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Achallenging issue inrelatingbrain function to perception and cog-
nition concerns the functional interpretation of brain responses.
For example, while there is agreement that the N170 component
of event-related potentials is sensitive to face processing, there is
considerable debate about whether its response re£ects a struc-
tural encoder for faces, a feature (e.g. eye) detector, or something
else.We introduce a principled approach to determine the stimulus

features driving brain responses.Our analyses on two observers
resolving di¡erent face categorization tasks (gender and expres-
sive or not) reveal that theN170 responds to the eyeswithin a face
irrespective of taskdemands.This suggests a newmethodology to
attribute function to di¡erent components of the neural system
for perceiving complex stimuli. NeuroReport14:1665^1669�c 2003
LippincottWilliams &Wilkins.

Key words: Attention; Brain potentials; Face categorization; Mechanisms; Perception; Recognition; Selective attention

INTRODUCTION
Face recognition has long been known to be of tremendous
importance for the normal social functioning of humans
[1,2]. However, it is only very recently, with the advent of
fMRI and event related potentials (ERP), that the brain
activity associated with face processing has been examined.
A powerful methodology is required to resolve what is still
one of the greatest methodological challenges in cognitive
neuroscience: When dealing with complex visual stimuli,
how can a brain response be attributed to a specific object
category (e.g. a face), a specific feature (e.g. the eye) or a
specific function? In the absence of a principled method, the
specificity of response (e.g. to the face) is determined by
contrast with responses from other categories (e.g. cars,
furniture, hands and so forth), and informal hypotheses
tested. Unfortunately, a dense correlative structure exists in
the low-level visual properties of category members (e.g.
luminance energy, main directions of orientation, spatial
frequency composition and so forth), only a small subset of
which can be controlled with a finite number of contrast
categories. Consequently, the specificity of the brain
response might be due to incidental input statistics, not to
the category per se.
As a case study, consider ERP studies which reported that

the upright frontal view of a human face or faces of other
species, face photographs, paintings and sketches [3] elicits
a negative potential 170ms following stimulus onset (N170).
The N170 is typically larger for faces than of multiple
control stimuli such as humans hands, cars, birds, items of

furniture [3,4]; scrambled faces, scrambled cars, butterflies
[5]; non-face meaningless stimuli [6]; house [7]; cheek and
back views of faces [8]; houses and hands [9,10]. In contrast,
the N170 amplitude is usually smaller for upright than for
inverted faces [11]. The N170 is maximally negative over
posterior temporal scalp, and is probably generated by
extrastriate occipitotemporal cortex regions in inferior
temporal gyrus and/or the adjacent occipitotemporal sulcus
[4,12]. Functionally, it has been proposed that the N170
reflects a variety of face processes, ranging from detection
[4] to the categorization of emotions [13,14] and structural
encoding [6,7,15,16], or perhaps more generally the config-
ural encoding associated with expertise of novel objects and
faces [16,17] or birds and dogs [18]. The N170 is less specific
in 3- and 6-month-old infants [19], but its amplitude
increases gradually in the early years [5,20], and is not
affected by aging [21].
This body of evidence leaves little doubt that the N170 is

often (but not exclusively, see [22]) associated with face
processing. However, for the reasons pointed out earlier, it is
still unclear exactly what face stimulus modulates the N170
amplitude. Is the stimulus the entire face or one of its
features? For instance, the eyes have been found to elicit
higher N170 amplitudes than the whole face and other face
parts [4], and there is evidence that direction of eye gaze
modulates the N170 in 4-month-old infants. However,
others have found no influence of eye information on
amplitude modulation [7]. This leaves unresolved the issues
of which face feature(s) should be credited with the N170
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response, and what status should be attributed to the N170
signature. Does the N170 reflect a diagnostic use of the face
features that are most useful to resolve face categorization
tasks [24], or does the N170 simply reflect an automatic
response to specific face features (e.g. the eyes), irrespective
of the categorization at hand?
Bubbles [24,25] is a technique that has been designed to

resolve such issues of credit assignment. It works by using
the stimulus (not other stimuli) as its own control for
amplitude of brain response. Although we are focusing on
ERPs, it is important to stress that this technique is generic
and could in principle apply to other measurable brain
signals. The technique only requires a parametric stimulus
input space to correlate with a parametric output space. To
determine the face features modulating the N170 and
categorization behavior in a principled way, we applied
Bubbles in two separate categorization tasks (gender and
expressive or not, exnex) and compared the information
determining the N170 and behavior. On each trial Bubbles
samples face information (using a number Gaussian
apertures) and records the behavior (correct vs incorrect
response) and brain response (in terms of N170 amplitude)
to which this sample leads. Across trials, the method can
depict the face features that elicit correct vs incorrect
behavior, and high vs low N170 amplitudes.

