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Transient periods of synchronized oscillating neuronal discharges
in the brain have been proposed to support the discrete perceptual
moments underlying conscious visual experience. However, the
information content of these perceptual moments remains a critical
challenge to the understanding of consciousness. We uncovered
this information content in four observers who consciously per-
ceived each interpretation of the ambiguous Dali painting Slave
Market with the Disappearing Bust of Voltaire. For each individual
observer, we isolated the stimulus spatial frequency (SF) features
underlying their overt judgments of the input as ‘‘the nuns’’ and
‘‘Voltaire’’. Every 2 ms between stimulus onset and overt response,
we derived the sensitivity of the observer’s oscillatory brain
activity (in the theta, alpha, and beta bandwidths) to these SF
features. Then, in each bandwidth, we estimated the moments
(between stimulus onset and perceptual judgment) when percep-
tion-specific SF features were maximally integrated, corresponding
to perceptual moments. We show that the centroparietal beta
oscillations support perceptual moments underlying the conscious
perception of the nuns, whereas theta oscillations support the
perception of Voltaire. For both perceptions, we reveal the specific
information content of these perceptual moments.

computational models � ambiguous perception �
computational neuroscience � electroencephalogram

To study conscious visual experience in an information system
such as the brain, two generic questions must be addressed.

The first question is one of form: What is the nature of the brain
activity supporting the perceptual moments associated with
conscious visual experience; that is, what are the neural corre-
lates of consciousness? The second question is one of content:
What is the information content of the perceptual moments
associated with conscious visual experience; that is, what is the
information content of the neural correlates of consciousness?

The common answer to the question of form is a proposal with
a long history (1–3), suggesting that the dynamics of psycholog-
ical states is related to the oscillatory activity of the neural
substrate, which recently has been cast in terms of binding
multiple information sources (4–6). Simply stated, synchronized
discharges of cortical cell assemblies with a prominent rhythm
would be the neural correlates supporting discrete cognitive and
perceptual conscious states (7–9). This theory is based on
evidence of a consistent relationship between behavioral vari-
ables and the frequency of both the theta (4–8 Hz) and alpha
rhythms (8–12 Hz) in memory (10–16) and perceptual tasks (7,
17–19). Furthermore, there is a relationship between visual
perception and faster rhythms in the beta (12–25 Hz) and gamma
(25–60 Hz) range, although this hypothesis is still controversial
(20, 21).

In contrast, there is no common answer to the question of the
information content of perceptual moments, although, as just
discussed, it is supposed that conscious visual experience arises
under specific parametric conditions of synchronized brain
rhythms. An important task, then, is to ascribe information
content to the parameters of oscillatory brain activity (22, 23).
This goal is the main aim of this article.

In an experiment, we used gray-level versions of Dali’s am-
biguous painting The Slave Market with Disappearing Bust of
Voltaire to induce conscious perceptions. This stimulus can
induce two distinct phenomenal states (the perception of ‘‘the
nuns’’ vs. ‘‘Voltaire’’) from two distinct feature subsets of the
same original image, creating a situation of perceptual ambiguity
for the visual system to resolve (24). On each trial, we created a
sparse version of the painting by randomly sampling visual
information from five nonoverlapping one-octave spatial fre-
quency (SF) bandwidths as illustrated in Fig. 1. Observers
pressed response keys to indicate whether they perceived the
information samples as the nuns, Voltaire, or ‘‘don’t know’’ (24).
Concurrently, we measured the electroencephalogram (EEG)
activity on each trial.

After the experiment, we applied classification image tech-
niques (i.e., ‘‘bubbles’’; see refs. 24–26), independently for each
observer (i) to compute the SF features correlated with behav-
ioral judgments of the nuns and Voltaire (see Fig. 2) and (ii) to
compute the SF features correlated with modulations of cen-
troparietal EEG amplitudes (in the theta, alpha, and beta bands;
see Fig. 3). Then, we compared (i) and (ii) to determine the time
intervals (i.e., the perceptual moments) over which the brain
processes the specific SF features underlying each observer’s
conscious perceptions of the nuns and Voltaire.

