Commissie Mensgebonden Onderzoek [CMO]

Committee on Research Involving Human Subjects, region Arnhem-

Nijmegen, The Netherlands) and the Faculty of Information and

Mathematical Sciences ethics committee (University of Glasgow, UK).

Experimental Setup
Participants were seated upright in the MEG recording system in

a magnetically shielded room. Visual stimuli, generated with Pre-

sentation 9.10 software, were presented using an LCD video projector

(60-Hz refresh rate) and back projected onto the screen using 2 front-

silvered mirrors. MEG data were continuously recorded using a whole-

head system with 151 axial gradiometers (Omega 2000, CTF Systems

Inc, Port Coquitlam BC, Canada). Head position with respect to the

sensor array was measured using localization coils fixed at anatomical

landmarks (the nasion and at the left and right ear canal). These

measurements were made before and after the MEG recordings to

assess head movements during the experiment. Participants were

instructed to maintain their head position as best they could within

recording blocks. In addition, horizontal and vertical electrooculograms

were recorded using electrodes placed below and above the left eye

and at the bilateral outer canthi. Electrode impedance was kept below

20 kX. MEG, electrooculography (EOG), and electrocardiography

signals were low-pass filtered at 300 Hz, sampled at 1200 Hz, and then

saved to disk. Subjects’ psychophysical performance was recorded by

means of key presses using a button box (LUMITouch).

For each subject, a full-brain anatomical magnetic resonance image

(MRI) was acquired using a high-resolution inversion-prepared 3D T1-

weighted scan sequence (flip angle = 15�; voxel size: 1.0 mm in plane,

256 3 256, 164 slices, time repetition = 0.76 s; time echo = 5.3 ms). The

anatomical MRIs were recorded using a 1.5-T whole-body scanner

(Siemens, Erlangen, Germany), with anatomical reference markers at

the same locations as the head position coils during the MEG

recordings (see above). The reference markers allow alignment of

the MEG and MRI coordinate systems, such that the MEG data can be

related to the anatomical structures within the brain.

Experimental Paradigm
On each experimental trial, we created subsampled versions of a set of

face stimuli (256 3 256 pixel gray-level images of 5 male and 5 female

actors each displaying happy or neutral expressions) by randomly

sampling visual information from the experimental stimulus using

Gaussian apertures (see Fig. 1 and Gosselin and Schyns 2001). All

photographs were taken under standardized conditions of illumination,

and hairstyle was normalized across faces to eliminate this feature (see

Fig. 1). Stimuli were projected on a light gray background to the center

Figure 1. Experimental procedure. On each trial, the visual information in a given stimulus is revealed through 9 randomly located Gaussian apertures. Over 4000 trials per task,
this random sampling approximates a uniform sampling of the input information space.
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of a screen fixed at a distance of 0.7 m from the participant (visual angle

4.77 3 3.58� forehead to chin).

A trial started with the 1000-ms presentation of a fixation cross,

immediately followed by a randomly selected face picture whose

information was revealed through nine 2D Gaussian apertures (sigma =
0.39� visual angle) randomly allocated across the face. On each trial,

these nine randomly located apertures make up a so-called bubble

mask. Pilot experiments have indicated that 9 apertures typically result

in 70--75% categorization accuracy across the 2 tasks. The subsampled

face remained on screen for 1500 ms and observers were instructed to

respond as quickly as possible without making mistakes by depressing

the appropriate labeled button of the appropriate response box. Upon

response, a blank gray screen replaced the face stimulus for 500 ms.

Subjects were instructed to maintain fixation in the center of the face

in the region of the fixation cross.

Subjects were asked to categorize these sparsely sampled images by

gender (male vs. female) in one 4000-trial session and expressiveness

(happy vs. neutral) in a second. Order of task was counterbalanced

across participants, and sessions were completed in blocks of 500 or

1000 trials up to a total of 2000 trials per day. Short breaks were

allowed every 100 trials. In total, the experiment lasted for approxi-

mately 6 hours per subject. The large number of trials per participant is

required in order to achieve a broadly uniform random sampling of the

stimulus space at a level of appropriate signal to noise with the MEG

recordings.

