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Abstract

We first describe SLIP (Strategy Length & Internal Practicability) a formal model for thinking

about categorization, in particular about categorization through time.  We then discuss an

early application of this model to basic-levelness.  We continue with novel evidence for

discrete processing cycles through time.  We then turn to aspects of categorization through

time that have been neglected in the categorization literature:  our limited processing

capacities; the necessity of having a flexible categorization apparatus; and the paradox that

this inexorably brings about.  Finally, we spend several pages on a two-fold resolution of this

paradox.  Throughout, but especially toward the end, we attempt to bridge work done in

categorization, vision, neuropsychology, and physiology.



3

1.  A model of categorization

Figure 1 shows four artificial scenes synthesized by combining two different

luminance patterns (that we call flat and hilly) with two different chromatic patterns (labeled

grassy and sandy).  This toy-example captures some of the essential characteristics of real-

world categorization.  These stimuli can be categorized as either “field” (the combination of

is_flat and is_grassy), “desert” (is_flat and is_sandy), “mountain” (is_hilly and is_grassy), or

“dune” (is_hilly and is_sandy) at the most specific level of categorization.  At the most

abstract level of categorization there are more than one possibilities – we will come back to

this point latter – but, for now, let us only consider the two categories “flat” and “hilly”

(Figure 1).  Thus, the “mountain” and the “dune” scenes are also “hilly”, and the “field” and

“desert” scenes are also “flat”.  We thus have a small category hierarchy.  And we are ready

to begin the unpacking of our ideas about categorization through time.

-----------------------------------------------------------------------------------

Insert Figure 1 about here

-----------------------------------------------------------------------------------

SLIP (Strategy Length & Internal Practicability) is a categorizer that applies “optimal”

testing strategies to determine the category membership of objects.  The goal here is not so

much to mimic human performance precisely but to provide a non-arbitrary starting point for

future modeling efforts as well as a framework to better understand human performance (e.g.,

Anderson, 1990, 1991; Kersten, 1990; Feldman, 2000).  A strategy comprises sets of noisy

detectors.  For example, the desert scene illustrated in Figure 1 satisfies two category

strategies:  Strat(“dune”) = [{is_hilly} & {is_sandy}], is the SLIP strategy for the “dune”

category and comprises two sets of detectors; Strat(“hilly”) = [{is_hilly}] is the SLIP strategy

for the “hilly” category and comprises a single set of detectors.  We think of these sets of

detectors as populations of specialized neurons (e.g., in V4 for color, in V5 for motion).  SLIP

launches a subset of all these detectors in parallel.  The size of this subset is related to the

amount of information that humans can process simultaneously.  We discuss this point in

some details in a subsequent section.

Because the detectors in a set are redundant, only one of them needs to be successful to

verify the entire set.  For example, to verify that a scene is “flat” in the category hierarchy

illustrated in Figure 1 one successful luminance detector suffices.  Everything else being

equal, SLIP predicts that strategies associated with more redundant sets of detectors will have

a higher probability of being completed after few discrete processing cycles (t).  There are
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two ways of increasing the redundancy of a strategy:  either more detectors of feature X

become available, or more exemplars of feature X become available.

Often more than one set of redundant detectors is required to place a scene in a category.

For example, to verify that a scene is a “dune” in the category hierarchy displayed in Figure 1,

one successful luminance detector and one successful chrominance detector are required.

Everything else being equal, SLIP predicts that strategies associated with shorter strategies

will have a higher probability of being completed after few processing cycles.

We now turn to the formalization of these ideas.  The cumulative probability that a

strategy comprising n sets of redundant detectors is completed at processing cycle t or before

is given by:

µ = 1 − φ j
t( )

j =1

n

∏ (Equation 1),

with φ j = 1 − γ j .  The constant γ j  is the probability that the set of detectors j is successful

after one processing cycle.  It is the “weight” given to dimension j (for details see Gosselin &

Schyns, 2001b).

Although the probability distribution of Equation 1 is useful in its own right, we have

more often employed its associated density function.  That is, the function that gives the

probability that a SLIP strategy is completed after exactly t processing cycles.  To compute it,

we must subtract two cumulative probabilities:  the probability that the a strategy is completed

in at most t processing cycles minus the probability that it is completed in at most t-1

processing cycles:

χ = µ t( ) − µ t − 1( ) (Equation 2).

To illustrate Equation 2, we have applied it to Strat(“hilly”) and to Strat(“dune”).  The

predicted density functions are given in Figure 1.  Here, we have assumed that both φ ’s (i.e.,

the probability that the set of detectors j is unsuccessful during one processing cycle) were

equal to .5.  Two things are remarkable about these density functions:  (1) They are very

different from one another.  In particular, they differ on the average number of cycles

necessary before verification.  The means of such density functions is equal to t χ
t =1

+∞

∑ t( ) , i.e. 2

cycles for Strat(“hilly”) and 2.67 cycles for Strat(“dune”).  (2) Another remarkable aspect of

these density functions is their shapes which are reminiscent of response time density

functions (e.g., Luce, 1986).  If we assume that response time (RT) is a linear function of the

number of processing cycles (i.e., RT = a * t + b, with a and b, two free parameters), Equation
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2 can be construed as an RT density function.  Applying this assumption to the above

example, this implies that categorizers will take longer to verify that a scene is a “dune” than

to verify that it is “hilly”.  This connection between average RT and average number of

processing cycles gives us a first quantitative handle on the experimental literature in

cognitive psychology.  We will see in the next section how SLIP can explain a large chunk of

the so-called basic-level literature.