Results and Discussion
Evidence of Perceptual Moments. The critical advantage of ex-
pressing a brain signal in terms of its sensitivity to visual
features is that one can precisely track in time the processing
of features and their integration in the brain (see Methods). To
illustrate, Fig. 4 depicts the average (across observers, n � 4)
first- and second-order feature sensitivity measures in the
theta, alpha, and beta bands for each perception. Over the time
interval of 200–300 ms for the nuns (the overlaid red strip in
Fig. 4) and 150–350 ms for Voltaire (the overlaid blue strip in
Fig. 4), we found a main moment of feature sensitivity (i.e., a
perceptual moment defined by using the maxima of first- and
second-order measures). However, this feature sensitivity
peaked in parietal theta oscillations for Voltaire, whereas it
peaked in beta oscillations for the nuns, with an overall timing
congruent with that found in related studies (21, 27); note that
this timing was uncorrelated with the reaction times of ob-
servers (see Table 1; r � 0.052), ruling out an explanation in
terms of motor response. We now explore the specific infor-
mation contents of these perceptual moments in the beta band
(for the nuns) and theta band (for Voltaire).

Information Content of Perceptual Moments. Consider observer
EO in Fig. 5. Four gray-scale images depict the information
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correlated with her overt perceptual judgment of the nuns. The
labels (a, b, c, d, e, and f ) indicate the significant SF behavioral
features. The modulation of beta EEG oscillations to these
features (from �200 to 600 ms around stimulus onset) is shown
in the two adjacent colored graphs. Significant first- and
second-order measures (P � 0.01) are indicated on the y axis
of the colored graphs with feature labels. From 180 to 250 ms,
Fig. 5 reveals the highest first-order sensitivities in SF bands
1 and 2 representing the heads of the nuns with features a, b,
and c. Highest second-order sensitivities involved integrations
of SF bands 1 and 2 to represent the left head with the
conjunctions of features a and c and to represent the two heads
with features b and c. The overlaid red strip indicates a state
of the brain of this observer corresponding to the maximal
sensitivity to the SF features underlying perception of the
nuns. This state is what we term a perceptual moment, and we
have revealed its information content.

Perceptual moments vary in information contents across
observers. For example, compare observer EO with GB (see Fig.
5), whose perceptual moment occurred at a similar time but
differed markedly in content. First- and second-order sensitiv-
ities comprised the head and the dress, involving features c, d,
and e and integrations of SF features c and d within band 2 and
c–e and d–e across bands 2 and 3, respectively, quantifying the
subjective character of perception in brain activity (see Fig. 6,
which is published as supporting information on the PNAS web
site, for a description of the perceptual moments of observer KB
and MLS).

Turning to the perception of Voltaire, the peaks of first- and
second-order sensitivities occurred in the theta band. First- and
second-order measures of sensitivities also revealed differing
contents of perceptual moments across observers. For observer
EO, this content included SF band 3 (the internal features of the
face), although interactions involved bands 2–3 and 3–4, adding
the forehead to the internal features; for observer GB perceptual
content spanned more SF bands, adding external contours of
Voltaire and elements of his forehead at bands 3 and 4 and in
2–3, 2–4, and 3–4 SF band interactions (see Fig. 6 for observer
KB and MLS).

Content-Specific Rather than SF Generic Sensitivity. There is a
potential confound in our results: Although the perception of the
nuns involved mostly (although not exclusively) high-SF (HSF)
information content, the perception of Voltaire involved infor-
mation represented in comparatively low-SF (LSF) bands. Thus,
the reported perceptual moment of sensitivity to the specific
information content of the nuns and Voltaire might be con-
founded with a generic sensitivity to the processing of any HSF
and LSF information in the beta and theta oscillations, respec-
tively. To tease apart these interpretations, we carried out a
supplementary analysis.

