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So out of the ground the LORD God
formed […] every bird of the air, and
brought them to the man to see what he
would call them;  and whatever the man
called every living creature, that was its
name.

(Genesis, 2:19)
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Abstract

This dissertation introduces a new measure of basic-level

performance (Strategy Length & Internal Practicability, SLIP).  SLIP

implements two computational constraints on the organisation of

categories in a taxonomy:  the minimum number of feature tests required

to place the input in a category (strategy length) and the ease with which

these tests are performed (internal practicability).  The predictive power of

SLIP is compared with that of four other basic-level measures:  context

model (Medin & Schaffer, 1978;  modified by Estes, 1994), category

feature-possession (Jones, 1983), category utility (Corter & Gluck, 1992),

and compression measure (Pothos & Chater, 1998a), drawing data from

the empirical work of Rosch et al. (1976), Murphy and Smith (1982),

Mervis and Crisafi (1982), Hoffmann and Ziessler (1983), Corter, Gluck

and Bower (1988), Murphy (1991), Lassaline (1990), Tanaka and Taylor

(1991), and Johnson and Mervis (1997).  Nine experiments further test the

validity of the computational constraints of SLIP using computer-

synthesised 3-D artificial objects, artificial scenes, and letter strings.  The

first five experiments examine the two constraints of SLIP in verification.

Experiment 1 isolates the effect of strategy length on basic-levelness, and

Experiments 2a and 2b that of internal practicability.  Experiment 3

examines the interactions between the two factors.  Experiment 4 tests,

whether, as predicted by SLIP, there is a linear relationship between

strategy length and response times.  The last four experiments study the

two computational constraints in naming.  Experiment 5a isolates the

effect of strategy length, and Experiment 5b that of internal practicability.

Experiment 6 examines the time-course of the effect of strategy length.

Finally, Experiment 7 looks at the effect of robustness (i.e., the idea an
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approximate categorisation is better than none) on the order of feature

tests in length 2 strategies.
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Preamble

The 20-question game

Most of you have played the 20-question game.  A minimum of

two players is required.  A category name which applies to the real world

is chosen by one of the players (we will call him the answerer).  The other

players (we will designate them as the guessers from now on) try to

discover the selected name after having asked as few yes/no questions as

possible.  The answerer must answer truthfully to these questions.  Any

type of binary query is allowed in 20-questions.  Thus, guessers could

inquire whether the chosen word begins with a letter prior to “n” in the

Latin alphabet, whether it has more than two vowels, whether it sounds

like the mating call of a moose, and so on.  The usual tactic, however,

consists in asking relational questions, i.e. questions that reveal certain

relations between the target category and another category, rather than

orthographic, phonetic, or phonologic questions.  There are four possible

relations between two categories:  independence (e.g., natural is

independent of man-made), synonymy (e.g., physician is a synonym of

medical doctor), partial overlap (e.g., blond partially overlaps woman),

and inclusion (e.g., mammal is included in animal).  By extension, there are

four broad kinds of binary-relational questions that can be asked.

In the 20-question game, the preferred type of relational question is

inclusion, starting with highly general categories and going on to more

particular ones (Bendig, 1953).  This type of relation between categories is

also called an IS-A relation (Collins & Quillian, 1969).  For example, the

answerer could pick the name “Moby Dick”, and the guessers could find it

after the following dialogue:  “Is it an animal?”, “Yes.”;  “Is it a

mammal?”, “Yes.”;  “Is it a feline?”, “No.”;  [...]; “Is it a cetacean?”, “Yes.”;
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“Is it a whale?”, “Yes.”;  [...];  “Is it a white whale?”, “Yes.”;  “Is it Moby

Dick?”, “Yes.  It is Moby Dick.”.  The fact that it is possible at all to use

inclusions implies that at some cognitive level categories possess a tree

organisation.  Given the adaptability of humans, it is not too surprising

that categories are organised this way, and that people use this property

when playing the 20-question game:  it is the fastest known search

algorithm (e.g., Dewdney, 1989).  In the best of worlds, it would enable
someone to complete the game in log2(NUMBER_OF_CATEGORIES)

questions.

Category feature-structure vs. category tree

Most category trees implemented by computer scientists are

arbitrary insofar as they tell us nothing about the feature structures of

their categories.  From an optimal-search-algorithm standpoint, for

example, it does not matter in which one of the three possible complete

trees the four categories A, B, C, and D are inserted (i.e., {[(A) (B)] [(C)

(D)]], {[(A) (C)] [(B) (D)]}, or {[(A) (D)] [(B) (C)]}).  In humans, however,

category trees are not arbitrary;  they are also powerful feature inference

machines:  every category inherits the properties or attributes of related

more general categories.  For example, Moby Dick lives in the water like

all other whales and breathes air just like any other mammal.  We will say

that humans organise their categories in feature-structures (category

structures, hierarchies, and taxonomies).  Category feature-structures are

special category trees.

Are all the categories or nodes in humans’ category feature-

structures equal?  More specifically, is there a level of organisation in this

hierarchy which is psychologically superior?  We will now briefly review

the evidence that one level has a special psychological status.
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Basic-level phenomenology, short version

In Rosch, Mervis, Gray, Johnson and Boyes-Braem’s (1976,

Experiment 7), participants were taught the name of 18 objects at three

levels of categorisation–the subordinate (e.g., Levis, Macintosh), basic (e.g.,

pants, apple) and superordinate (e.g., clothes, fruit).  These objects belonged

to one of six possible non-biological taxonomies:  musical instruments, fruit,

tools, clothing, vehicles, and furniture.  In a verification task, subjects were

shown a category name followed by a stimulus picture, and had to

determine whether they matched.  Categories at the basic-level were

fastest to verify, and categories at the subordinate level slowest (see also

Hoffmann & Ziessler, 1983;  Jolicoeur, Gluck & Kosslyn, 1984;  Murphy,

1991;  Murphy & Smith, 1982;  Murphy & Brownell, 1985;  Tanaka &

Taylor, 1991).

The basic level is superior in many other respects:  (1) objects are

named quicker at this level than at any other level of abstraction

(Hoffmann & Ziessler, 1983;  Jolicoeur, Gluck & Kosslyn, 1984;  Murphy,

1991;  Murphy & Smith, 1982;  Murphy & Brownell, 1985;  Rosch et al.,

1976;  Tanaka & Taylor, 1991);  (2) objects are designated preferentially

with their basic-level names (Berlin, 1992;  Brown, 1958;  Rosch et al., 1976;

Tanaka & Taylor, 1991;  Wisniewski & Murphy, 1989);  (3) many more

features–especially shapes–are listed at the basic level rather than the

superordinate level, with only a slight increase at the subordinate level

(Rosch et al., 1976;  Tversky and Hemenway, 1984);  (4) throughout

development, basic level names are learned before those of other

categorisation levels (Anglin, 1977;  Brown, 1958;  Rosch et al., 1976;

Horton & Markman, 1980;  Markman, 1989;  Markman and Hutchinson,

1984;  Mervis and Crisafi, 1982);  and (5) basic names tend to be shorter

(Brown, 1956;  Rosch et al., 1976).  Convergence of these performance
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measures is crucial to establish a preferred categorisation level, even

though verification speed is the most commonly used.