2.  The basic-level literature

In Rosch, Mervis, Gray, Johnson and Boyes-Braem (1976, Experiment 7), participants

were taught the names of 18 objects at three levels of categorization–the subordinate (e.g.,

“Levis”, “Macintosh”), basic (e.g., “pants”, “apple”) and superordinate (e.g., “clothes”,

“fruit”).  These objects belonged to one of six possible non-animal taxonomies:  “musical

instruments”, “fruits”, “tools”, “clothes”, “vehicles”, and “furnitures”.  In a verification task,

subjects were shown a category name followed by a stimulus picture, and had to determine

whether they matched.  On average, categories at the basic-level were fastest to verify, and

categories at the subordinate level slowest (see also Hoffmann & Ziessler, 1983;  Jolicoeur,

Gluck & Kosslyn, 1984;  Murphy, 1991;  Murphy & Smith, 1982;  Murphy & Brownell,

1985;  Tanaka & Taylor, 1991).  This is the first of many verification experiments that

demonstrated a superiority at basic level of abstraction.  The SLIP model is perfectly adapted

to predicting basic-levelness that is, the average speed of categorization at various levels of

abstraction in a verification task.

Gosselin and Schyns (2001b) compared the predictive power of SLIP with that of four

other basic-level measures:  context model (Medin & Schaffer, 1978;  modified by Estes,

1994), category feature-possession (Jones, 1983), category utility (Corter & Gluck, 1992), and

compression measure (Pothos & Chater, 1998a, 1998b), drawing data from the empirical

work of Rosch et al. (1976), Murphy and Smith (1982), Mervis and Crisafi (1982), Hoffmann

and Ziessler (1983), Corter, Gluck and Bower (1988), Murphy (1991), Lassaline (1990),

Tanaka and Taylor (1991), Johnson and Mervis (1997), Gosselin and Schyns (1998), and

three novel experiments using computer-synthesized 3-D artificial objects.  SLIP led the pack

by a large margin predicting 88% of this (ordinal) data set, category utility 64%, category

feature-possession 62%, the compression measure 42%, and the context model 35%.

A critical aspect of basic-levelness is that it optimizes a number of indexes of

performance.  Convergence of all of these is crucial to establish a preferred categorization

level, even though verification speed is the most commonly used.  It was thus important for
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Gosselin and Schyns to show that SLIP is not limited to model category verification and they

did; however, this goes beyond the focus of this chapter.  The interested reader is referred to

Gosselin and Schyns (2001b), where most of what we have so far written was originally

presented.  Next, we will give a new twist on this relatively old story.  We will look at the

way categorization occurs through time at the atomic level.  This is an aspect of the question

that has been completely neglected in the categorization literature.

3. Discrete processing cycles

SLIP proposes that we apprehend the world via discrete processing cycles (i.e., the t’s

discussed above).  This is in clear disagreement with the apparent continuous nature of our

every-day experience of time.  We and others, however, have recently gathered compelling

evidence that our visual world does in fact tic (e.g., Van Rullen & Koch, 2003b; Ward, 2003).

Perhaps the most direct of these evidences comes from a recent study carried out in our

laboratory using a powerful experimental technique called Bubbles (Gosselin, Lapalme &

McCabe, in preparation).  We will describe this experiment in a somewhat detailed manner in

the following section.  This section can also be understood as a Bubbles primer; it will also be

useful because the technique is at the heart of several other experiments reported in this

chapter.

3.1 A Bubbles primer

Bubbles is a generic procedure that can reveal the information that drives a measurable

response (Gosselin & Schyns, 2001a).  Six decisions are required in order to set up a Bubbles

experiment: 1) what is the stimulus set, 2) in which space will stimuli be generated, 3) what is

the “bubble,” 4) what is the observer’s task, 5) what are the observer’s possible responses, and

6) is the analysis per observer, or per group of observers (Gosselin & Schyns, in press).  Next,

we discuss each of these decisions in the context of Gosselin et al. (in preparation).

3.1.1 Stimulus set? In a Bubbles experiment, the stimulus set is crucial because it

critically bounds what will be tested.  Gosselin et al. used 640 natural scenes equally divided

into eight categories (i.e., “city”, “highway”, “road”, “mountain”, “field”, “beach”, “houses”,

“forest”).  The scenes were gray shaded images of resolution 128 x 128 pixels (subtending 2.8

x 2.8 deg of visual angle).  The overall energy of the scenes was normalized.  These scenes

were presented for a duration of 150 ms.  Generally speaking, the larger the stimuli set, the

better the Bubbles solution should be.  A large stimulus set will tend to prevent observers

from adopting strategies atypical of natural processing.
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3.1.2 Stimulus Generation Space? The choice of a proper stimulus generation space is

one of the most important decisions when setting up a Bubbles experiment.  Gosselin et al.

searched the temporal dimension with a resolution of 120 Hz.  We will briefly describe other

stimulus generation spaces in section 5.1.1.

3.1.3 The samples?  At this stage, two important decisions have been made and the

search can almost begin.  In the search, information is sampled from the set up space, and the

next decision to make concerns the unit of sampling.  This unit depends on a number of

factors, including the stimuli, the nature of the search space and the task to be performed.

Here we varied the contrast of the scene through time.  The contrast of the scenes presented

by Gosselin et al. was modulated by a vector of Gaussian white noise low-passed with a

Butterworth filter at 30 Hz (to prevent flicker fusion).  Accuracy was maintained at 50%

correct by adjusting the maximum contrast of the scenes using a gradient descent algorithm.

3.1.4 The task?  At this stage, the sampling procedure has been fully specified.

Another important decision is that of the task.  In Gosselin et al., it was a categorization task.