We simply repeated the first-order sensitivity analysis out-
lined in step 3, substituting the behavioral features with
information samples randomly selected from the stimulus
space with the double constraint that (i) at each SF band the
samples did not overlap with those features representing the
nuns and Voltaire to the observer under consideration and (ii)
the samples matched in size those features representing the
nuns and Voltaire for this observer at each SF band. To
illustrate this random sampling, if the HSF band represented
the left head of the nuns (see feature a in Fig. 5), we sampled

Fig. 1. Illustration of the SF information sampling procedure with bubbles.
The aim of the procedure is to expose, on each trial, the visual system with a
random subset of the SF information present in the original picture. (A) The
original picture is a gray-level cropped version of Dali’s Slave Market with
Disappearing Bust of Voltaire. (B) To produce the random SF information
subsets, we carried out several computations. We decomposed the Dali image
into six independent SF bands of one octave each, with cutoffs at 128 (22.4),
64 (11.2), 32 (5.6), 16 (2.8), 8 (1.4), and 4 (0.7) cycles per image (cycles per
degree of visual angle), from HSF to LSF. (C) For each SF band, a number of
randomly located Gaussian apertures (the bubbles), with an SD of 0.13, 0.27,
0.54, 1.08, and 2.15 cycles per degree from HSF to LSF, formed SF-specific
bubble masks. (D) The multiplication of the information sampled in B with the
masks represented in C sampled information independently in different SF
bands. (E) The sparse stimulus presented on each trial of the experiment was
generated by adding together the information randomly sampled from each
band in D.

Fig. 2. Behavioral classification images for the perceptual judgments of the
nuns and Voltaire. For each SF band, we independently computed the statis-
tically significant (P � 0.05; one tail) SF regions associated with each observer’s
perception of the nuns and Voltaire on the basis of behavioral responses (26).
Together, across SF bands, the significant regions form a filter that we applied
to the original picture to depict the effective stimulus of the nuns and Voltaire
for each observer. Effective stimuli represent the observer-specific features
used to judge the input as the nuns or as Voltaire. Differences in effective
stimuli reveal observer-specific differences reflecting the subjectivity of per-
ception.
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HSF band information with sample size corresponding to the
size of the head anywhere in the HSF image as long as this
sample did not overlap with any significant feature (i.e., the
left or right nuns’ face).

Specifically, for each behavioral feature, we correlated one
hundred of these observer-specific randomly positioned SF
templates with the EEG classification images in the theta,
alpha, and beta bandwidths. This computation allowed us to
measure the average generic (as opposed to perception-
specific) sensitivity of beta, alpha, and theta oscillations to SF
band information. Fig. 4 depicts the average (across templates
and observers) perception-specific and generic SF first-order
sensitivity measures. These results clearly rule out the generic
SF-processing interpretation in favor of a multiplexing of
specific perceptual content across the beta and theta
oscillations.

Conclusions
Together, the evidence reported here supports the idea that
oscillatory brain activity underlies the processing of visual
information subtending the perceptual moments of conscious
visual experience. Specifically, we have shown that in the context
of an ambiguous input stimulus, theta oscillations subsumed the
processing and integration of LSF visual features associated with
the overt perceptual judgment of Voltaire and that beta oscil-
lations supported higher SF features associated with the overt

judgment of the nuns. Furthermore, we isolated for each ob-
server the specific information content of their perceptual
moments, quantifying the subjective content of perceptual ex-
perience from brain measurements.

There is now a growing body of knowledge on the brain
correlates of conscious visual experience (21, 27–29). However,
unique to our approach, we do not correlate important param-
eters of brain activity (such as rhythm, amplitude, or phase
coherence) with a few experimental conditions (e.g., to perceive
or not). Instead, we correlate brain activity with fine-grained
samples of stimulus information (in which each information
sample can be construed as an independent experimental con-
dition) to derive a precise mapping of brain activity onto visual
information. From this mapping, we relate the dynamics of
information processing with the dynamics of brain states (25, 30).
With this approach, we uncovered for each observer two distinct
perceptual moments, corresponding to the maximal sensitivity of
brain rhythms to the specific SF features subtending the per-
ception of the nuns and Voltaire.

Perceptual moments allow new fundamental issues for per-
ception to be addressed, ranging from the information capacity
of the different bandwidths of oscillatory activity (the number of
bits of information that they can encode), the mechanisms of
information integration within a moment, to the relationship
between discrete moments and the apparently seamless nature of
perceptual awareness and perception.