There is considerable evidence that a basic-level superiority holds

across cultures for living kinds (for extensive reviews see Berlin, 1992, and

Malt, 1995).  Basic-level phenomenology also seems to hold across

domains (for a review see Murphy & Lassaline, 1997), such as computer

programs (Adelson, 1983), events (Morris & Murphy, 1990;  Rifkin, 1985;

Rosch, 1978), personality types (Cantor & Mischel, 1979), sign language

(Newport and Bellugi, 1978), environmental scenes (Tversky &

Hemenway, 1983), clinical diagnosis (Cantor, Smith, French, and Mezzich,

1980), and emotions (Shaver, Schwarz, Kirson, and O’Connor, 1987).

The aim of this dissertation

To summarise,  people organise their categories in special category

trees called category feature-structures.   The different levels of these are

not created equal.  Many indexes of performance are maximised at the so-

called basic-level.  The main goal of this dissertation is to explain why this is

so.

Basic terminology

It is worth pointing out at this point that the usage of “basic level” is

ambiguous in the literature.  It can refer to the middle-level of a three-

level hierarchy (with the level above called “superordinate” and the one

bellow “subordinate”–e.g., Markman, 1989), to an index of performance

(the fastest level, or the one most often used to name things, and so

forth–e.g., Corter and Gluck, 1992;  Anderson, 1990, 1991), or to both the

level of categorisation and the index of performance (e.g., Rosch et al.,

1976;  Mervis & Crisafi, 1982).  This ambiguity is beautifully illustrated in

Tanaka and Taylor’s (1991) “basic to subordinate shift” which is nonsense

unless one changes the meaning of “basic” from “index of performance”
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to “middle level of categorisation” in mid-air.  Henceforth, the basic-

levelness of a category will denote a measure of performance.  Whenever

possible, we will refer to the levels of abstraction as the subordinate, basic,

and superordinate.  Otherwise, we will use a set of unambiguous level

descriptors–e.g., low, middle, and high.  The subordinate-basic-

superordinate trio has the advantage of having a phase known to most

psychologists.  Although most experiments have probed these three

embedded categorisation levels, people can use many more levels in their

interactions with objects.  Berlioz, for instance, was a famous French

composer, an artist, a human, a mammal, a living organism, a bunch of

atoms, and so forth.  Sometimes we will use the more general level

descriptors:  H (highest level), H - 1 (second highest), H - 2 (third highest),

etc.
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Chapter 1.  General introduction:  basic-level
phenomenology, long version

In this chapter we shall discuss the basic-level phenomenology in

more detail.  The work of Eleonor Rosch and colleagues has been so

influential that it provides us with a “natural breaking point”, a basic event

in the basic-level literature:  we will first discuss the research conducted by

Rosch et al.’s predecessors, then their own contribution, and finally the

work of their successors.

We must point out that we understand the expression “basic-level

literature” in a most inclusive way that is, all articles that examined levels

of generality and have suggested that one of these is special in some

respect.  The name of this special level of categorisation varies throughout

time and area of study;  it is sometimes called level of usual utility (Brown,

1958), entry level (Biederman, 1987), entry point (Jolicoeur, Gluck and

Kosslyn, 1984), basic level (Rosch et al., 1976; and most of the psychological

literature), folk generic level (Berlin, 1972, 1992; as well as most of the

anthropological literature), genus level (Anderson, 1989, 1990), BOL (from

Rosch’s “Basic Object Level”; Posey, 1979), B0 (Taylor, 1990), and so on.

1.1  Before Rosch and colleagues

1.1.1  Brown’s level of usual utility

In his article How shall a thing be called?, Brown (1958) asked us to

consider a parent teaching a child the names of things in the world in his

native language.  The usual strategy consists of pointing at something and

saying “this is an X”.  This is an ostensive definition (see?).  Ostensive

definitions are inherently ambiguous.  Consider Brown’s dime example.

A dime could be named a “dime”, but also “money”, a “metal object”, a
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“thing”, and moving to subordinates, it could be designated as a “1952

dime”, or as a “particular 1952 dime”.  (Note that Brown is concerned only

with the vertical ambiguity–an ambiguity associated with level of

generality–in naming things, but a horizontal ambiguity–an ambiguity

associated with synonyms–also exists.  For example, “dime” is

synonymous with “10 cents”.)  How is a parent to select a name among all

these possibilities?  They could just select one randomly, and this would be

the end of the story.  This is not however what they do.  Brown appeals to

our intuition (like linguists often do) to convince us that a dime may be

named “money” or “dime”, but probably not “metal object”, “thing”,

“1952 dime”, and so on.  He then goes on to make a more general claim:

“Listening to many adults name things for many children, I find that their

choices are quite uniform and that I can anticipate them from my own

inclinations.” (Brown, 1958, p. 14).  Why is it that adults consistently

choose names at a certain level of categorisation?  His answer:  adults

have a notion of the language appropriate for use with children. “It seems

likely that things are first named so as to categorise them in a maximally

useful way.” (Brown, 1958, p. 20).  Brown calls the level of categorisation

at which these uniform choices occur the level of usual utility.

Brown’s (1958) contribution is more theoretical than empirical.  We

will come back to this in Chapter 3.  However, Brown is the first to have

emphasised this empirical reality that not all levels of generality are equal.

He also anticipated important research trends in the basic-level literature:

He proposed that the level of usual utility could be revealed by several

indexes of performance.  Brown mentions Zipf’s (1935) seminal work

which showed that word length is negatively correlated with word

frequency which is correlated with usual utility.  For example, the

monosyllable “dog” has much higher frequency according to the

Thorndike-Lorge list than do the polysyllables “boxer”, “quadruped”, and
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“animate being”.  Brown also suggested that children first learn names at

the level of usual utility.  This is founded on the fact that the child’s concrete

vocabulary comprises more words at the level of usual utility than at any

other level of generality.  For Brown, this follows from the parents’

tendency to use usual utility names in designating things to their children.

This was studied by developmental psychologists much later (e.g.,

Markman & Horton, 1980).  Brown’s utility principle was formulated with

great care to include possible individual differences.  The names used by

parents to designate things to their children are the most useful to

categorise them for non-linguistic purposes in their experience.  For a

numismatist (a coin collector), for example, a priceless 1910 dime is more a

“priceless 1910 dime” than simply “money” or a “dime”.  For the kids

from a particular neighbourhood a dog might be “Prince”, but it is a

“dog” for the rest of the world.  Brown also ventured that maybe the level

of usual utility of the parents differs from that of the children (c.f., the

Mervis child’s basic level).  This led to some research in anthropology (e.g.,

Berlin, 1992;  Berlin, Breedlove & Raven, 1973;  Boster, 1980;  Coley, Medin

& Atran, 1997;  Dougherty, 1978) as well as psychology (e.g., Rosch et al.,

1976; Tanaka and Taylor, 1992;  Johnson and Mervis, 1997).

1.1.2  Cognitive anthropology and the folk-generic level

Cognitive anthropologists are interested in how we segment the

world into categories.  They study the extent to which these categories are

given by the input, that is, by the environment, and the extent to which

they are created through constructive cognitive processes.  They look at

classification across cultures in a range of domains such as plants and

animals (ethnobiology), colour, kinship, textiles, and household objects

such as pots and bowls.  Of these, the ethnobiological studies have the

most commonalties with psychology;  furthermore, they have been the
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most rigourous in their approach (Malt, 1995).  We will thus focus on this

ethnobiological literature here.