Participants had to put the various scenes into the proper categories.  Several tasks can and

have been used with the same stimulus set.

3.1.5 Response? The response is an interesting parameter of a Bubbles experiment

because the technique is in principle sensitive to any measurable dependent variable.  In

Gosselin et al., observers pressed labeled keys corresponding to the eight scene categories.

Such key-press responses have been used to derive correct and incorrect responses (e.g.,

Bonnar, Gosselin & Schyns, 2002; Gibson, Wasserman, Gosselin & Schyns, in press;

Gosselin & Schyns, 2001a; Schyns, Bonnar & Gosselin, 2002; Vinette & Gosselin, 2002), and

response latencies (Schyns et al., 2002).  Electroencephalographic (EEG) activity have also

been used in past experiments (e.g., Schyns, Jentzsch, Johnson, Schweinberger, & Gosselin,

2003; Smith, Gosselin & Schyns, 2004).  Other responses could be the firing rate of single

cells, fMRI, galvanic skin response, plethysmograph, eye movements, and so forth. To the

extent that Bubbles is essentially an empirical tool, it is useful to record as many different

responses as possible (e.g., correct/incorrect, latencies and EEG in a face recognition

experiment).  It is difficult to predict before the experiment how responses will correlate with

the parameters of the search space..

3.1.6 Observers?  Depending on the objectives of the research, different types of

observers can interact with the bubbled stimuli.  Gosselin et al. used human observers.  Each

performed about 3,600 trials.  Brain lesion patients and animals have also performed Bubbles

experiments as will be seen in section 5.1.1
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3.2 Fossilized discrete processing cycles

Once the search has been run and the data are collected, the analyses can be

performed.  The goal of the search is to isolate a subspace of information correlated with the

measured response(s).  Typically, a multiple linear regression on the samples (explanatory

variable) and the responses (predictive variable) provides this solution.  For the study of

Gosselin et al. (in preparation) this analysis reduced to summing all the filtered noise vectors

that led to a correct response in a first vector – the correct vector – and all filtered noise

vectors, irrespective of accuracy, in a different vector – the total vector – and to dividing the

correct vector by the total vector element per element.  The result is a vector giving us the

probability that if a temporal slot is sampled a correct answer will be reached in this

experimental setting, i.e. a time classification image.  The first column in Figure 2 illustrates

the outcome of this analysis on ten subjects.

-----------------------------------------------------------------------------------

Insert Figure 2 about here

-----------------------------------------------------------------------------------

The most striking feature of these plots is the presence of a pulsation in the range of 20 to 27

Hz (i.e., within the beta bandwidth).  We believe that these are fossilized atomic discrete

processing cycles.  Another pulsation is present in some classification images (this is

especially obvious in the time classification images of subjects S2, S5 and S10).  This

additional pulsation, however, has a period just about an integer multiple (either 2 or 3,

depending on the observer) of that of the fastest pulsation; to us, this suggests that on some

trials – and for some yet unknown reasons – subjects “missed” one processing cycle out of

two or three.

In a related vein, Vinette et al. (2004) used a space-time version of Bubbles in order to

examine how, during a face identification task, visual information is extracted from stimuli in

the first 280 ms after their onset.  They obtained a clear pattern of results:  The eye on the left

side of the image became diagnostic between 47 and 94 ms after the onset of the stimulus;

after 94 ms, both eyes were used effectively.  More relevantly, Vinette et al. were the first to

observe a sinusoid pulsation in the range of 7 to 14 Hz (i.e., within the alpha bandwidth) in

the effective use of temporal information.  They could not reveal beta pulsations because they

did not have the temporal resolution required to do so.

In order for time-locked classification images to reveal anything at all, time slots need

to possess special values.  This requirement was satisfied in the two experiments just



9

described because the processing cycles they revealed are 1) regular and 2) in phase with

stimulus onset1.  To a SLIP categorizer, however, temporal slots do not have any special

meaning; and thus we cannot learn anything about a SLIP categorizer with time classification

images.  In the next section, we will show how the data from a Bubbles experiment can be

analyzed differently and inform us about a SLIP categorizer.

3.3 What can temporal bubbles reveal about a SLIP categorizer?

So far the Bubbles procedure has only been modeled for the Linear Amplifier Model

(LAM) observer in the spatial domain (Murray & Gold, 2004).  Here, we sketch an answer to

the question: What can temporal bubbles reveal about a SLIP categorizer?

We will assume that a SLIP detector can fail at time t either because it is noisy or

because no bubble reveals information.  In Gosselin et al.’s (in preparation) experiment, a

sample either reveals or does not reveal information at a particular time slot with equal

probability.  The behavior of a SLIP categorizer during such an experiment can be described

by replacing the γ j  in equations 1 and 2 by ′γ j = .5γ j .  Apart for this “slowing down”, we

will suppose that the categorization process of a SLIP categorizer is unaltered by the sampling

occurring during a Bubbles experiment (for a thorough discussion of this issue see Gosselin &

Schyns, 2004).

What really matters to a SLIP categorizer then is the number of processing cycles

during which information was revealed.  Suppose, for example, that on a particular trial, one

bubble falls on the first processing cycle and another bubble falls on the fourth processing

cycle.  Information is thus revealed for a total of two processing cycles.  During other trials,

information will be revealed for a total of 1, 2, 3, … processing cycles.  And, for each of these

information slots, it is possible to compute the probability of a correct response.  We will call

the resulting vector of proportion correct an information classification image.  We mentioned

at the beginning of this chapter that the cumulative probability that a SLIP strategy

comprising n sets of redundant detectors is completed at processing cycle t or before – i.e., the

expected information classification image of any given SLIP categorizer – is given by

Equation 1.  The meaning of t in the Equation must however be slightly modified:  “tth

processing cycle” must be replaced by “tth revealed processing cycle”.