Fig. 3. Computation of sensitivity of EEG oscillations to the features underlying overt perceptual Judgments of the nuns in observer GB. (A) Step 1: Behavioral
classification images. Illustration of the SF-specific features underlying overt perceptual judgments of the nuns for observer GB (significant features are labeled
a and e; P � 0.05). (B) Step 2: EEG classification images. The movie of classification images indicated with an arrow illustrates the beta band EEG classification
images for the second band of sampled SF information in the critical 190 and 248 ms after stimulus onset. At each time point, the images standing above and
below the classification image (Middle) represent the sums of the bubble masks associated with EEG amplitudes 0.25 SD above (Top) and 0.25 SD below (Bottom)
the mean amplitude at this time point. The two EEG classification images highlighted by a red box are expanded, thresholded for significance (P � 0.05), and
interpreted by apposing their significant regions onto the ambiguous image at SF band 2. They reveal that, at these time points, beta EEG amplitudes are
modulated by features c and d. (C) Step 3: Relating behavioral and EEG classification images. We computed the sensitivity of the EEG classification images to
behavioral features c and d by using Pearson’s correlation to correlate the latter with the former. The white box is expanded in B, where the blue curve indicates
the correlation with feature c and the green curve indicates the correlation with feature d. Generalizing across all features and time points, we obtain the
illustrated sensitivity matrix. Labeled features (i.e., c, d, and e) indicate periods of significant correlations (P � 0.01, Z scored with respect to prestimulus baseline
correlations) for observer GB perceiving the nuns.
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Methods
A total of four observers participated in the experiment.
Informed consent was obtained from all and ethical approval
was obtained from the Glasgow University Faculty of Infor-
mation and Mathematical Sciences Ethics Committee. We
cropped the ambiguous portion of Dali’s painting to retain the
bust of Voltaire and the two nuns, a figure subtending 5.72° �
5.72° of visual angle on a CRT screen (for an image size of
256 � 256 pixels). On each of 6,000 trials, we randomly
sampled information from the cropped image using a number
of Gaussian apertures (making up ‘‘bubble masks’’) to create
one sparse stimulus, as detailed in Fig. 1. The sparse stimulus
remained on the screen until the observer depressed one of
three possible response keys, according to which image they
could perceive: the nuns, Voltaire, or don’t know. The total
number of Gaussian apertures remained constant throughout
the task, ensuring that equivalent amounts of visual informa-
tion was presented on each trial, at a level of 60 bubbles found
previously to maintain don’t know responses at 25% of the
total number of responses (26). A chin rest maintained a
constant 1-m viewing distance.

Electrophysiological Recordings. Scalp electrical activity (EEG)
was recorded with 64 sintered silver�silver chloride electrodes
mounted in an electrode cap (Quick-Cap; Neuromedical Sup-
plies, Sterling, VA). Electrode positions included the standard

10–20 system positions along with intermediate positions and an
additional row of low occipital electrodes. The vertical elec-
trooculogram was bipolarly registered above and below the
dominant eye and the horizontal electrooculogram at the outer
canthi of the eyes. Electrodes positioned at the right and left
mastoid positions served as common references, and the AFz
electrode served as the ground. Electrode impedance was kept
�10 k� during recording. EEG and electrooculogram record-
ings were continuously acquired at 1,024 Hz. After filtering with
a narrow-band (49.5–50.5 Hz) notch filter to eliminate contam-
ination from mains electricity, analysis epochs were generated
offline starting 200 ms before stimulus onset and continuing for
1 s, aligned to a 200-ms prestimulus baseline. Artifact trials were
rejected by applying a threshold criterion of �60 �V.

Computational Analyses. Step 1: Behavioral classification images.
Henceforth, all analyses are independently performed for each
observer. We computed, independently for each of the five SF
bands sampled, the subspace of information associated with the
nuns and Voltaire behavioral judgments. We created a different
NunsPlane per SF band, for each of the five SF bands [hence-
forth, NunsPlane(SFband)] and a different VoltairePlane per SF
band [henceforth, VoltairePlane(SFband)]. Whenever the ob-
server perceived the nuns (vs. Voltaire), we literally added the
bubble masks (see Fig. 1) to the NunsPlane(SFband) [vs. Vol-
tairePlane(SFband)] to integrate the information leading to
these perceptions. To derive statistics on the most significant
information associated with each perception, we divided the
sampling frequencies in each plane by the total number of
presentations and constructed a confidence interval (P � 0.05;
one tail) around the mean for each of these proportions at each
scale (26). We kept the areas above the confidence interval.
There was no significant information in SF band 5, which was
therefore removed from any further analyses. Fig. 2 depicts the
selectively attended SF features combined across SF bands for
each perception.