We will examine three intertwined research themes:  (1) folk and

scientific taxonomies comparisons, (2) evidence for a preferred level of

categorisation, and (3) evidence for a universal preferred level of

categorisation (i.e., which holds across all cultures).  The third theme is

especially interesting because it goes beyond what standard cognitive

psychology has to offer.  Themes (1) and (2) are prerequisites for (3).  If

there is a universal preferred level of generality, then taxonomies must be

commensurable to a certain extent.  At the very least, they must share this

special level.  This is what (1) establishes.  We will spend some time on this

because it fleshes out the methods used by cognitive anthropologists to

address questions more relevant to us.  And if there is a universally

preferred level, then there must be a preferred level within each folk

taxonomy.  This is the question tackled in (2).

Many researchers have shown that folk and scientific

ethnobiological classifications overlap greatly.  (They have not compared

two folk taxonomies–an endeavour which would tap into their goal more

directly–because of the quantity of work this would involve;  the scientific

ethnobiological taxonomies are readily available (Malt, 1995).)

The scientific classification break-down for an African elephant, for

example, is Animalia (animal) at the kingdom level, Chordata at the phylum

level, Vertebrata (vertebrate) at the sub-phylum level, Mammalia (mammal)

at the class level, Proboscidea at the order level, Elephantidae (elephant) at the

family level, Laxodonta Africana (African elephant) at the genus level, and

Laxodonta Africana Vulgaris at the species level (e.g., Perrott, 1971).

Berlin (1972, 1992; see also Berlin, Breedlove & Raven, 1973) has

examined folk classification systems in the most thorough fashion:  He

studied plant classification in the Tzeltal Maya of southern Mexico and the
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Aguaruna Jívaro of north central Peru, two traditional cultures.

Psychologists know of this work especially for its description of folk

classifications as taxonomies with a preferred level of generality–the folk

generic level1–(see Rosch et al., 1976).  However, another important

contribution of Berlin’s research is the comparison of folk and scientific

taxonomies.  For his analysis of the correspondence of the Tzeltal folk

categories to the scientific categories, Berlin (1972; Berlin et al., 1973)

concentrated on the so-called folk-generic categories.  These correspond to

the most specific categories labelled by single words and to the most

common and salient categories (see Berlin, 1992).  Latter Rosch et al. (1976)

will argue that folk-generic and basic categories are roughly the same.

Berlin discovered 61% one-to-one correspondence between the Tzeltal

folk generic botanical categories and scientific botanical species.  This is a

rather large percentage of overlap.

Bulmer (1970) found a comparable level of overlap in the Kalam’s

of New Guinea taxonomy of vertebrate animals.  Instead of using folk-

generic categories like Berlin, he used terminal categories that is, the most

specific categories known to a culture.  Note that sometimes these are at

the folk-generic level, and sometimes they are more specific.  The Kalam

terminal categories overlap with 60% of the scientific zoological species.

Hunn (1977) studied the agreement between Tzeltal animal folk

categories and scientific animal categories at all levels of categorisation

(i.e., species, genus, family, etc.).  His measure of the degree of dissimilarity

between a folk and a scientific category is perhaps best explained by an

                                    
1  Although Berlin’s (1972) “folk generic level” became the standard expression to

designate this special level of categorisation in cognitive anthropology, it is worth

mentioning that Conklin (1954) had already used the expression “basic name” relative

to plant taxonomies to express the same idea.
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example.  Suppose that a folk category includes all the specimens of the

“Rodentia” scientific category and only those.  The dissimilarity measure

between the folk and the scientific category would be zero.  But if this folk

category also included moles and shrews that is, members of the scientific

order of “Insectivora”, then one level would have to be climbed in the

scientific taxonomy before all the folk category would be comprised in a

scientific one;  here the dissimilarity between the folk and the scientific

category would be one (Malt, 1995).  Hunn found 79% of zero dissimilarity

for birds categories, and 78% for mammals.  Most of the non-zero

dissimilarities were low.  Hunn concluded that the overlap between folk

and scientific categories is important.

A few studies suggest that utility plays a role in the way cultures

classify their environment.  Diamond (1966) remarked that even though

Fore had very specific categories for birds, they classified all butterflies in

one category.  Bird categories have a utility for the Fore because these

categories help the Fore hunt the birds that they like;  butterfly categories

have little interest.  Bulmer (1970) observed that the Kalam of New Guinea

tend to group biological species together when they are of no use to them.

A recent study conducted by Medin, Lynch, Coley and Atran (1997)

examined the effects of goals and interests on classification and reasoning

processes.  They showed that classifications made by landscape workers

were largely influenced by utilitarian factors.  For example, landscapers’

groupings of trees were frequently based on properties such as landscape

utility, aesthetic value, size, and weediness.

To summarise, people from different cultures organise their

environment in taxonomies, and these folk taxonomies overlap with

scientific taxonomies, although incompletely.  There is some evidence that

utility might play a role in how complete or incomplete these folk

taxonomies are.  The next question that cognitive anthropologists
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addressed will ring a bell:  are all these levels equivalent, or, alternatively,

is one special in some respect?

The evidence for a special level of categorisation in ethnobiological

studies comes from a number of independent studies of different cultures.

The structure of the names of categories from different levels of

categorisation is one type of evidence:  Both folk generic categories,  such

as “oak” and “redbud”, and the next higher level categories, such as

“tree” and “herb”, are reliably named with primary lexemes.  Folk-generic

categories are the most specific categories designated by primary lexemes.

Usually primary lexemes are single words (e.g., “maple”, “bass”), but they

can also be compound nouns (e.g., “poison oak” or “baby breath”), if they

do not contain the name of an immediate superordinate category (e.g.,

poison oak is not included in neither the poison, nor the oak category) and

contrast with categories that are primary lexemes (e.g., tulip tree contrasts

with primary lexeme categories such as oak and maple, and therefore is a

primary lexeme).  Lower-level category names are almost always

composed of two words:  the name of a superordinate category, preceded

by a modifier (e.g., “pine warbler”).  Moreover, the categories they

contrast with comprise the same superordinate category name in their

compound name (e.g., “palm warbler” contrasts with “Canada warbler”)

(see Malt, 1995).

Hunn’s analysis of the degree of correspondence between folk and

scientific taxonomies gives additional support to the claim that the folk-

generic level is superior to the others (see our earlier discussion of Hunn’s

research).  Ninety-one percent of the Tzeltal animal folk generic categories

have levels of dissimilarity of zero or one, whereas 85% of their

subordinate categories and 51% of their superordinate categories have the

same levels of dissimilarity.
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Another evidence is that folk-generic categories outnumber all the

other kinds of categories.  This happens because only 20% of the folk

generic categories are subdivided (Berlin, 1992).  This is in itself evidence

for the salience of those categories.  Investigators have also reported that

generic names are those most easily and commonly  elicited from

informants (Berlin et al., 1973;  Taylor, 1990) although these findings are

not as robust.  In other words, the most typical answer to the question

“what is this?” is a folk generic name.  Finally, there is some data that

suggest that children learn folk-generic names first.  Stross (1973) asked 25

Tzeltal children (4 to 13 years old) to name 209 different plants.  Children

most often produced the folk-generic names.

To summarise, there is ample evidence from ethnobiology that the

folk-generic level of abstraction has a special psychological status.  Is this

preference universal?  In other words, does it hold across all cultures?

The folk-generic level found in most anthropological studies

corresponds roughly to the scientific generic level (which, in most cases, is

coextensive with single species since frequently only one species of a

genus is present in a given local environment;  Berlin, 1992).