                                                  
1 SLIP postulates processing “spikes” rather than the “sinusoid” oscillations observed.  However, given some
phase uncertainty (e.g., modeled by the convolution with a Gaussian function), the former can be made to mimic
the latter.
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In the Bubbles experiment of Gosselin et al. (in preparation), information classification

images can be estimated as follows:  The number of processing cycles available to an

observer on trial t is proportional to the sum of the elements of the filtered Gaussian noise

vector employed to sample visual information on that particular trial weighted element by

element by that observer’s time classification image (see previous section 3.2 Fossilized

discrete processing cycles).  The second column in Figure 2 displays the information

classification images extracted using this procedure on the ten subjects of Gosselin et al..  In

theory, once we have extracted the empirical information classification image of a human

categorizer, we can bestfit it to Equation 1 (with the γ j , not the ′γ j ) and the parameters that

minimize the error are estimates of the SLIP categorizer closest to that particular human

being.  Before we can apply this scheme practically, however, a tremendous quantity of work

will need to be done.  For example, we will have to study just how identifiable a SLIP

categorizer is given an information classification image.  To be continued…

4.  The need for flexibility and a paradox

So far our story has been to a large extent at least a success story.  We will now turn to

limitations of the SLIP model and models like it and to ways to overcome these limitations.

We hope that this will point toward new directions for research in categorization unfolding

through time.

4.1 Limited processing capacity

There is a long and venerated tradition of research on the topic of information

processing capacities in the field of human cognition (e.g., Broadbent, 1958).  We will not

dwell much on this vast literature here.  It will be enough for our purpose to cite a few

representative examples.  Most of the experiments in this field demonstrate one way or

another that human information processing capacities are far less impressive than what

humans would naïvely expect.  In a seminal article, Miller (1956) showed that our short term

memory has a capacity of seven give or take two “chunks” of information.  Similarly, “object

tracking” experiments performed by Pylyshyn and colleagues have shown that we can only

track four or five moving targets simultaneously (e.g., Sears & Pylyshyn, 2000).  The most

striking demonstrations ever perhaps come from so-called “change blindness” experiments.

Observers are asked to detect important changes in a natural or an artificial scene and are

shown to be ridiculously poor at it (e.g., Rensink, O’Regan & Clark, 1997; Simons & Levin,
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1997; Simons, 2000b (see the special issue of Visual Cognition); Most, Scholl, Clifford &

Simons, in press).  In the related paradigm of “inattentional blindness” (Mack & Rock, 1998;

Simons, 2000b), observers are asked to perform a task that, unbeknownst to them, is a

distraction task (e.g., to count the number of times the members of team in white T-shirts pass

a basketball).  In small portion of the trials something different happens (e.g., a human

dressed in a gorilla suit walks to the center of the scene, turns toward the spectators, beats its

chest with its hands a few times, and walks away).  Usually less than one fourth of the

participants notice these odd trials (Mack & Rock, 1998; Simons, 2000a).

As we have written en passant the SLIP model implements this psychological reality

by having only a subset of all available detectors activated simultaneously.  So if we are blind

to a large change occurring in a natural scene – say an engine disappearing from the wing of

an airplane – it is because not enough of the relevant detectors are active to complete the

verification on time; and it suffices to activate more of these relevant detectors to see the

change.

4.2 The need for flexibility

The limited processing capacity of the cognitive system implies that a selection of

information must occur.  There is now a wealth of evidence that this does in fact happen.  We

will review some of the most compelling empirical evidences for this in section 5.2 Flexible

iterative processing sweeps.  As a preview, here we will consider an experiment performed

with the four artificial scenes of Figure 1 (Gosselin & Schyns, submitted).  In a learning

phase, all participants learned to categorize the four scenes at a general and at a specific level.

At a general level, the LUMI participants learned to separate the four scenes into “flat” and

“hilly” on the basis of luminance cues; and the CHRO participants learned to separate the

same scenes into “grassy” and “sandy” on the basis of chromatic cues.  At a specific level of

categorization, both LUMI and CHRO participants learned to categorize the stimuli as either

“field” (the combination of is_flat and is_grassy), “desert” (is_flat and is_sandy), “mountain”

(is_hilly and is_grassy) or “dune” (is_hilly and is_sandy).  In a testing phase, participants

were instructed to categorize the scenes at their most specific level (never at their general

level).  Note that the specific categorizations are strictly identical in the groups, which only

differ on the dimension structuring their high-level categorizations.  The conjunctive nature of

the stimuli can be used to determine indirect effects of diagnosticity.  In the context of the

SLIP categorizer, Gosselin and Schyns predicted that CHRO observers would weight the

chrominance dimension more heavily than the luminance dimension, whereas LUMI
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observers weighted the luminance dimension more heavily than the chrominance dimension2.

This would happen if each group was tuned to chromatic and luminance information to

maximize their categorization potential.  After a successful test only on the luminance (vs.

chrominance) dimension, the LUMI (vs. CHRO) group can already categorize the scene at a

general level whereas the CHRO (vs. LUMI) group cannot.

Here this does not help the participants much but in real life putting an object in a

category allows them to infer unseen features (e.g., Rosch, 1978; Anderson, 1990).  Consider

the example of Pi Patel, the main character in Life of Pi, on his raft with an unknown thing.