Fig. 4. Average first- and second-order theta, alpha, and beta sensitivities to the specific SF features for the nuns and Voltaire perceptions. For each time point
and oscillatory band, we averaged per perception (i.e., the nuns vs. Voltaire) the first- and second-order measures of sensitivity across observers (n � 4) and plotted
them on a normalized scale. We also averaged across observers the first-order sensitivity measures to randomly chosen samples of generic SF information (i.e.,
SF information that did not intersect with the SF information of each perception) to tease apart interpretations of perception-specific vs. generic SF processing.
On the x axis, a dark blue (vs. red) region indicates that beta (vs. theta) oscillations are more sensitive to SF perception features than theta (vs. beta) oscillations.
Between 200 and 250 ms, the plots reveal a clear advantage of beta sensitivity over theta for the nuns for first- and second-order measurements (indicated with
an overlaid red strip). The advantage is reversed for Voltaire (theta over beta, indicated with an overlaid blue strip) and occurs earlier (150–200 ms), again for
both sensitivity measures. No such advantage exists for generic SF information.

Table 1. Reaction times

Observer Nuns, ms Voltaire, ms

EO 585 584
GB 971 713
KB 1,985 1,926
MLS 749 721
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Step 2: Oscillatory EEG classification images. We considered three
main brain rhythms (theta, 4–8 Hz; alpha, 8–12 Hz; and beta,
12–25 Hz), measured on centroparietal electrode Pz¶ in relation
to the visual information represented in the four bandwidths of
SF information sampled with bubbles that were relevant for
behavior. For each combination of brain rhythm and SF band
sampled (e.g., beta oscillations and the highest SF), we computed
an independent classification image every 2 ms between �200
and 800 ms around stimulus onset. To compute the EEG
classification images, we determined for each measurement time
point the mean amplitude value of the filtered EEG signal�
across all nonartifact trials, considering only trials on which the
observer perceived something (i.e., pooling together the nuns

and Voltaire trials, whereas discarding don’t know trials). We
then assigned the bubble mask used on each of these trials to one
of three bins: above, below, or around (�0.25 to 0.25 SD) the
mean amplitude, depending on the EEG amplitude elicited on
that trial. The EEG classification image was the sum of the
bubble masks above the mean minus the sum of the bubble masks
below the mean. By computing an independent classification
image every 2 ms, we are able to represent at a fine temporal
resolution how SF-specific information in the input modulates
the amplitude of EEG oscillations.

Consider Fig. 3B, which illustrates the process for observer
GB. EEG classification images are computed between 190 and
248 ms, in the beta band of EEG oscillations, for the second band
of sampled SF information. The ‘‘movie’’ of classification images
is indicated with a right-pointing arrow in Fig. 3B. Two classi-
fication images (highlighted with red boxes in Fig. 3B) are
expanded for illustration, thresholded for their significant re-
gions (P � 0.05), and interpreted by revealing the features
correlated with modulations of beta amplitudes (here c is the
face of the left nun, and d is the dress of the left nun). These
computations were independently carried out for all oscillatory

¶We chose to measure from the centroparietal electrode Pz because previous work re-
vealed evidence of nonlinear integration of featural information over this electrode site
(30). In contrast, we did not find evidence of such early feature integration on occipito-
temporal electrodes (e.g. P9 and P10).

�We band-pass filtered the EEG with a smooth sixth-order Butterworth filter with cutoffs on
4 and 8 Hz for the theta band, 8 and 12 Hz for the alpha band, and 12 and 24 Hz for the
beta band.