However, there is also evidence that the folk-generic level may

vary to a certain extent as a function of the individual’s expertise about the

domain.  Boster (1980) discovered that the members of the Aguaruna

community responsible for cultivating manioc refered to manioc plants by

sub-folk-generic terms, whereas other members of the community used

the folk-generic label.  Berlin (1992) further noted that Aguarana women

fail to differentiate among members of some scientific genera of forest

birds which the men, who spend more time in the forest, do name

distinctively.  Similarly, Dougherty (1978) remarked that urban American

children, in contrast to the Tzeltal children studied by Stross, appear to

learn supra-generic distinctions among plants first and may never learn
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more than about a dozen folk generic distinctions.  This is consistent with

Rosch et al.’s (1976) finding that for biological categories such as trees,

their college student subjects seemed to have a basic-level above the folk

generic level (the basic-level usually corresponds to the family level in

scientific taxonomies) reported by Berlin et al. (1973).  Remember that

these individual differences were already suggested by Brown (1958).

More recently, Coley, Medin and Atran (1997) examined the

relationship between privileged levels in folk biological taxonomies and

inductive inference.  They predicted that the principles that lead to basic-

level phenomenon (e.g., high within-category similarity relative to

between-category similarity–see 1.3.1 Tests of the differentiation model)

would lead to inductive privilege.  Differences in the location of the folk-

generic level across cultures should thus be reflected in differences in

which level appeared privileged for induction.  For Itzaj Maya adults,

results were as predicted by anthropological accounts of folkbiological

taxonomy:  Inferences to scientific-generic (i.e., the folk-generic level)

categories were consistently stronger than ones to more general

categories.  However, for Americans college students, results showed that

the the preferred level for naming, etc. was the family level (i.e., the

Rosch’s basic level), whereas the privileged level for induction was the

scientific generic level.

1.2  Rosch and colleagues’ basic-level

In a series of papers, Rosch and her colleagues introduced the basic-

level problema to cognitive psychology:  Rosch, Mervis, Gray, Johnson,

and Boyes-Braem’s (1976) paper is the single most influential article

published on the basic-level and its ramificatons2.  Although the Rosch and

                                    
2  Just to give you an idea:  Rosch et al. (1976) was cited 965 times since its publication

(BIDS Citation Index).  Compare this citation count with those of a few classics:
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Mervis (1975) paper is better known for the family resemblance idea it is

the first published article to use the expression “basic-level”.  Rosch (1977

and 1978) as well as Mervis and Rosch (1981) are review articles, and do

not add much to Rosch et al.’s (1976) contribution.

Theoretically, Rosch et al. (1976) proposed a utility model of basic-

levelness (cue validity) and a similarity-based one (differentiation model), and

by the same token created the two attractors around which most other

basic-level models would be organised (see Chapter 3).  Empirically, they

showed that of three levels (subordinate, basic, and superordinate), the basic

was psychologically superior in many respects.  We will describe Rosch et

al.’s experiments in detail because they set the agenda for all future

research.

Rosch et al. were very much influenced by Berlin’s (1972;  Berlin et

al., 1973) early work.  In fact, Experiments 1 to 4 are aimed at correcting

three shortcomings of the ethnobiological studies:  (1) they refers only to

biological classes, (2) the claims for natural groupings are generally

supported by few correlated attributes (this has been corrected in Berlin’s

latter work), and (3) the location of natural groupings at a particular level

of abstraction is defined by linguistic-taxonomic, rather than psychological

criteria.
                                                                                                    
Miller’s (1956) magical number paper is cited to date on 1489 occasions, Shepard and

Metzler’s (1971) mental rotation paper, on 713 occasions, Medin and Schaffer’s (1978)

context model article, on 579 occasions, and Tversky’s (1978) contrast model paper, on 981

occasions (BIDS Citation Index).  And with those of early influential basic-level

articles:  Brown (1958) is cited on 99 occasions, Murphy and Smith (1982), on 85

occasions, Horton and Markman (1980), on 57 occasions, Jolicoeur, Gluck and Kosslyn

(1984), on 118 occasions, Mervis and Crisafi (1982), on 101 occasions, and Tversky and

Hemenway (1984), on 192 occasions (BIDS Citation Index).  This is evidence that Rosch

et al. (1976) constitutes a basic event in the short basic-level literature history.
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In Experiment 1, Rosch et al. systematically studied the co-

occurrence of attributes in the most common taxonomies of man-made

and biological objects in our culture. They used 90 object names belonging

to three levels of categorisation in nine taxonomies. The names were

chosen so that they would be representative of categories in Western

culture.  These nine taxonomies were used in all of Rosch et al.

experiments.  They can be seen in detail in Table 1.

Table 1:  Taxonomies used by Rosch et al..  Adapted from Rosch et al.
(1976, Table 1).

Nonbiological taxonomies
Superordinate Basic Subordinate 1 Subordinate 2

Guitar Folk guitar Classical guitar
Musical instrument Piano Grand piano Upright piano

Drum Kettle drum Bass drum
Apple Delicious apple Mackintosh apple

Fruit Peach Freestone peach Cling peach
Grapes Concord grapes Green seedless

grapes
Hammer Ball-peen hammer Claw hammer

Tool Saw Back hand saw Cross-cutting hand
saw

Screwdriver Phillips Regular screwdriver
Pants Levis Double knit pants

Clothing Socks Knee socks Ankle socks
Shirt Dress shirt Knit shirt
Table Kitchen table Dining room table

Furniture Lamp Floor lamp Desk lamp
Chair Kitchen chair Living room chair

Car Sports car Four door sedan car
Vehicule Bus City bus Cross country bus

Truck Pick up truck Tractor-trailer truck
Biological taxonomies

Superordinate Basic Subordinate 1 Subordinate 2
Maple Silver maple Sugar maple

Tree Birch River birch White birch
Oak White oak Red oak
Bass Sea bass Striped bass

Fish Trout Rainbow trout Steelhead trout
Salmon Blue back salmon Chinook salmon

Cardinal Easter cardinal Grey tailed cardinal
Bird Eagle Bald eagle Golden eagle

Sparrow Song sparrow Field sparrow
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Two hundred students listed attributes for each of the categories.

For example, a participant could have listed the three features roots,

Canadian emblem, and leaves for the category of “sugar maple”.  Only the

attributes that were listed at least six times were included in the analysis.

For nonbiological categories, they found that people tended to list many

more features at the basic-level than at the superordinate-level, with only

a slight increase at the subordinate-level.  This pattern of results was

shifted up one level for the nonbiological taxonomies.  In other words, the

biological superordinates and basics showed the same proprieties as the

nonbiological basics and subordinates, respectively3.  (This experiment is

further discussed in Chapter 4.)

In Experiment 2, Rosch et al. studied the similarities between the

motor programs associated with the use of these objects for the three

levels of abstraction.  They asked participants to describe their interactions

with the category objects at different levels of categorisation.  For

instance, a participant could play music with musical instruments, but hold a

guitar on her lap, pinch its strings with one hand, modulate the strings length

with the other, and so on.  Nonbiological superordinate categories have few,

if any, motor movements that can be made to the category as a whole and

few movements in common.  Nonbiological basic-level categories receive

descriptions of many specific movements made to all members of the
                                    
3  Rosch et al. (1976) chose their categories armed with the early lessons of cognitive

anthropology.  Sparrow, trout, and oak are folk-generic categories (or, in Table 1, basic

categories) and should therefore be preferred to their respective superordinates bird,

fish, and tree.  Rosch et al. found the opposite pattern of preferences.  Dougherty (1978)

observed the same phenomenon in urban American children.  This suggests that the folk

generic level is not universal.  In any case, cognitive psychology has forgotten the

biological nomenclature illustrated in Table 1.  Now bird, fish, and tree are basic

categories, and sparrow, trout, and oak some of their respective subordinates.
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category and many of these movements are described by a sufficient

number of different participants to form a picture of movement sequences

made in common to all members of the basic class of objects.  Subordinate

nonbiological categories did not differ significantly from the basic ones

either in the specificity of the descriptions or in the number of common

movements made in interacting with the object.