Behavioral Analysis
Subjects were on average 70% correct for the gender task (r = 7%) and

73% correct for the expressive or not task (r = 4%). The specific visual

information shown on each trial was sorted as a function of whether or

not it resulted in a correct response in the categorization task.

Observers will tend to be correct if the information necessary to

perform the task has been provided and inversely they tend to be

incorrect if this information is missing. Summing together the

information corresponding to correct categorizations and subtracting

the sum of all the information leading to incorrect responses results in

the behavioral CI. This is similar to performing a least-square multiple

regression. We transformed these CI pixel values to z scores using the

noninformative normalized hairstyle and forehead region as the baseline

distribution and thresholded for significance at P < 0.05 (2 tailed and

corrected for multiple comparisons within the image space; for details,

see Chauvin et al. 2005) to reveal the significant visual information used

to perform the gender and expressiveness categorizations.

MEG Preprocessing
MEG data were low-pass filtered offline at 40 Hz, and analysis epochs

were generated offline and extended from 200 ms prestimulus

presentation to 600 ms poststimulus. Epochs were scanned for eye

blinks, eye movements, muscle activity, and jump artifacts in the

SQUIDs using the FieldTrip analysis toolbox (Maris and Oostenveld

2007), implemented in MATLAB, and contaminated epochs removed

from further consideration. Note that the EOG rejection procedure will

reject rotations of the eyeball from 0.9� inward to 1.5� downward of

visual angle, when the stimulus spanned 4.77 3 3.58� of visual angle

from forehead to chin. On average, 5% of trials were rejected on the

basis of jump artifacts (signal disturbances in the MEG machine) and 6%

(standard deviation 1.5%) of trials rejected on the basis of EOG artifacts

(eye blinks and movement).

Source Space Analysis
We employed a linearly constrained minimum variance (LCMV)

beamformer approach (Van Veen et al. 1997; Vrba and Robinson

2000) to estimate the single-trial time course of activity at each node

(n) of a regularly spaced grid within the cortex (1 cm3) using FieldTrip

(Maris and Oostenveld 2007). For each node, a spatial filter was

constructed that passes activity originating from this location with

unity gain while attenuating activity originating at other locations

(Huang and Mosher 1997; Robinson and Vrba 1999). We used

a multispherical volume conductor model to compute the forward

model of a dipole source at the node point location of interest. We did

this by fitting a sphere to the head surface (derived from each

individual structural MRI) underlying each sensor (Vrba and Robinson

2000). The beamformer filter weights were computed from the

covariance matrix of the averaged event-related magnetic field in each

recording session (1000 [or 500]-trial block) in 2 time windows:

75--225 and 225--400 ms following stimulus onset. Averaging the single

trials in this way can improve performance of the beamformer as it

reduces the noise variability but not the temporal variability in the

signal (Van Veen et al. 1997). As the signal covariance in this low noise

condition can be ill conditioned, a small regularization term was

included in the computation (for more details on the specifics of the

algorithms, see Van Veen et al. 1997). Individual trial data were then

beamed through the appropriate spatial filter to give 3 time courses (x,

y, and z orientation) at each node of the grid for each experimental

trial. Each node point can be thought of as a virtual electrode created

by the beamforming process.