Fig. 5. Perceptual moments and their information content. For observers EO and GB, the four gray-level pictures illustrate the significant labeled SF features
(a–f ) associated with their overt perceptual judgments of the nuns and Voltaire. The first- and second-order sensitivities of beta (for the nuns) and theta (for
Voltaire) oscillations to these SF features are rendered in the two adjacent colored graphs. Labeled rows are those for which first- and second-order sensitivities
reached significance (P � 0.01). The red (beta; for the nuns) and blue (theta; for Voltaire) line plots reveal the average first- and second-order sensitivities across
all individual SF features (for the first-order) and SF feature combinations (for the second-order) for this EEG band. The red strip (for the nuns) and blue strip
(for Voltaire) indicate the perceptual moments at which oscillatory sensitivity to SF features peaks.
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bands considered (i.e., theta, alpha, and beta) and four of the
input SF bands sampled (i.e., discarding the lowest SFs).
Step 3: Relating Steps 1 and 2. First-order sensitivity. To determine the
first-order sensitivities of the EEG activity to the features
associated with behaviour, we correlated the EEG classification
images with those features found to be significantly driving
perceptual judgements by using Pearson’s correlation. For the
case of Voltaire, our behavioural templates consisted simply of
the significant facial regions at each one of the SF bands. For the
nuns, behavioural templates individuated the visual features
present at each band. In Fig. 3A, features a to e contributed to
the overt perceptual judgments of observer GB. Fig. 3B illus-
trates the correlations of behavioral features c (in blue) and d (in
green) with the EEG classification images. Note that these
correlations are cyclical (indicating that the sensitivity to the SF
features is not sustained, but periodic, in accordance with refs.
7 and 9) and peak in the first sensitivity cycle at �208 ms and in
the second cycle at �236 ms. Closer scrutiny of the classification
images around these peaks (see the red boxes) reveal that EEG
beta oscillatory amplitudes are modulated by the presence of
features c and d, as is behavior. Fig. 3C presents a summary of
sensitivity to all SF nun features in the beta band (the white box
corresponds to the time interval expanded in Fig. 3B). Gener-
alising this analysis to the two perceptions (i.e., the nuns and
Voltaire), the three EEG oscillatory bands (theta, alpha, and
beta) and the four bands of sampled SF information, we derived
the first-order sensitivity measurements presented indepen-
dently for each observer in Figs. 5 and 6.

Second-order sensitivity. To determine the levels of informa-
tion integration within each perception (for the nuns, across SF
features; for Voltaire, across SF bands), we derived for each
possible combination of SF features and SF bands the phase
dependencies of the first-order sensitivities. We reasoned that a
perceptual moment correlated with the conscious perception of
a stimulus should isolate a moment in time when sensitivity to the
information components (i.e., SF features or SF bands) should
(i) be at its peak (ii) synchronously for the largest number of
components (to illustrate, Fig. 3B indicates that the sensitivity
curves to features c and d are in such synchrony). To this end, we
used a standard method of phase-synchrony determination (31)
and computed the convolution of the first-order sensitivity with
a complex Morlet wavelet of form:

M�t, f	 � e
�t2

2�t
2
� ei2�ft, [1]

centered at the center frequency ( f ) of each band considered
with �t � 6�f. The phase of this convolution (�(t)) was then
extracted for all times, t, and combinations of SF features and SF
bands. The second-order phase sensitivity measure for each
combination was then computed in temporal blocks of half a
period at the band center frequency as follows:

SOPt �
1
N � �

t�1

n

ei��1�t	��2�t		� , [2]

where N is the number of points in each time block. In any
comparison, if the phase difference varies little across the time
in each half-period block, this value will be close to 1, indicating
a synchronous sensitivity between two information components.
If the phase of the signals is uncorrelated, however, the value will
fall to 0, indicating a low synchrony between the components
considered.

Note that, as computed in Eq. 2, phase relationships do not
account for the magnitude of sensitivity of oscillatory processes
to the compared information components (i.e., two SF features
or two SF bands). Given that our goal is to isolate those
phase-locked information components to which oscillatory brain
processes are highly sensitive, we introduced an amplitude factor
AFt to our second-order measurement SOMt:

SOMt � SOPt�AFt. [3]

In AFt, FOM(t, fi) is the first-order sensitivity measured for
feature fi at each time point. If the first-order value of each
feature is high, then this value will be close to 1. If the EEG
classification images were not sensitive to that feature, however,
this value will fall to 0.

AFt � ��
t�1

n

FOM� t , f1	 �FOM� t , f2	 . [4]
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