Again, the characteristics of the nonbiological taxonomies in Table 1

were shifted down one level relative to the biological ones.  From

Experiment 3 on, Rosch et al. shifted their original biological taxonomy

(see Table 1) so that the categorisation level exhibiting the best

performance coincided with the level called “basic”.  Bird, fish, and tree

thus became basic categories;  and sparrow, trout, and oak some of their

respective subordinates.  This is the biological basic-level we know and

love.

It seems plausible prima facie that a high degree of similarity for

motor programs in Experiment 2 results from things sharing many parts

and these parts being organised in similar ways.  In other words, things

might be handled the same way because they “look” the same.  This is

also suggested by the shared features of Experiment 1:  an important

proportion of these shared features are shapes.  In Experiments 3 and 4,

Rosch e al. examined this hypothesis.  In Experiment 3, the ratio of overlap

to nonoverlap between the outline of sets of objects (normalised for size

and orientation) was computed.  Particular care was taken to select objects

without bias;  they were randomly selected from a large database.  The

superordinate categories were:  clothing, vehicle, animals, and furniture;

there were four basic categories per superordinate category and four

subordinate categories per basic category.  A large and consistent increase

in similarity of the overall look of objects was obtained for basic level over



30

superordinate categories.  A significant but significantly smaller increase

was observed from basic to subordinate.

In Experiment 4, averages of the shape of objects were computed

for categories at all levels of abstraction.  These are Platonic prototypes so

to speak.  This procedure might appear less arbitrary if you consider that

for Rosch the basic-level is to levels of categorisation what a prototype is

to its contrasting categories (see also Halverston, 1992, on Palaeolithic art).

Averages of superordinate objects could not be identified as such any

better than at chance level;  basic-level objects were the most inclusive

categories at which averaged objects were readily identifiable.

Experiments 5 and 6 used the nonbiological objects from

Experiments 1 and 2.  The former two experiments were designed to

assess the nature of representations at different categorisation levels.  In

Experiment 5, the name of an object was given at one of the three levels of

categorisation to subjects as a cue before they were shown that object for

200 ms either on the right hand side of a screen or on the left hand side (a

mask was presented on the other side).  The experiment is based on the

premise that if the representation is shape-based and isomorphic to the

object, then cueing with its name will help its detection.  Superordinate

names did not help;  and basic names helped just as much as subordinate

ones (this has now been replicated by a number of researchers;  e.g.,

Biederman, 1990).  In Experiment 6, the same procedure was used with a

same-different task.  Under physical identity, only the basic-level and

subordinate names primed the speed at which the subject could say that it

was the same.  Which suggests, again, that an isomorphic representation

could be activated by subjects in these cases.

Rosch et al. conducted the first verification experiment at different

levels of abstraction.  The rational was the following:  maybe some of the

basic-level advantages come from objects being first apprehended at this
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level (cf. prototypical categories are verified faster than the others;  Rosch

and Mervis, 1975).  If this is true, people should be able to verify

membership at the basic level more rapidly than at any other level.  This

has become the standard procedure to assess the performance at various

categorisation levels.  In Experiment 7, they used the objects and

taxonomies from Experiments 5 and 6.  A name was first presented to

participants, which was followed by the picture of an object.  The

participants had to say whether or not the two matched as quickly as

possible.  The verification RTs for correct positive items were fastest at the

basic level and slowest at the subordinate.  (This experiment is further

discussed in Chapter 4;  the average verification times are reported in

Table 6a.)

If objects are first apprehended at the basic-level by parents, maybe

they are first learned at that level by children.  This had already been

suggested by Brown (1956) and by Stross (1973).  In Experiment 8, triads

of objects were shown to 3-yr-olds, 4-yr-olds, kindergarteners, first

graders, third graders, and fifth graders.  Their task was to pick out the

odd object.  In half the triads, a pair of objects matched at the

superordinate level (e.g., Mackintosh apple, Freestone peach, and claw

hammer);  in the other half a pair matched at the basic level (e.g, Mackintosh

apple, Delicious apple, and claw hammer).  Note that no subordinate triads

were used.  This was decided because children do not know many

subordinate categories.  At all ages, the children picked out the odd

element in the basic-level triads.  For the superordinate triads, 3 yr-olds

succeeded at 55% and 4 yr-olds at 96%.

Rosch et al.’s Experiment 9 was similar to their Experiment 8 but it

used a different sorting task.  A set of pictures were freely grouped into

categories.  If they were not taxonomic, the experimenter asked whether a

different grouping was possible, and if so which one.  The results are
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similar to those of Experiment 8.  All children could sort objects at the

basic level;  only third graders and above could do so for the

superordinate level.

Experiment 11 examined a well-documented case history:  the

protocol for spontaneous speech of infant Sarah (Brown, 1974).  Basic-level

names were by far the most frequently present.  This suggests again that

basic-level names are the first ones acquired by children.

Next Rosch et al. asked whether the cause of this learning age effect

was the parents giving objects basic names in free naming.  You probably

recognised Brown’s (1958) hypothesis.  This was hinted at in the

verification experiment.  Experiment 10 tested the free naming preference

hypothesis more directly.  All the objects in Experiment 1 were used.

Adults overwhelmingly named the objects at the basic level.  Remember

that this is supported by informal observations made by cognitive

anthropologists as well as by Brown’s (1958) linguistic intuitions.

Rosch et al. also tested whether these findings generalise to other

languages.  They reasoned that if a language has a poorer vocabulary than

say English, its basic-level names will be the least affected.  Experiment 12

is an informal consideration of American sign language.  For nonbiological

things, more basic-level names have consistent signs or sign combinations

than names at any other level of categorisation.

One more issue discussed in Rosch et al. became an important

research trend in the basic-level literature:  the effect of expertise on basic-

levelness.  To most people the basic category “airplane” is basic.

However, for one participant of Experiment 1, an airplane mechanic, the

superior categories were at the subordinate-level of abstraction (e.g.,

“Boeing 747”, “Concorde”).  Along the same line, you will remember that

Rosch et al. (1976) found that for biological categories such as trees, their

college student subjects seemed to have a basic level above the folk
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generic level reported by Berlin (1972, 1992;  Berlin et al., 1973) with

aborigines (i.e., at the family level rather than at the genus level).  They

argued that this was due to a lack of expertise triggered by a lack of

usefulness.  This is quite reminiscent of Brown’s numismatist example.

1.3  After Rosch and colleagues

The empirical research to date on the basic-level has been

completely shaped by the work of Rosch and colleagues.  We have

divided the more recent basic-level literature into five themes that you will

immediately recognise:  (1) tests of Rosch’s differentiation model (cf.