Our initial beamformer analysis considered all regions of the cortex

in order to establish without any a priori assumption those regions

contributing to our signal. However, it would be both impractical and ill

advised to further analyze all 2800 voxels for their information

processing content. As the beamformer analysis is most reliable at the

voxels corresponding to maximum activation (Van Veen et al. 1997),

we chose to analyze only those voxels corresponding to high-power

activation across all sessions and both tasks in each subject in order to

Figure 2. Leftmost: MEG analysis procedure. For each voxel (or sensor) at a given time point (e.g., 200 ms), we build a distribution of amplitude values elicited on all correct,
nonartifact trials. Information samples leading to an amplitude response in the top 40% or bottom 40% of the distribution are summed separately, and the CI corresponds to the
difference of the two. Center: The CI is thresholded (P\0.05, corrected), for significant regions. In this example, significant correlations between the MEG signal and the left eye,
right eye, and mouth are observed. Templates corresponding to these 3 key features were generated and are depicted superimposed onto one sample stimulus image. Rightmost:
The significant visual features are compared (normalized intersection) with the feature templates, resulting in a FS time course. Randomized permutation tests result in separate
significance thresholds for each feature.
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establish the voxels of interest. We chose to collapse the analysis across

tasks as the scalp-recorded sensor topographies for each task were

virtually identical (see Supplementary Materials for more details). In

addition, by considering the same voxels in each task, we can make

direct comparisons of the processing in a given region when subjects

perform one task or the other. Specifically, from the filter weights, we

computed one power map per time window and recording session. For

each subject, we then averaged these maps across all recording sessions

and the 2 tasks and thresholded them with respect to baseline activity

(P < 0.1). Only those voxels passing the threshold are considered for

further analysis, now performed independently per task. Please note

that the selected voxels are not necessarily the same in the first (75--

225 ms) and second (225--400 ms) time windows.

To estimate the visual features correlated with variations in the signal

at each voxel, we derived an independent CI for every measurement

time point (ti) and every voxel location within the significantly

activated regions (si) to determine the features discriminating between

low and high activity at that location and time point. To this end, for

a given voxel and time point, we built a distribution of the MEG

amplitude values established for that voxel at the given time point

across all correct trials of a particular task. The specific visual

information sampled on each trial was then ranked as a function of

the activity elicited across trials at the voxel and time point of interest.

Summing all the information corresponding to the top 40% of the

distribution and subtracting the sum of all the information correspond-

ing to the bottom 40% of the distribution resulted in one MEG CI (si,ti).

For each participant, MEG CIs at each voxel and time point were

linearly combined across all sessions of the same task.

To establish those features that were significantly correlated with the

MEG voxel activity, we transformed the CI pixel values to z scores using

the noninformative normalized hairstyle and forehead region as the

baseline distribution. We term any cluster of connected pixels with

a value greater than a P <0.05 significance threshold criterion (2 tailed

and corrected for multiple comparisons within the image space, for

details, see Chauvin et al. 2005) a ‘‘feature.’’ Figure 2 illustrates this

procedure going from the single-voxel MEG signal in response to the

subsampled stimuli to a MEG CI representing the statistically significant

visual information associated with modulations in the signal amplitude

(this figure also illustrates further analysis steps which we will return to

shortly). Repeating this analysis across all voxels and time points results

in a set of MEG CIs that detail any statistically significant visual

information that is systematically correlated with the MEG signal.

Critically, in this application, the use of the spatial filter maximizes the

chance that the resulting representation of the dynamics of information

processing corresponds to the activity in one cortical region only.

We chose the time-domain LCMV beamformer implementation in

particular (as opposed to the frequency domain, e.g., Dynamic Imaging

of Coherent Sources [DICS], Gross et al. 2001), as we wanted to retain

the maximum time resolution within the data set. Further, we elected to

use a linear beamformer implementation that allowed the orientation of

the source to vary with time as opposed to nonlinear methods that select

the source orientation to maximize beamformer output (e.g., synthetic

aperture magnetometry, Robinson and Vrba 1999; Vrba and Robinson

2000). With this linear approach, we are then able to investigate

information sensitivity as a function of source orientation over time.