At least two categorization routes of similar processing time can lead him to the same

conclusion: “Richard Parker” is standing just in front of me.  The first route would initially

verify that the thing possessed distinctive tiger marks (property a), then the specific eye color

of Richard Parker (property b).  The second route would perform the same property tests, but

in the opposite order (eye color before distinctive tiger marks).  Both routes lead to the same

final outcome in the same time:  “This is Richard Parker, a tiger”.  However, in the first route,

the initial testing of the tiger marks provides an intermediate “tiger” categorization before the

specific “Richard Parker”, allowing Pi Patel to react faster.  This intermediate categorization

arises from the generic knowledge that tigers have tiger marks.  However, in this struggle,

perspective matters.  “Richard Parker” would probably prefer the second route, for an

effortless dinner.  In contrast, evolutionary arguments would probably select the first route:  a

“tiger” is after all a man-killer.

Very little is known about how categorizations are embedded in real life.  Gosselin

and Schyns’ experiment suggests however that beyond the probabilistic preference for

categories with high basic-levelness induced by their feature structure, we are biased for a

sequence of categories.  There is actually some indication of this in the face recognition

literature: Liu, Harris and Kanwisher (2002), after having conducted a MEG study, proposed

that face perception should be divided into stages: a first stage where the stimulus is

categorized like a face (occurring in the first 100ms) and a second stage, completed after

about 170 ms, where the face is identified at an individual level.  Sugase, Yamane, Ueno and

Kawano (1999) have obtained similar results performing unicellular recordings in macaque.
                                                  
2 Gosselin and Schyns (submitted) adapted SLIP to predicting the error patterns of subjects in this
situation.  In a nutshell, they used Equation 1 and corrected it for guessing.  The average bestfits for
the various types of response are reproduced in Figure 1b.  Importantly, observer groups assigned
orthogonal weights to the luminance and chrominance dimensions (with the CHRO vs. LUMI group
biased to the chromatic vs. luminance dimension, with greater weights of about .6) even though
categorizations at the specific level (the task to resolve) was itself unbiased to one or the other
dimension.
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These authors showed that information contained in a face is used in a first rapid stage where

global information allow the discrimination between macaque and human face and a second

slower stage where finer information is used in order to identify face or categorize facial

expression.

4.3 Back to the paradox

We have seen how the limited processing capacities of humans necessitate flexibility,

and that this flexibility has, to some degree, now been incorporated into categorization

models.  However, the above SLIP story and ones like it, for all their appeal, inexorably lead

to a paradox:  How can a categorizer know which detectors to turn on before knowing what is

out there?  And, reciprocally, how can a categorizer know what is out there before turning the

relevant detectors on?  We will devote the next few pages on ways to resolve this paradoxical

situation.

5. Categorization as an iterative process

Our resolution of the above paradox will be two-fold:  We will argue that a subset of a

SLIP categorizer’s – or any other categorizer’s – detectors is always activated and that the

remainder is used in a flexible manner, informed by previously activated detectors.  Many

theoretical proposals in the visual recognition literature are in line with this answer.  We will

review these proposals, with categorization always on our minds.  We will also describe a

portion of the empirical work that supports these theories.

5.1 Compulsory feedforward processing sweeps

Ullman (1984) was among the first to propose that object recognition is informed by

feedforward compulsory processing sweeps (or visual routines as he called this theoretical

construct).  Some detectors – using the terminology of the SLIP framework – would always

be activated and would thus allow for surprise, for unexpected things to be discovered.  Of

course, these detectors cannot fully categorize the visual scene; otherwise, we would be back

to square one paradoxically speaking.  This compulsory feedforward processing sweep,

however, can attract our attention – guide the activation of our flexible detectors – toward

suspicious-looking, partially processed objects.

Numerous studies performed by Thorpe and his research group as well as by others

demonstrate the capacity of human subjects to categorize visual scene very rapidly.

Assuming that flexibility and feedback require time, this rapid processing supports the claim
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that a compulsory feedforward sweep can perform relatively complex processings (e.g.,

Delorme, Richard & Fabre-Thorpe, 2000; Fabre-Thorpe, Delorme, Marlot & Thorpe, 2001;

Thorpe, Fize & Marlot, 1996; VanRullen & Thorpe, 2001a).  It has been demonstrated, for

instance, that human participants can categorize a natural scene flashed for 20 ms with high

accuracy (94%; Thorpe et al., 1996). In such ultra-rapid categorizations, a differential

electrophysiological component distinguishes target from non-target scenes around 150 ms

following stimulus onset (Thorpe et al., 1996); this brain activity is also correlated with the

subject’s decision about the status of the stimulus (i.e. target vs non-target; VanRullen &

Thorpe, 2001c).  It seems likely that the mechanisms involved in ultra-rapid categorization are

purely feedforward and encapsulated (Fabre-Thorpe et al., 2001; VanRullen, Delorme &

Thorpe, 2001; VanRullen & Koch, 2003a): The performance of subjects in such tasks does

not increase with training even for period as extensive as 14 days (Fabre-Thorpe et al., 2001).

Furthermore, a purely feedforward biologically-inspired neural network was shown to be

sufficient to duplicate ultra-rapid categorization performance in humans (Delorme & Thorpe,

2001; VanRullen, Gautrais, Delorme & Thorpe, 1998).

Likewise, it was shown that ultra-rapid categorization of natural scenes (Li,

VanRullen, Koch & Perona, 2002) and gender discrimination of faces (Reddy, Wilken &

Koch, 2004) are possible in the near absence of attention.  The performance of human

subjects in both of these tasks was shown to be unimpaired by a dual-task requiring attention.

Using a battery of experimental tools, LeDoux and colleagues (e.g., Armony & Ledoux,

2000) have shown that fearful faces are processed in a fast and feedfoward manner by the

amygdala and can subsequently drive behaviour.  One question that remains unanswered by

all these experiments concerns the nature of the information processed during these

compulsory feedforward sweeps.