Rosch et al., 1976, Experiments 1 and 7), (2) attempts to generalise the

basic-level phenomenology to other domains (cf. Rosch et al., 1976,

Experiment 12), (3) assessments of the importance of shapes as a basic-

levelness determinant (cf. Rosch et al., 1976, Experiments 3 and 4), (4)

studies of the effect of expertise on basic-levelness (cf., Rosch et al.’s, 1976,

general discussion), and (5) evaluations of the hypothesis that basic-level

names are the first learned by children (cf., Rosch et al., 1976, Experiments

8, 9, and 11;  Brown, 1956;  Stross, 1973).

1.3.1  Tests of the differentiation model

Rosch et al. (1976) proposed a model–category differentiation–that

somehow optimises distinctiveness (i.e., “[...] have the least attributes

shared with members of other [contrasting] categories.”, Rosch et al.,

1976, p. 435) and informativeness (i.e., “[...] have the most attributes

common to members of the category [...]”, Rosch et al., 1976, p. 435).  Just

how distinctiveness and informativeness are integrated is unclear (see

Chapter 3 for a more detailed discussion).  However, most

experimenters–including Rosch et al.–have understood the differentiation

model as the sum  of the within-category similarity and the between-

contrasting-category dissimilarity (cf. Tversky’s, 1978, special contrast
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model).  Rosch et al. showed that basic categories are indeed more

differentiated in this restricted sense of the term than natural taxonomies.

Murphy and Smith (1982) were the first to test this special

differentiation model using artificial objects (see Figure 8 for sample

objects).  Their experiments were aimed at dissociating Rosch et al.’s

differentiating account from three alternative explanations:  basic-level

categories are superior because (1) they are first learned, (2) of the

frequency of the category, or its name, or both, and (3) the conjoint

frequency between a category, or its name, and an object (remember:  this

is one of Brown’s, 1956, suggestions).  As measures of informativeness

and distinctiveness, they used, respectively, the number of uniquely

defining construction features that were shared within category and

between contrasting categories.  To illustrate, consider their Experiment 1

taxonomy shown at the bottom of Figure 1 (see Chapter 2).  Underneath

the category names (e.g., “hob”, “bot”, and “com”), we give in an abstract

form all the uniquely defining construction features.  For example, a hob

can be identified by feature a, a bot by any one of features c, d, or e, and a

com by feature o.  The informativeness of the hob category is 1 (it has a

single within-category feature shared by all its members), and its

distinctiveness is 1 (it has a single between-contrasting-category feature

shared by all its members).  The differentiation of hob is thus 2 (an

informativeness of 1 + a distinctiveness of 1).  Similarly, we find that the

bot and com categories have informativeness (as well as distinctiveness)

scores of 3 and 1, respectively.  The differentitiation of bot is thus 6, and

that of com, 2.  Therefore, differentiation is maximised for the bot

category, and is equally low for the hob and com categories.  Generalising

to categorisation levels:  the middle-level is more differentiated than the

high- and low- levels which are equally differentiated.  In a series of three
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experiments they showed that basic-levelness varied with differentiation,

not with the other factors (see Chapter 4 for more details).

The most systematic tests of the differentiation model were carried

out by Murphy (1991a).  To minimise confounds and maximise control, he

used artificial taxonomies (see Figures 8 and 15 for sample objects).  In a

series of five experiments, he showed that basic-levelness was function of

differentiation (see Chapter 4 for more details).

Experiments with artificial taxonomies are suggestive but still leave

us with doubts as to whether their results can be generalised to much

richer natural taxonomies (e.g., Tversky and Hemenway, 1991).  We

mentioned already that Rosch et al. demonstrated that basic categories

were the most differentiated in natural taxonomies.  This has been

replicated over and over again (e.g., Mervis and Crisafi, 1982;  Tversky

and Hemenway, 1984;  Tanaka & Taylor, 1991;  Johnson and Mervis, 1997).

The trouble with natural taxonomies is control.  How can one show that

differentiation and basic-levelness vary together, that they do not just co-

occur by accident, in natural taxonomies?  Two tactics have been used:

Brown (1956), Berlin (1992), and Rosch et al. (1976) suggested that experts

have more differentiated subordinates.  Palmer, Jones, Hennesy, Unze

and Pick (1989) demonstrated it experimentally with musicians and

nonmusicians using a musical instrument taxonomy.  Then Tanaka and

Taylor (1991)–using dog and bird experts–showed that basic-levelness

does co-vary with differentiation.  We will soon devote a whole section on

expertise and basic-levelness.  For now we will leave it as it is.

Two groups of researchers arrived at another tactic independently

(Jolicoeur, Gluck and Kosslyn, 1984;  Murphy and Brownell, 1985):

Subordinate categories are by definition very informative but they lack

distinctiveness, and this is the basis of the basic-level advantage.

However, there are some subordinates that are very distinctive, namely
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atypical subordinates (Rosch and Mervis, 1975).  For example, penguins

are “birds”, but they are very distinct from other birds;  electric knives are

“knives” but distinct from other knives.  So basic-atypical subordinate

categories–as Murphy and Brownell named them–should behave more

like basic-level categories than subordinate categories.  This is exactly what

they found.  Note that this also refutes other accounts:  atypical terms are

typically longer, learned later, and less frequently used.

Markman and Wisniewski (1997) pointed out that the notion of

differentiation (i.e., high within-category similarity and low between

category similarity) does not acknowledge that a pair of categories can be

dissimilar either (a) because it has few commonalties (e.g., no common

dimension) or (b) because it has many alignable differences (e.g., many

different values on the same dimensions).  A car is dissimilar to a

motorcycle because it has four wheels instead of two;  this is an example

of an alignable difference.  A car is also dissimilar to a motorcycle because

it has a jack.  This is an example of lack of commonalty.  Markman and

Wisniewski showed that natural superordinate categories are dissimilar

because of few commonalties, and that natural basic categories are

dissimilar because they have many alignable differences.  Alignable

differences have a number of advantages over nonalignable ones:  they

are more focal in similarity comparisons (Markman and Gentner, 1996);

they are more likely to be used in other cognitive processes involving

comparisons such as decision making (Markman and Medin, 1995),

conceptual combination (Wisniewski, 1996;  Wisniewski and Markman,

1993), and concept formation (Wisniewski and Markman, 1996).  It seems

appropriate that the level of categorisation that has an advantage in a

variety of cognitive tasks is marked by the presence of differences that are

also privileged in a variety of tasks.
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1.3.2  Other domains with a basic-level

If the basic-level phenomenology is a normal consequence of

categorisation in taxonomies, then it must be found everywhere

taxonomic categorisation occurs.  In fact, the basic-level phenomenology

seems to hold across a variety of domains (for a review see Murphy &

Lassaline, 1997), such as (1) American sign language (Newport and Bellugi,

1978), (2) environmental scenes (Tversky & Hemenway, 1983), (3) events

(Morris & Murphy, 1990;  Rifkin, 1985;  Rosch, 1978), (4) personality types

(Cantor & Mischel, 1979), (5) clinical diagnosis (Cantor, Smith, French, and

Mezzich, 1980), (6) emotions (Shaver, Schwarz, Kirson, and O’Connor,

1987), and (8) computer programs (Adelson, 1983).  It is difficult to avoid a

dull enumeration here.

(1) Remember that Rosch et al. (1976) found that, in American Sign

Language (ASL), more basic-level names have more consistent signs or

sign combinations than names at any other level of categorisation.