Visual Feature Coding
In order to reduce the very high dimensionality of the source results’

space (e.g., per task we have approximately 500 voxels 3 206 time

points = 103 000 CIs each containing 256 3 256 correlation

coefficients), 3 key features were established from the visual in-

formation according to their importance for correct behavioral

classification. For the gender and expressiveness tasks considered in

these studies, the 3 features are the left eye, the right eye, and the

mouth (see Fig. 5 and for more information on behavioral studies, see

Gosselin and Schyns 2001). Reference templates (RT) were generated

to cover the extent of these 3 features across all example stimuli in the

set (see Fig. 2 for the templates). The statistically thresholded MEG CIs

were then compared with each of the RT to project each MEG CI into

this 3D orthogonal feature subspace as follows:
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ðf ; pÞ in source space;

where f represents the 3 features; t, the time points; p, the individual

pixels in the image space; and n, the individual nodes in the source

space. Values of this ‘‘feature sensitivity,’’ FS, range from zero, indicating

no overlap between features in the RT and the CI, to one, indicating

complete overlap.

At each time point and location, we represent the FS values for the 3

chosen reference features, that is, the values of the overlap between

each CI and the 3 RT, as the 3 coefficients in a red green blue (RGB)

color space (the left eye in red, the right eye in blue, and the mouth in

green). In this way, the processing of multiple features is coded by the

appropriate color combination (i.e., the 2 eyes in purple, the left eye

and the mouth in yellow, the right eye and the mouth in turquoise, and

all 3 features in white, see Fig. 3). For each voxel, the FS was computed

independently for the 3 dipole orientations and the resultant vector

length computed to obtain one measure for each voxel.

Randomized Permutation Tests
To establish the probability with which FSs could arise as a result of

a chance correlation between the bubble masks and the signal strength,

we computed permutation tests independently for each task and each

participant, taking only those bubble masks used in the MEG analysis

(i.e., corresponding to correct, nonartifact trials). To this end, on each

one of 30 900 iterations (to match the number of sensor space CIs, see

Supplementary Materials for more details), we randomly rearranged the

mapping between the trial number and the corresponding bubble mask

in order to disrupt the mapping between visual information and MEG

amplitude. With this new random mapping, we generated an MEG CI as

before (sum of the bubble masks associated, now randomly, with the

top 40% of signal amplitudes minus the sum of those bubble masks

randomly associated with the bottom 40% of signal amplitudes). This CI

was then thresholded for significance as before (P < 0.05, 2 tailed) and

projected into the 3-feature subspace. From the distribution of FS

measures across the iterations, we established an independent

threshold for each feature corresponding to the maximally obtained

FS occurring by chance in over 30 000 iterations and thresholded our

values accordingly.

Feature Overlap Measure

To establish the extent to which different cortical regions are

processing each of these 3 key features in isolation or processing

different sets of features (in isolation or concurrently), we computed

a feature overlap measure. At each time point, we established the

number of voxels whose CI significantly represented a given feature

combination and normalized by the maximum number of voxels

responding to any feature in the entire time period.

It is important to note that the current application of bubbles

technique does not distinguish between a region that is processing

combinations of features concurrently and a region which is capable of

processing different individual features at different times (i.e., the

distinction between a region that only responds when both eyes are

present vs. a region that can process each of the eyes in isolation or

together, but for such applications, see Schyns et al. 2002; Smith et al.

2004). To fully investigate, second- and third-order cortical processing

would require significantly more trials thanwe have in the present study.

Behavioral Sensitivity Measure

To establish the extent to which cortical regions are processing only

the behaviorally relevant information, we computed a behavioral

sensitivity measure. In an analogous way to the FS measure, we

computed the intersection of the thresholded MEG CIs with a RT.

However, in this case, the RT was the thresholded behavioral CI. For

example, for subject 1, the gender template comprised regions around

both eyes and the mouth and the expressiveness template included

a large area around the mouth, though biased to the left hand side (see

Fig. 5, behavioral processing). To estimate the evolution of this measure

over time, we determined the number of voxels corresponding to
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significant behavioral sensitivity at each time point and depicted the

integrative sum of this value over time.