MATERIALS AND METHODS
Participants: Two Glasgow University paid observers
(ML and BB) with normal or corrected to normal vision
participated in the experiment.

Stimuli: Facial information was revealed through 14 2D
randomly located apertures (of Gaussian shape, with
sigma¼ 0.221 of visual angle) with the constraint that each
aperture remained within the area of the face (see Fig. 1 for
an example of stimulus). Previous experiments revealed
that 14 apertures are required to reach a minimum of 75%
correct categorizations in GENDER and EXNEX [24].
Original faces were 256-gray level pictures of 10 actors (five
males, five females) displaying two expressions (neutral,
happy) taken under standardized conditions of illumina-
tion. Hairstyle was standardized across face pictures
by replacing (using Adobe Photoshop) idiosyncratic hair-
styles with a uniform unisex hairstyle, to eliminate this
information.

Procedure: In one session of 4000 trials (gender) the two
observers (BB and ML) determined the gender of the facial
information samples (henceforth, sparse faces) by pressing
the appropriate button of a two-key response box. In
another 4000 trials session (exnex) they determined whether
the sparse faces were expressive (happy) or not (neutral).
Order of task (gender vs exnex) was counterbalanced across
observers (BB vsML). Stimuli were presented on a light grey
background at the center of a computer monitor with a fixed
chin rest maintaining a constant 1m viewing distance
(4.6 � 4.61 of visual angle). A trial started with the
presentation of a fixation cross (0.41 of visual angle) which
was replaced after 500ms by a randomly selected sparse
face picture. The sparse face remained on the screen for
1500ms and observers were instructed to respond as

quickly as possible (male vs female in one session,
expressive or not in the other session) by depressing the
appropriate response key without making mistakes. Short
breaks were allowed every 100 trials. While performing the
task, EEG activity was continuously recorded with sintered
Ag/AgCl electrodes mounted in an electrode cap (Easy-
Cap) at the scalp positions from Fz, Cz, Pz, Iz, FP1, FP2, F3,
F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, F9, F10, FT9,
FT10, P9, P10, PO9, PO10, F90, F100, and TP9. The right
mastoid (TP10) served as initial common reference, and the
AFz electrode as ground. The F90 and F100 electrodes were
positioned 2 cm anterior to F9 and F10 at the outer canthi of
the left and right eye. Vertical electrooculogram (vEOG) was
bipolarly registered above and below the right eye. EEG and
EOG recordings were sampled at 250Hz. Electrode im-
pedance was kept o 10 kO. All signals were recorded with a
band-pass (0.05–40Hz, �6db attenuation, 12 dB/octave).
Analysis epochs were generated off-line, starting 200ms
prior to stimulus onset and lasting for a total duration of
800ms. Epochs were aligned to a 200ms pre-stimulus
baseline. To sort trials, we ran artifact detection software
and inspected visually each trial for ocular and nonocular
artifacts. Artifact-free ERPs were low-pass filtered at 10Hz
(zero phase shift) and re-referenced to average reference,
excluding the vEOG channel.