5.1.1 The nature of the information processed during compulsory feedforward sweeps

Adolphs, Gosselin, Buchanan, Tranel, Schyns and Damasio (2005) used the Bubbles

technique (see section 3.1 A Bubbles primer) to pinpoint the nature of the information

processed by the amygdala during a fearful versus happy face discrimination task.  They

compared the information used effectively to recognize emotion through facial expression by

SM, a rare female patient with complete, bilateral damage restricted to the amygdala, with the

information used effectively by 10 matched controls.  Each subject was submitted to about

3,000 trials.  In a trial, one of four faces was transformed in an image generation space

comprising three dimensions (i.e., the standard X and Y axes of the image plane, plus a third



15

Z axis representing spatial frequencies), and was sparsely revealed by randomly located

Gaussian holes.  This sampling procedure is illustrated in Figure 3a.  Adolphs et al. then

performed multiple linear regression on the location of the Gaussian holes and response

accuracy to determine which areas of the image generation were used most effectively.  These

regression coefficients were Z-transformed, thresholded at 1.65 (p < .05), and used to

construct effective faces.  The results are illustrated in Figure 3b.  They clearly show that the

amygdala is involved in the processing of high spatial frequency eye information.

-----------------------------------------------------------------------------------

Insert Figure 3 about here

-----------------------------------------------------------------------------------

In another study using the same Bubbles search space, Bacon, Vinette, Gosselin and

Faubert (2003) examined which type of information maximizes conscious and unconscious

priming (they used the task devised by Dehaene et al., 2001).  Their results indicate that

conscious priming depends mostly on high spatial frequency, local features whereas

unconscious priming depends mostly on global features in the lower spatial frequency range

(see Figure 3c).  This, as you will learn in the next section of this chapter, is perfectly

consistent with the recent theoretical proposals of Bar (2003) and Bullier (2001a; 2001b).

5.2 Flexible iterative processing sweeps

The previous section reviewed the evidence for the existence of compulsory

feedforward processing sweeps or, transposed into the SLIP framework outlined above, for

the compulsory activation of some detectors.  Compulsory feedforward sweeps fit

marvelously well within the “standard” feedforward anatomical hierarchy of the visual system

(Felleman & Van Essen, 1991).  It is easy to understand why this has led mostly to bottom-up

and constructivist models of information processing in the brain (Biederman, 1987; Marr,

1982).  Recent experiments, however, have seriously challenged this viewpoint by showing

the crucial importance of top-down processing (see also section 4.2 The need for flexibility).

These studies have thus set the stage for new explanatory models comprising either simple

top-down components, or complicated iterative loops.  We will present physiological

evidences for the existence of iterative loops as well as three models that mix early

compulsory feedfoward processing sweeps with late iterative processing sweeps.

According to Bar (2003), to Bullier (2001a; 2001b) and to DiLollo et al. (2000), the

visual scene would be partially analyzed by rapid and direct projections from the early visual

areas to the higher visual areas.  This would yield a top-down working hypothesis informing
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the ongoing ascendant analysis.  This descendant modulation reduces the number of possible

solutions for a particular retinal stimulation.  DiLollo’s model is not precisely constrained

anatomically.  The other two are:  In Bar’s model, the information is first projected to the

prefrontal cortex and comes back to the infero-temporal cortex; and, in Bullier’s model, it is

sent to V5 and comes back to V1/V2.  In both these models the first sweep contains low

spatial frequencies.  We have already seen empirical evidence for this at the end of the last

section (see Bacon et al., 2003).  In any case, Bar’s and Bullier’s models are illustrated in

Figure 4.

-----------------------------------------------------------------------------------

Insert Figure 4 about here

-----------------------------------------------------------------------------------

5.2.1 Empirical evidence for flexible and iterative processing sweeps

Many physiological and electrophysiological studies lend support to the existence of

such iterative processes, implicating feedback or reentrant information.  We will review the

four types of argumentation that have been put forward: 1) the anatomical importance of brain

projections (i.e., size of the pathways revealed by tracing and autoradiography techniques)

and their functional importance (i.e., revealed by measures of the functional effect of

inactivating one cortical area) are not always highly correlated (Vanduffel, Payne, Lomber &

Orban, 1997); 2) despite what the topology of the visual system suggests, the visual cortex is

temporally compact (Girard, Hupe, & Bullier, 2001; Hupe et al., 2001); 3) the temporal

characteristics of neuronal response support the idea that cortical areas are implicated in

different visual analyses at different moments in time (Lamme & Roelfsema, 2000; Lee,

Mumford, Romero & Lamme, 1998); and 4) low-level cortical areas like V1 can produce

sophisticated responses incompatible with their classical function of simple features detectors

(Lee et al., 1998).  Only the last three points will be detailed next.