Results

Four participants each completed 4000 trials of the gender and

4000 trials of the expressiveness tasks in eight 2-h recording

sessions. Participants were on average 70.4% correct in the

gender categorization (r = 7%) and 71.7% correct in the

expressiveness (Exnex) categorization (r = 6%). Behavioral

analysis (see Materials and methods) revealed that all 4

participants used information from the mouth area to correctly

categorize the faces by expression and information from the

eyes to correctly categorize gender (see behavior images on

Fig. 5 and Supplementary Figs 9--11). In addition, 3 out of 4

participants also used some information from the mouth region

when judging gender. In order for the participant to perform

correctly in each task, their brain must process at least the

behaviorally relevant visual information at some point between

stimulus onset and behavioral response.

To encompass the activity underlying 3 well-established

face-selective responses, we computed virtual electrode single-

trial activity in 2 time windows: 75--225 and 225--400 ms. The

first window encompasses both the P100/M100 and the N170/

M170 components occurring at 100 and 170 ms in EEG/MEG,

respectively. The second time window includes the neural

activity making up the P300/M300 component (existing from

250 ms onward). Supplementary Figure 1 illustrates the cortical

locations of maximum power for each subject computed for

each of the time windows. Power is averaged across tasks and

recording sessions for each subject and is illustrated with

respect to baseline activity (thresholded at P < 0.1). For all

subjects, activity in the earlier time period was localized

bilaterally in lateral occipital cortex, and there is a trend for

a stronger right occipitotemporal distribution that varies across

subjects. Additional activity was also localized to midline

occipital cortex (early visual areas) in 3 subjects. For the later

time window (see Supplementary Fig. 2), activity was more

central, extending to occipitoparietal regions for 3 subjects and

was right lateralized in the fourth.

To depict information processing within the cortex, we

projected the CIs computed at each activated voxel and for

each time point into a feature coding subspace (see Materials

and methods, Visual feature coding). This subspace comprised

3 orthogonal bases corresponding to the 3 key visual features

required to perform the 2 tasks as established from the

behavioral results. We code processing of each feature as one

color in an RGB color space with the left eye coded in blue, the

right eye coded in red, and the mouth coded in green.

Simultaneous processing of more than one feature by

a particular cortical region is represented by the appropriate

color code combination (e.g., processing of the 2 eyes would

be coded in magenta).

Information processing of the activated cortical regions is

shown for one example subject in Figures 3 and 4 for the

gender and expressiveness tasks, respectively. Results are

shown for 4 time periods in the early time window and 4 in

the later time window centered on 120, 140, 160, 180, 240,

260, 280, and 300 ms. Supplementary Figures 3--8 illustrate

equivalent results for the remaining 3 subjects. For the first

subject (Fig. 3), clear differences in the information being

processed can be observed across time, brain regions, and

between the 2 tasks.

To facilitate the interpretation of these results across the 4

subjects, we created a schematic illustration of the different

information processing content at 3 specific time points,

corresponding to the M1, M170, and M300 components, as

shown in Figure 5 for subject 1 and Supplementary Figures 9--

11 for subjects 2, 3, and 4. At the first time point, 120 ms

following stimulus onset, information processing is confined to

occipital regions and primarily comprises processing of the 3

key features in isolation. However, even at this very early time

point, some task-specific processing of features is taking place.

By 180 ms following stimulus onset, the information processing

is much more widespread, extending into occipitotemporal

regions and involves more regions responding to combinations

of features. At the final time point (280--300 ms), marked

differences in the visual information being processed are clear

both with respect to the earlier time points and across the 2

tasks. Specifically, in all subjects by 300 ms, information

processing is more complex with regions of occipital cortex

processing all 3 features in 3 out of the 4 subjects in the gender

task (e.g., in Fig. 3, at 280 ms, on slice 8 the white regions

correspond to significant processing of all 3 features in the

same voxel).