Newport and Bellugi (1978) further explored the basic-level and ASL

question.  They learned that basic names are usually depicted by primary

ASL signs (e.g., chair) whereas the superordinate terms are represented by

a series of prototypical basic terms included in it (e.g., furniture = chair-

table-lamp, etc.) and the subordinate names are either made of (a)

compound signs composed of regular basic ASL signs (e.g., kitchen chair =

cook-chair), (b) compound signs composed of regular basic signs in

conjunction with size-and-shape standard specifiers (e.g., park bench =

chair-”oblong”), or (c) conjuncts of regular basic signs and mimetic non-

standard depiction of the shape of objects (e.g., hacksaw = saw-”hacksaw-

shaped”).  The special character of the basic-level terms is shown both by

the fact that they are represented by primary terms and by the fact that

they are often the components of superordinate and subordinate terms.
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(2) Tversky and Hemenway (1983) examined whether or not

environmental scenes possess anything like a basic-level.  Scenes are

processed differently than objects.  For example, a city scene can be

recognised as such before any of its individual components (e.g., Schyns

and Oliva, 1994;  Oliva and Schyns, 1997).  Tversky and Hemenway used

“indoor” and “outdoor” as their superordinate categories.  They then

selected the four more frequently named scenes in these two

superordinate categories to create their basic-level categories:  “home”,

“restaurant”, “store”, “school”, “mountain”, “park”, “beach” and “city”.

Their subordinate categories were two subsets for each basic category.

The increase in listed attributes, actions, and parts was greater from

superordinate to basic (e.g., “indoor” to “school”) than from basic to

subordinate (e.g., “school” to “elementary school”).

(3) Rifkin (1985) investigated Rosch’s (1978) idea that event

taxonomies also have a basic-level.  He asked a group participants to

produce what they thought were “basic events” (e.g., meal,

entertainment, sports, crime), then he asked another group of participants

to produce superordinates (i.e., “This is a type of what?”) and

subordinates (i.e., “What are examples of this activity?”).  A third group of

participants were asked to list attributes for all these categories. Rifkin

found that the increase of listed attributes augmented significantly more

from the superordinate to basic than from basic to subordinate, and that

few attributes were listed at the superordinate.

Morris and Murphy (1990) replicated this with several basic-level

correlates, including verification latencies and frequency of use in free

naming.  They found that verifications were fastest and that people

preferred to name event at the basic level.

An effort by Landau (1996) to study event taxonomies in a more

natural setting deserves mention.  He studied a large corpus of cinematic
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shots from the movies of Alfred Hitchcock, and found that most of them

were basic events.

(4) Cantor and Mischel (1979) searched for a basic-level in

personality taxonomies.  They asked participants to list attributes for

hierarchically organised categories such as “emotionally unstable person”,

“committed person”, and “cultured person” at their highest level of

abstraction; “criminal madman”, “religious devotee”, and “patron of arts”

at their intermediate level; and “strangler”, “Buddhist monk”, and

“supporter of community orchestra” at their lowest level of abstraction.

More attributes were listed at the middle-level than at the two others.

(5) Cantor, Smith, French and Mezzich (1980) studied the same

question with categories used in diagnostic manuals at that time.  They

asked experienced clinicians to list features for categories at different levels

of abstraction (e.g., “functional psychosis”, “schizophrenia”, and

“paranoid schizophrenia”).  The basic-level signature was discovered:

more attributes were listed at the middle-level than at the two others.

(6) Shaver, Schwarz, Kirson and O’Connor (1987) showed that

emotions are hierarchically organised and that they have a preferred level

of abstraction.  Their participants sorted 135 emotion terms.  A hierarchical

cluster analysis was conducted on the data from the sorting.  The

emotions clustered into a three-level hierarchy:  They were two clusters,

“positive” and “negative” emotions, at the most general level;  there were

five groups, which they interpreted as “love”, “joy”, “anger”, “sadness”,

and “fear”, at the intermediate level;  and there were 25 clusters (e.g.,

“cheerfulness”, “contentment”, and “pride” were subdivisions of “joy”),

at the most specific level.  The intermediate-level emotion categories

corresponds roughly to what people say when asked to name emotions

(plus “hate”, perhaps);  to emotions children learn to name first;  and,

finally, to emotions that theorists have classified as primary.
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(7) Finally, Adelson (1985) examined computer programming

concepts hoping to find evidence for a basic level.  Expert programmers

were asked to enumerate the attributes of names of concepts at a general

level (e.g., “algorithm”, “data structure”), at an intermediate level (e.g.,

“sort”, “tree”), and at a specific level (e.g., “insert”, “binary”).  The

increase from most general to intermediate was larger than from

intermediate to specific, and few attributes were listed at the most general

level.  Participants also chose the intermediate categories more often in a

partitioning task.

1.3.3  Importance of shapes for basic-levelness

Remember that Rosch et al.’s (1976, Experiment 3) found a large

and reliable increase in similarity of the overall look of objects from basic

to superordinate categories, and a significant–but significantly

smaller–increase from basic to subordinate.  Furthermore, Rosch et al.

(1976, Experiment 4) found that averages of basic-level objects are the

most inclusive categories at which average objects are readily identifiable4.

These findings suggest that shape plays an important role at the basic-

level.

Shapes are composed of parts in a certain configuration.  For

example, a prototypical house is a wedge on top of a cube.  What is more

determinant for basic-levelness?  Tversky and Hemenway (1984) found a

sharp increase of listed part features–not spatial relationships between

them–from the superordinate to the basic level (e.g., handle and blade for

                                    
4  Halverson (1992) argued that Upper-Palaeolithic drawings are just such basic-level

averages (e.g., bison or horse).  Interestingly, the drawings from this period have

canonical views (Palmer, Rosch & Chase, 1981), they are “abbreviated” (missing feet,

missing head, etc.), of variable sizes, and, typically, only made of shapes (neither

colour, nor texture is represented).
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“knife”;  peel and pulp for “banana”), but little rise from the basic to the

subordinate level for a broad range of natural categories including both

objects and living things.

Additional evidence comes from a study by Klatzky and Lederman

(1995) on identifying objects from haptic glances that is, only touching the

object for a short duration.  This procedure gives participants access only

to local parts (and texture) information.  At 200 ms exposure time, basic

naming accuracy was above chance, and providing the superordinate

name did not increase the accuracy significantly.

It seems that parts–not their spatial configuration–are the critical

determinant of the correlation between shape and basic-levelness.  Is it

possible to restrict the range even more?

McMullen and Jolicoeur (1992) suggested that the basic-level

categories are defined by geons and that subordinate categories require

additional shape processing such as determining the spatial relationship

between geons.  These include parts such as cube, sphere, cylinder, and so

on.  Biederman (1987) showed that geons are invariant through most

views and most orientations.  If McMullen and Jolicoeur are correct, basic-

level categorisation should be mostly orientation and size invariant, like

geon recognition.  However, subordinate-level categorisation should be

orientation dependant (e.g., ON THE RIGHT OF could become ON THE

LEFT OF), but size invariant.

Hamm and McMullen (1998) tested the orientation predictions.

They asked participants to name as quickly as they could rotated objects

(between 0° and 120°) at the superordinate (e.g., animal), basic (e.g., dog),

and subordinate (e.g., collie) levels.  As predicted, they found a large effect

of rotation on subordinate naming, but little on basic and superordinate

naming.
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The size predictions were examined by Archambault, Gosselin and

Schyns (in press).  They used eight animal species, such as “dog”, “cow”,

and “frog”, each divided in two subordinate categories, such as

“Doberman dog”, “German shepherd dog”, “Holstein cow”, “Friesian

cow”, “leopard frog”, and “rhino frog”.  The exemplars were presented at

six different sizes between .38 and 12 deg.  Participants were submitted to

one of two tasks:  In the discrimination task, participants were shown two

animal exemplars simultaneously, and then were asked either the

subordinate question  “Was it the same animal?”, or the basic one “Was it

the same animal category?”.  In the categorisation task, participants were

presented one animal exemplar and then asked either a subordinate

question such as “Was it a Holstein cow?” or a basic question such as

“Was it a cow?”.  For both tasks accuracy was size invariant at the basic

but not at the subordinate level.  This goes against McMullen and

Jolicoeur’s (1992) predictions.