5.2.1.1 The visual cortex is temporally compact. Two conditions must be met for the

responses of neurons in low-level cortical areas to be modified through time: some neurons in

higher-level areas must be activated rapidly; and these areas must feedback rapidly into the

low-level cortical areas (Bullier, 2001b).  A recent meta-analysis of studies that measured

latencies of the visual response of neurons in different cortical areas revealed a temporal

hierarchy that diverges considerably from the anatomical (classical) hierarchy (Lamme &

Roelfsema, 2000).  Furthermore, this meta-analysis showed that neurons in MT and FEF



17

(frontal eye field) areas are activated as rapidly as V1 neurons (MT: minimum = 39ms, mean

= 76 ms; FEF: min = 43 ms, mean = 91 ms; V1: min =  35 ms, mean = 72 ms) and are

activated more rapidly than neurons located in areas as low as V2 (min = 54 ms, mean = 84

ms) and V3 (min = 50 ms, mean = 77 ms) (Bullier, 2001b; Lamme & Roelfsema, 2000).  This

is perfectly consistent with Bar’s (2003) model as well as with Bullier’s (2001a).  Numerous

factors could contribute to this lack of correspondence between topology and latencies of

activation.  First, neurons do not receive all their inputs via the shortest possible paths;

second, propagation speed of visual information differs according to neuronal pathways: a

well-known distinction exists between magnocellular (fast), parvocellular (moderate) and

koniocellular (slow) pathways; lastly, it is possible to bypass the LGN through, for example,

the superior colliculus and the pulvinar, and to directly feed the extrastriate cortex with visual

information (Lamme & Roelfsema, 2000).  Concerning the conduction speed of top-down

pathways, Girard et al. (2001; see also Panzeri, Rolls, Battaglia & Lavis, 2001) observed fast

feedback from V2 to V1 (roughly 3.5 m/s).  This speed is most than sufficient to allow for a

very rapid influence of high cortical areas on lower ones.

5.2.1.2  A given cortical area is implicated in different analyses at different moments.

The response of cortical neurons is not constant.  Instead, it seems that cortical neurons

participate in different analyses at different moments (Lamme & Roelfsema, 2000).

Modulations in neuronal responses across time have already been observed in the LGN

(DeAngelis, Ohzawa, & Freeman, 1995), V1 (Ringach, Hawken, & Shapley, 1997, 2003) and

IT (Sugase et al., 1999).  Ringach et al. (1997), for example, have shown that while the V1

neurons receiving a direct input from LGN (layers 4Cα et 4Cβ) have a constant preferred

orientation through time, the preferred orientation of neurons in subsequent layers (2, 3, 4B, 5

et 6) drastically changes over time.  It appears to be impossible to explain modulations such as

the one just described with an exclusively feedforward model (Ringach et al., 1997).  Instead,

Lamme and Roelfsema (2000) proposed that a compulsory feedforward sweep of activation

lasting about 100 ms is followed by horizontal (i.e., from the same cortical area) and top-

down influence lasting about 200 ms.

5.2.1.3  Low order cortical areas are responsible of sophisticated responses.  Cortical

neurons, even those of V1, are not simple detectors responding selectively to one particular

feature of the visual scene.  Some neurophysiological data (e.g. Lee et al., 1998) show that V1

is capable of sophisticated responses comparable with those of Ullman’s (1984) visual
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routines and Marr’s (1982) computations.  As we have just seen, V1 processes different kinds

of information over the 40-350 ms post-stimulation period.  Although the initial V1 response

(40-60 ms) seems to amount to local feature detection, numerous evidences show that

subsequent responses (80-200 ms) depend on contextual information and involve higher-level

processing (Kosslyn, Thompson, Kim, & Alpert, 1995; Lee et al., 1998).  According to Lee et

al. (1998), the time-course of the V1 response argues for its gradual involvement in more and

more sophisticated computations, and for its implication in tasks as complex as figure-ground

segmentation and objects recognition.  In sum, V1 would not be a simple module used in the

processing of local features but would rather be a high-resolution buffer used for all sorts of

visual processing feats.

5.2.2 Deactivation studies.

The most direct evidences for a top-down influence on low-level visual processing

perhaps comes from so-called deactivation studies.  Hupe et al. (2001) have demonstrated a

significant feedback effect of MT on V1, V2 and V3 less than 10 ms after deactivation (see

also Girard et al., 2001).  A series of recent transcranial magnetic stimulation (TMS)

experiments with macaques and humans have shown that top-down processing is necessary

for visual consciousness (Pascual-Leone & Walsh, 2001; Ro, Breitmeyer, Burton, Singhal, &

Lane, 2003; Walsh & Cowey, 1998).  For example, Pascual-Leone and Walsh (2001)

impaired the conscious perception of moving phosphenes “normally” produced by stimulating

area MT with TMS by stimulating area V1/V2 with TMS, 5 to 40 ms latter.  The most

plausible interpretation of this result is that MT activation is not sufficient to perceive moving

phosphenes, that this perception requires V1/V2 in order to provide a spatial context to the

stimulation.  Others cortical areas responsible for conscious perception would also suffer from

an interruption in top-down communication between MT and V1/V2 by not receiving enough

activation (Bullier, 2001a; Pascual-Leone & Walsh, 2001; Pollen, 2003).

6.  General Discussion

We could not come to term with the thought of finishing this chapter without having

even attempted to incorporate these relatively novel considerations about the necessity of

having both compulsory and flexible feature detectors into a unique categorization model.

Although we will not describe a fully articulated model here, we will “day dream” about such

a model within the SLIP framework.
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The question is: What is the optimal way to use a subset of s flexible feature detectors

to put an unknown object into one or many categories given Ht, a subset of our entire category

hierarchy at processing cycle t, and C, a set of compulsory feature detectors?  Our working

idea is to apply Bayes’ theorem sequentially (for another example of sequential use of Bayes’

theorem in categorization, see Anderson, 1990, 1991) to estimate P(fi,t+1), the probability of

encountering feature i in the environment at processing cycle t+1 given all the elements that

we have already listed plus di,t, the fact that we have or have not detected this feature either

with compulsory or flexible feature at processing cycle t.  Bayes theorem warrants that

P(fi,t+1) = k-1P(fi,t)P(di,t|fi,t) (Equation 3),

where k is equal to ∑P(ft)P(dt|ft).  Finally, at processing cycle t+1, we shall activate sP(fi,t+1)

flexible detectors of feature i.