To investigate the time course of information processing in

more detail, 2 further analyses were performed (see Materials

and methods, Feature overlap measure and Behavioral sensitiv-

ity measure for full details). First, we computed the proportion

of significantly activated voxels responding to 1) any one

feature in isolation (left eye, right eye, or mouth); 2) any

combination of 2 features (2 eyes, left eye and mouth, and right

eye and mouth); and 3) all 3 features. Plotting the evolution of

this feature overlap measure over time in Figure 5 for subject 1

and Supplementary Figures 9--11 for the remaining 3 subjects,

a number of interesting points become clear. Feature process-

ing begins with isolated features at 83 ms following stimulus

onset [r(8) = 9.5 ms], followed by processing of 2 features at

115 ms [r(8) = 18 ms], and in the gender condition only this is

followed by processing of all 3 features at 133 ms [r(4) = 19

ms]. So that in all 4 subjects, processing of 3 features begins

significantly later than processing of 2 features [t(3,Gender) =
2.37, P (1 tail) = 0.049], which occurs significantly later than

processing of individual features [t(3,Gender) = 2.59, P (1 tail) =
0.04; t(3,Exnex) = 2.75, P (1 tail) = 0.035]. As feature processing

builds in complexity over time, it also expands in space as more

voxels become significantly correlated with visual information.

In the first time window, this expansion reaches its peak 170

ms following stimulus onset [r(8) = 17 ms], after which time

the number of voxels significantly correlated with any of the 3-

feature drops.

In the later time window, the differences in processing

across the 2 tasks become even more apparent. Processing in

the expressiveness task continues to be dominated by single

features (typically the mouth) with virtually no processing of all

3 features by the same cortical regions. In the gender task,

however, processing of 2 or more features by the same cortical

regions grows, so that significantly more voxels are responding

to all 3 features in the second time window compared with the

first [t(3) = 7.37, P (2 tail) = 0.005].

Although this analysis provides a useful insight into the

dynamics of information processing, the specifics of the visual

information being processed are lost. For this reason, we
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performed a second analysis to establish the extent to which

the information being processed relates to the behaviorally

relevant information. Figure 5 and Supplementary Figures 9--11

depict the cumulative correlation of the information estab-

lished to be diagnostic for behaviorally relevant with the

information significantly modulating cortical activity in occip-

ital and temporal regions. In all 4 subjects, processing of

behavioral information increases throughout the first and

second time periods and in 7 of the 8 comparisons, more

behavioral information is processed in the later time period

(after 225 ms) than the earlier (before 225 ms).

Discussion

Our main objective was to examine the information processing

of the cortical activity underlying face-sensitive neuronal

responses in 2 face categorization tasks. To this end, we

performed a LCMV source reconstruction of our MEG data in 2

Figure 3. Top row: The information used by subject 1 to correctly categorize the face stimuli by gender. Remaining images: Sensitivity to 3 key visual features (the right eye
coded in red, the left eye coded in blue, and the mouth coded in green) and their combinations in those brain regions corresponding to significant power localizations, in 10-ms
time steps. White arrows highlight regions processing all 3 features, coded in the color white.
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temporal periods encompassing the M100, M170, and M300

face-specific responses (Liu et al. 2000, 2002; Tanskanen et al.

2007). Using this source model as a spatial filter, we extracted

the single-trial activity time courses for all significant voxels

and mapped out the information processing underlying this

activity. To perform this information mapping, we established

a novel methodology that combined the information sampling

approach of bubbles with the spatially and temporally defined

neuronal activity. The method works by sparsely sampling the

input stimulus space (visual in our application, though other

stimulation modalities are equally applicable) and correlating

the specific information available to the participant on each

trial with modulations in the recorded brain signal.

It is important to note that each CI is computed as

a weighted sum of exactly the same bubble masks (i.e., the

different sets of Gaussian apertures used to sample the face

on each trial). It is by changing this weighting, as a function of

the relationship between the information presented on a given

trial and the resulting signal modulation, that statistically

significant features appear. So that for one voxel and time

point, the CI might reveal a sensitivity to the left eye while at

the same time on another sensor a sensitivity to the right eye.