EEG analyses: We performed a single trial N170 ampli-
tude measurement using a dipole source projection method
(DSPM). We first generated a dipole model of the N170
component for each observer by averaging all artifact free
trials across tasks (ERP waveforms at P9 and P10 are shown
in Fig. 1b). The dipole source models were determined by
using brain electromagnetic source analysis (BESA, Version
2.2.) with the 4-shell spherical head model using an 8ms
time interval around peak maximum of the N170 (for both
observers from 200 to 208ms after stimulus onset). One
dipole-pair mirror-symmetrical in orientation and location
was fitted in this time interval until residual variance (RV)
reached a minimum (6.9% for BB and 3.7% for ML). We then
projected the dipole models into the single trial data without
further fitting and we calculated the mean dipole source
strength for the left and right dipole across the three data
points 200, 204, and 208ms after stimulus onset. This
approach is comparable with statistical component separa-
tion methods such as principal component analysis, but it
takes into account biophysical aspects of the EEG signals
and reduces the dimensionality of the electrode space from
32 to 2. Furthermore, the dipole projection method (DPM)
eliminates EEG background noise that is not projecting in
the same direction as the dipoles itself, resulting in at least a
partial cleaning of the single trial data.

Behavioral analyses: Using computational analyses we
then sought the face information responsible for the explicit
categorization behavior and the N170 amplitude modula-
tion. For the analysis of the behavioral data, we used
Bubbles [24,25]. On each trial of a categorization task, the 14
randomly located Gaussian apertures make up a 2D mask
that reveals a sparse face. Observers will tend to be correct if
this information is diagnostic for the categorization task.
Across trials, we computed a probability of being correct, for
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each individual aperture; i.e. for each aperture, P(correct/
aperture)¼ frequency correct(aperture)/frequency presen-
ted(aperture). We summed the aperture masks leading to
correct categorizations and divided this sum by the sum of
all aperture masks (for correct and incorrect categoriza-
tions). We transformed the probabilities into Z-scores (the
pictures labeled Task in Fig. 2), marked in red the

statistically significant (po 0.01) probabilities, and revealed
the corresponding features used to perform the gender and
exnex categorizations.
To determine the face information driving the N170, we

adapted Bubbles to the analysis of a distribution of N170
amplitudes. We measured the N170 in response to the
sparse face in each single trial. Following the experiment,

Trial 1 Trial 2
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Fig. 1. (a) The temporal sequence of events in each trial. (b) ERP waveforms at the P9 and P10 electrodes for participants ML (left) and BB (right).
(c) Spatial N170 component used for single trial amplitude measurement generated from the dipole models for participants ML (left) and BB (right), the
negative potentials are found in inferior-temporal regions.
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we divided the N170 distribution into five bins of equal trial
number (two high and two low bins symmetrically
distributed around a central bin). Each bin determined an
N170 amplitude interval within which we added, for each
trial, the mask of apertures eliciting these amplitudes (see
the distributions in Fig. 2). Following this assignment of
masks of apertures to bins of amplitudes, we averaged the
content of each bin to derive the average face information
sample that elicited each N170 amplitude interval. The
average per bin is represented in the two rows of pictures
below each distribution in Fig. 2 for correct (top row) and
incorrect (bottom row) categorizations, in gender and exnex,
for BB and ML. To determine the information that
modulates the N170, we computed a discrimination image
in each task and for each observer (the pictures labeled N170
on top of each distribution). Specifically, we summed the
average face information sample of the last two bins (the
yellow and white low amplitude bins in Fig. 2) and
subtracted this from the sum of the first two bins (the red

and orange high amplitude bins in Fig. 2); i.e. discrimination
image¼ (bin1 + bin2)�(bin4 + bin5). For each discrimina-
tion image, we computed Z-scores, marked in red the
regions of statistically significant discrimination (po 0.01, in
red in each image), and revealed the corresponding face
features that discriminate between low and high N170
amplitudes.

RESULTSANDDISCUSSION
Summarizing the results, the analysis of behavior in gender
in terms of use of information reveals that the diagnostic
features were the two eyes, for both BB and ML (see Fig. 2,
gender, the Task pictures). Analysis of the face information
modulating the N170 also revealed that presence of eye
information led to high N170 amplitudes when absence of
these features led to low N170 amplitudes, for both
observers. The eyes are therefore the features that discrimi-
nate between low and high N170 in gender (see Fig. 2,
gender, the N170 pictures). Turning to the status of the N170
signature, the information leading to correct categorizations
and high N170 amplitudes were correlated. From this
correlation, one could infer that the N170 reflects the
encoding of the diagnostic features (in this case, the eyes)
that observers require to correctly categorize the gender of
faces. This conclusion is only warranted if, using the same
faces in a categorization task that requires different
diagnostic face features, the N170 also responds to this
other information. Analysis of behavior in the expression
(exnex) task revealed that correct categorization required
the diagnostic use of the mouth (see Fig. 2, exnex, the Task
pictures). In contrast, the presence of information from the
eyes still discriminated between small and large N170
amplitudes, when the mouth did not (see Fig. 2, exnex, the
N170 pictures). Here, the information leading to correct
categorizations and high N170 amplitudes was decorre-
lated. Thus, the N170 signature does not necessarily reflect a
use of diagnostic information.
The version of the Bubbles method applied here estab-