To illustrate the computation of the two main components of Equation 3, consider

once more Pi Patel on his raft facing an unknown thing.  During the first processing cycle, Pi

Patel detects distinctive tiger marks on the unknown thing with one of its compulsory feature

detector.  This implies that only the features found in the “tiger” branches of Pi Patel complete

category hierarchy should be looked for at time t+1; there is absolutely no need to search

those found in the “inanimate” branches or in the “all animals except tiger” branches.

Fortunately for us, Pi Patel knows only two tigers: “Richard Parker” – defined by the

additional Richard Parker’s eye color feature – and Walt Disney’s rendition of “Shere Khan”

– defined by the additional Shere Khan’s eye color feature –, the tiger from Rudyard

Kipling’s classic.  Assuming that both these features are detectable by unique flexible feature

detectors, we have P(fi,t) = .5, with i = {Richard Parker’s eye color, Shere Khan’s eye color}.

All the other flexible detectors should be given a probability of being part of the unknown

object equal to 0.  In the Bayes’ theorem, this probability function is called the prior.

Is that all we can derive from the first processing cycle?  No, we can also gain

information about what is not out there based on both the flexible and the compulsory feature

detectors that were activated but have remained quiet.  Suppose for example that some

detectors of Shere Khan’s eye color were activated during this first processing cycle but did

not fire.  Either the unknown thing does not possess the Shere Khan’s eye color feature, or it

does but the detectors failed to detect it.  We have already mentioned the later in the first

section of this chapter: in fact, P(dit|fi,t) = φi .  Let us suppose, for the sake of the present

illustration, that, in the present case, this quantity is equal to .5.  And because no Richard

Parker’s eye color flexible feature detectors were activated during processing cycle t, its
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associated P(dit|fi,t) is given a value of 1.  This probability function is known as the likelihood

in Bayes’ theorem.

Combining the prior and the likelihood as shown in Equation 3, we obtain

probabilities of (.5 * 1) / (.5 * 1 + .5 * .5) = 2/3 for the Richard Parker’s eye color and (.5 *

.5) / (.5 * 1 + .5 * .5) = .1/3 for the Shere Khan’s eye color.  This probability function is called

the posterior in Bayes’ theorem.  Finally, the posterior is multiplied by s to set the activation

level of the flexible feature detectors at processing cycle t+1.  If Pi Patel could simultaneously

activate 90 flexible feature detectors due to limited processing capacities (see section 4.1), he

would activate 2/3 * 90 = 60 and 1/3 * 90 = 30, for Richard Parker’s eye color and for Shere

Khan’s eye color, respectively.

An entirely satisfying account of effective categorization through time would address

two more points: 1) how evolutionary pressures promote the cohabitation of mandatory and

flexible detectors; and 2) how evolutionary pressures select the fixed detectors.  Recent work

by Geisler and Diehl (2002, 2003) that combines Bayesian models of perception with

Bayesian models of evolution provide a promising research avenue. We intend to fully

develop the categorization model outlined above and add such an evolutionary spin to it in the

near future.
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Figure captions

Figure 1.  (a) The four scenes used in this experiment and the corresponding low-level category names learned

by all participants (“field”, “mountain”, “desert”, and “dune”), and the high-level categorizations (“flat” and

“hilly”) that LUMI observers learned.  The two histograms illustrate the RT curves of a SLIP putting a scene in a

high- and a low-level category.  (b) Proportion of the four error types in function of presentation time for each

observer group. The solid and dashed lines are, respectively, the average bestfits of the SLIP model to the LUMI

and to the CHRO participants individual data points.  The black curves represent the proportion of errors on none

of the perceptual dimensions (e.g., respond “field” when presented with a field scene); the green curves represent

the proportion of errors on the luminance dimension (e.g., respond “mountain” when presented with a field

scene); the red curves represent the proportion of errors on the chrominance dimension (e.g., respond “desert”

when presented with a field scene); and the blue curves represent the proportion of errors on all dimensions (e.g.,

respond “dune” when presented with a field).

Figure 2. The leftmost column gives the time-locked classification images extracted from ten subjects using a

temporal version of the Bubbles technique.  Notice the fast oscillation (in the beta bandwidth; a total of about 4

cycles in the temporal window of the experiment) present in all classification images.  The rightmost column

shows the result of a different analysis of the same data, i.e. information classification images.  See main text for

details.

Figure 3.  (a) This illustrates how Adolphs, Gosselin, Buchanan, Tranel, Schyns and Damasio (2005) sampled

their faces at five independent bands of spatial frequencies (one octave each, with cutoffs at 22.38, 11.19, 5.59,

2.80, and 1.40 cycles per deg), to yield sparsely revealed images whose integration resulted in the final stimuli

that subjects saw (far bottom right).  (b) Average difference between the effective use of information by SM and

the 10 normal controls.  (c)  Results of Bacon, Vinette, Gosselin and Faubert (2003).  The top row contains the

diagnostic regions for the conscious condition (i.e., high-spatial frequencies) and the bottom row contains the

diagnostic information for the unconscious condition (i.e., low-spatial frequencies).

Figure 4.  This outlines the models of Bullier (2001a) and of Bar (2003). According to Bullier (2001a), an

iterative loop joins the V1/V2 area and MT/MST one.  According to Bar (2003), an analogue loop starts from the

V2/V4 area, goes through ventrolateral and orbital PFC and retro-injects information into IT and the amygdala.

(LGN : lateral geniculate nucleus; PFC : prefrontal cortex; IT : inferotemporal).
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