If no strong relationship exists between the visual information

and the measured signal, the resulting CI will be noise and

will not result in any visual features passing the significance

test.

Figure 4. As Figure 3 for the expressiveness task.
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We have introduced an analysis methodology that makes it

possible to directly study the brain in terms of the specific

stimulus information being processed and demonstrated its

applicability on a real data set. In essence, we can provide both

spatially and temporally ‘‘a window on the brain’’ and take the

first steps to considering the brain as an information processing

mechanism. We successfully applied our new methodology in 4

participants by considering 2 face categorization tasks and 3

well-established face-specific brain responses. We found that

we could track the processing of 3 key visual features (the left

Figure 5. Top row: Schematic representation of the information processing taking place in the brain at 3 time points for subject 1 in the gender task. Directly below: Feature
overlap measures depicting the proportion of information-sensitive voxels processing single features (dotted line), combinations of any 2 features (dashed line), and all 3 features
(full line) from 100 to 330 ms. Middle row and directly below: Schematic representation of information processing and feature integration measures for the expressiveness task.
Bottom row: Evolution over time of the processing of behaviorally relevant visual information in the gender (o) and expressiveness tasks (þ). Information underling correct
behavioral performance is also shown.
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eye, the right eye, and the mouth) over time and throughout

the cortex. We distinguish between an early time period in

which feature processing is primarily independent and later-

alized in occipital and occipitotemporal cortices and a later

time period in which visual information is processed more as

a function of task demands (mouth for expressiveness judg-

ments and 2 eyes plus mouth for gender judgments). In this

latter time period, processing of visual information becomes

more complex with the same region processing combinations

of features in the gender task (e.g., 2 eyes and 2 eyes plus

mouth).

The present approach represents a major extension of our

previous studies, which focused on scalp-recorded single-

electrode analysis. Our current findings fit well with these

earlier results of the contralateral eye processing around the

N170 on low occipitotemporal electrodes (e.g., Smith et al.

2004, 2007) and also of latter task-specific feature processing in

midline parietal regions (e.g., Smith et al. 2004, 2006).

However, this new approach, which considers all activated

regions of cortex as opposed to a few key sensors on the scalp,

provides a more detailed picture of the visual information

processing in the brain. By segmenting the different modes of

information processing, for example, as a function of different

features, specific combinations of features (e.g., Smith et al.

2004), and/or specific spatial frequency content (e.g., Smith

et al. 2006), we can further enable the understanding of the

cortical networks subtending the categorization of visual

stimuli (for more details, see Schyns et al. 2008).

An important question remains: how do these findings fit

with current theories of face processing? It has been proposed

that the core of the human face-processing network consists of

3 bilateral regions in occipitotemporal visual extrastriate

cortices. These regions comprise the inferior occipital gyri,

lateral FG, and STS area and are each thought to be involved in

different aspects of face processing (Kanwisher et al. 1997;

Haxby et al. 2000; Ishai et al. 2005). Furthermore, face

processing is routinely associated with 3 electrophysiological

responses occurring in the 400 ms following presentation of

a face (the M100/P1, M170/N170, and M300/P2 in MEG/EEG,

respectively: Bentin et al. 1996; Liu et al. 2000, 2002; Henson

et al. 2003; Tanskanen et al. 2007). However, as yet it remains

unclear exactly how these components relate to each other, to

the information being processed, and critically to the network

of face regions established by functional MRI (fMRI) studies.

Our results indicate that information processing begins

approximately 90 ms following stimulus onset and is associated

with the processing of single features, with little or no

processing of feature combinations. Processing at this time is

primarily localized to midoccipital and bilateral occipital

extrastriate regions, which comprise the lingual gyrus and

early visual areas (consistent with other MEG studies including

Halgren et al. 2000; Tanskanen et al. 2004). As time progresses,

processing of successively more features take place, with

maximal information processing coinciding with the well-

established M170/N170 component. By this time point,

processing differs across the 2 tasks, with processing of all 3

features occurring only in the gender task where this

information is required to perform correctly. Although it has

been shown that qualitatively different information from faces

is being processed 100 and 170 ms following stimulus onset

(Halgren et al. 2000; Liu et al. 2002; Tanskanen et al. 2004), for

the first time, we are able to quantify this information, relate it

specifically to task demands, and observe its evolution over

time using a realistic full-face stimulus.