lishes a linear mapping between information samples and
responses (behavioral or neuronal, see [25] for a non-linear
expansion). The advantage is that we can estimate how each
sample drives performance. One could oppose that this
restricts the scope of our findings because observers
experience several samples of facial information, never the
entire face in one sample. However, this argument neglects
the fact that humans observers naturally sample visual
information with saccadic eye movements. With Bubbles,
information is sampled for the observer and its use is
estimated for categorization. When they are compared, and
this is a domain of on-going investigation, similar informa-
tion picking strategies are revealed by Bubbles and eye
movement studies (see [25] for discussions).
The analysis that derives the discrimination image

assumes a linearity of the N170 response to face informa-
tion. To confirm that this assumption was correct, we ran the
distribution analysis backwards: i.e. we searched for the
typical ERP signature of a face feature, for each observer, in
each task. To this end, we first divided the faces into nine
contiguous regions (left forehead, right forehead, left eye,
right eye, nose, left cheek, right cheek, left mouth, right
mouth). For each trial, we determined whether or not a

GENDER EXNEX

−244 −249 −47−27 102

−138 −154−20 97

140

155

TaskTaskML

N170

−20 115

Task

N170

N170

140

Task
BB

N170

Fig. 2. Results of the experiment. The experiment was programmed
with the PsychophysicsToolbox forMatlab.This ¢gure illustrates the com-
putation of the stimulus information eliciting N170 and task-dependent
responses for observers BB and ML resolving the gender and exnex cate-
gorizations of the same face set. Histograms represent the N170 ampli-
tude distributions (measured over 4000 trials) clustered into ¢ve bins
(di¡erently colored with red indicating higher amplitudes trials) of equal
statistical power: the x axis indicates the N170 amplitude, the y axis the
frequency of trials. Each histogrambar is split between correct and incor-
rect (shaded) response trials. In color correspondence with the ¢ve
ranges of N170 amplitudes, two rows of ¢ve pictures represent the aver-
age information sample leading to each range for correct (top row) and
incorrect (bottomrow) trials.On top of eachhistogram, theN170 picture
represents in red the signi¢cant information that discriminates (po 0.01)
high from low N170 amplitudes (it is a discrimination image based on
[bin1 + bin2]�[bin4 + bin5]). TheTask picture represents in red the in-
formation used to categorize the faces (po 0.01).
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Gaussian aperture was located in each of the nine face
regions. Whenever it was, we kept for this face region a
record of the N170 amplitude in one of five possible
amplitude bins as explained earlier. Across trials, we
derived the typical N170 distribution of each face region.
We found flat distributions for all face regions but the eyes.
For the eyes, we observed an (approximately) linearly
decreasing distribution with a maximum on the highest
amplitude bin, and a minimum on the lowest amplitude
bin. This was true for the two observers, in the two
categorization tasks.

CONCLUSIONS
In the tasks considered here, Bubbles found that the eyes are
the face features modulating the N170, even when other
features drove explicit categorization behavior. With faces,
to the best of our knowledge, the status of the N170 is not a
response to diagnostic features, but an automatic response
to the eyes [4]. We believe that the same techniques we have
used to analyze the N170 could also be generalized to other
ERP components (e.g. the N200 recorded intracranially over
the fusiform cortex, in response to faces, to fMRI amplitude
responses, or to the firing rates of individual cells, or cell
assemblies. Indeed, we could gain insight into the proper-
ties of different brain responses to the same stimuli and task
demands, potentially providing a dynamic picture of the
mechanisms of stimulus processing.
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