EEG and MEG studies suggest that 3 functionally distinct

sources in the fusiform face area (FFA) (MEG studies, Deffke

et al. 2007; Henson et al. 2007), lateral occipital--temporal

regions (EEG studies, Shibata et al. 2002; Rossion et al. 2003),

and occipital regions (Itier et al. 2006) respond simultaneously

around 170 ms following the presentation of a face. These

sources correspond to 2 regions of the face-processing

network established with fMRI: the FFA (Kanwisher et al.

1997) and the occipital face area (OFA, Gauthier et al. 2000;

Ishai et al. 2005). Indeed, in our study, we find activity in

lateralized occipital and occipitotemporal regions correspond-

ing to occipital face-sensitive areas (see also Rossion et al.

2003). Localizations of activity in the later time window (after

225 ms) are less well characterized in literature and indeed

resulted in more variability across our subjects. In their

intracranial study, Allison et al. (1999) found activity around

290 and 350 ms in sites overlapping with or anterior to those

active at 200 ms following stimulus onset. This pattern of

activity was observed in the present study with some activity

extending into more centroparietal regions (see also Itier et al.

2006).

It has been proposed that face-selective responses in

occipital areas are driven by feedback connections from the

FFA, which potentially guides the extraction of fine-grained

visual information necessary for face processing (Gauthier

et al. 2000; Rossion et al. 2003). This raises the intriguing

possibility that the activity observed in the later time

period is a reactivation of OFAs with more specific instructions

on the information to process (Itier et al. 2006). Certainly, our

findings support the conclusion that activity after 240 ms

involves significantly more processing of complex visual

information than in the preceding time interval and is

increasingly contributing to the processing of task-specific

information.

This methodology opens the door to the prospect of

studying the evolution of the information processing sensitivity

of key brain regions with millisecond temporal resolution

during complex perceptual and cognitive tasks. For example,

one could imagine studying facial expression categorization

and tracking the brain signal sensitivity to the diagnostic visual

information for each category (e.g., 2 wide-open eyes of fear,

the broad smile of happy, and the wrinkled nose of disgust,

Smith et al. 2005; Schyns et al. 2007) as it flows across the

cortex and within specialized brain regions. Further extensions

to this approach will extend it to other stimulation domains

(e.g., auditory signals) and to the inclusion of information

sampling across visual spatial frequency channels (Gosselin and

Schyns 2001, Smith et al. 2006), to inform as to the sensitivity of

cortical regions proposed to be involved in the differential

processing of high-- and low--spatial frequency information

(Rotshtein et al. 2007).

Although it is of much importance in cognitive science to be

able to transform the activity of a given brain region into its

information processing content, one of the key challenges

facing the field is establishing the nature of neuronal

communication, that is, how do different brain regions

communicate with each other and transfer information

throughout the brain? It has been proposed that this

communication takes the form of phase synchrony of neuronal

oscillations (Varela et al. 2001; Fries 2005). In our information
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processing account, sensitivity to the same visual information

in 2 distinct brain regions suggests that the underlying

neuronal assemblies in each region are responding in a roughly

equivalent manner to the input visual stimuli. Thus, over time,

constant phase relationships in the signal of the 2 regions is

observed through sensitivity to equivalent visual information,

which could be hypothesized to represent direct neuronal

communication between these regions (Fries 2005). We can

then apply signal association measures, for example, phase

synchrony and coherence (Varela et al. 2001), and granger

causality (Granger 1969) directly to the modulations in

information processing content to further characterize these

relationships.
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