In a series of five experiments, Murphy (1991a;  see also 1991b)

tested whether the relationship between geon and basic-levelness is

necessary (i.e., the degree to which a taxonomy does not have parts

collected at one level, it will not display basic-level phenomena) or

sufficient (i.e., the degree to which a taxonomy has parts collected at one

level, it will tend to display basic-level phenomena).  He found that parts

are neither necessary, nor sufficient.  His experiments are described in

greater detail in Chapter 4.

Corter, Gluck and Bower (1988) also refuted Murphy’s necessary

clause.  They used artificial disease categories defined in terms of verbal or

conceptual features rather than perceptual ones.  The artificial diseases

were characterised by symptoms such as swollen, discoloured, bleeding, or

sore gums; puffy, sunken, red, or burning eyes; and blotchy or scaly rash.  The

middle level categories were verified faster (or, if you prefer:  they had



43

greater basic-levelness) than the two others which were verified equally as

fast.  With hindsight we could say that Murphy’s necessary condition has

been refuted a number of times by basic-level experiments in domains

without shapes (Adelson, 1985;  Cantor and Mischel, 1979;  Cantor, Smith,

French and Mezzich, 1980;  Morris and Murphy, 1990;  Rifkin, 1985;

Shaver, Schwarz, Kirson and O’Connor, 1987;  see section 1.3.2 Other

domains with a basic-level).

To summarise, the correlation observed between basic-levelness

and geons seems to be accidental, and therefore could reveal more about

the structure of the world than about cognition.

1.3.4  Expertise and basic-levelness

Brown’s (1956) principle of utility made it possible for different

people to have different “levels of usual utility”.  Remember his coin

collector example:  To this connoisseur a priceless 1910 dime is a “priceless

1910 dime”;  to most of us, it is a “dime” or “little money”.  In the

cognitive anthropological literature, the effect of expertise on basic-

levelness is also mentioned:  Boster (1980) found that manioc cultivators

among Aguaruna tend to refer to manioc plants by specific rather than

generic names, whereas other members of the community used the

generic label as expected;  Berlin (1992) noted that Aguaruna women, who

spend less time in the forest than men, may fail to differentiate among

members of some scientific genera of forest birds which men do name

distinctively; and Dougherty (1978) observed that urban American

children, in contrast to the Tzeltal children studied by Stross, appear to

learn supra-generic distinctions among plants first and may never learn

more than about a dozen folk generic distinctions.  Finally, you will

remember Rosch et al. (1976) found that for biological categories, such as

birds, their college student subjects seemed to have a basic level above the

folk generic level reported by Berlin et al. (1973).  Rosch et al. proposed
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that expertise increases differentiation (or the number of unique listed

features) of subordinate categories.

Palmer, Jones, Hennesy, Unze and Pick (1989) tested this

hypothesis.  They asked musicians and nonmusicians to list features for

categories, such as “string” and “woodwind”, at the musical instrument

families level, and for categories, such as “clarinets” and “violin”, at the

individual instrument level.  They found an orthogonal pattern of

responses:  for musicians, categories were more differentiated at the level

of individual instruments than at the musical instrument families level;

and vice-versa for the nonmusicians.

Tanaka and Taylor (1991) conducted a more elaborate study

involving dog and bird experts.  These people performed three

categorisation tasks involving exemplars from both the expert domain

and the less familiar (novice) domain.  The tasks were modelled after

those of Rosch et al. (1976) and involved attribute listing, free naming, and

category verification.  In the feature-listing task, participants were asked

to list attributes of superordinate-, basic-, and subordinate-level categories.

Participants listed almost as many features for the subordinate-level

categories within the domain of expertise (e.g., “robin” for the bird

experts; “collie” for the dog experts) as they did for the basic-level

categories (e.g., “bird” for the bird experts; “dog” for the dog experts).

Outside their area of expertise they behaved like Rosch et al.’s (1976)

subjects:  the increase in the number of attributes was greater from

superordinate to basic than from basic to subordinate.  Bird experts were

more likely to name pictures of birds with subordinate-level names than

with basic names, whereas dog experts did not show any preference for

either basic or subordinate-level names for pictures of dogs.  For object

within the domain of expertise, subordinate-level verifications were as fast

as basic-level ones, and faster than superordinate-level ones.  In other
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words, they found an overall increase in the accessibility of the

subordinate level.  However, the basic level retained its privileged status.

(This experiment is further described in Chapter 4.)

Johnson and Mervis (1997) undertook the most ambitious of all

research projects on the effect of expertise on basic-levelness.  They

conducted six experiments that extended Tanaka and Taylor’s work in

several ways:  They used more degrees of expertise:  advanced birdsong

experts, intermediate songbird experts, tropical freshwater fish experts,

and novices both in songbirds and tropical freshwater fishes.  They

studied four levels of generality that they called the superordinate, the

basic, the subordinate, and the sub-subordinate.  Finally, they employed

many more basic-levelness measures: attribute generation, object naming,

silhouette identification, silhouette discrimination, verification task, and an

auditory priming task. Together, these experiments support the so-called

constrained basic-level malleability view.  “According to the constrained basic-

level malleability view, the level that functions as the original universal basic

level is determined through [fixed] perceptual structure.  However, more

specific sub-basic levels may also come to function as basic as result of

intracultural variations in knowledge or intercultural variations in domain

salience.” (Johnson and Mervis, 1997, p. 249)  (These experiments are

described in detail in Chapter 4.)

All the expertise experiments reviewed so far lack control:  Are all

their expert participants experts to the same extent?  Do they use the same

strategies?  It is impossible to say.  A promising solution is the controlled

creation of experts.  Gauthier and Tarr (1997) have demonstrated that this

is a possibility by having people become experts of “Greeble” categories

(i.e., categories containing complex artificial creature-like objects).  This

inspired two basic-level experiments.
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Lin, Murphy and Shoben (1997, Experiment 3) asked participants to

perform a knowledge assessment task for half the subordinate-level

categories (e.g., sedan, collie, coffee table, and jeans) of a taxonomy

composed of vehicle, animal, furniture, and clothing at the superordinate

level, and of car, truck, dog, bird, table, chair, pants, and shirt at the

subordinate level.  As a result these participant became “new experts” of

half the subordinate-level categories.  In a verification task, a significant

change in the advantage of the basic over the subordinate level was

observed between “unexposed” (122 ms) and “exposed” (33 ms) items.

Archambault, O’Donnell and Schyns (1999) investigated the

hypothesis that expertise could influence the basic percept of an identical

distal object.  In Experiment 2, subjects learned to categorise four objects

(two mugs and two computers) at the specific level and 26 objects at the

general level (13 mugs and 13 computers). When objects were learned at

the general level, a sentence printed at the bottom of each picture would

either say “This is a mug” or “This is a computer,” depending on its

category.  When objects were learned at the specific level, the sentence

would individuate each object–e.g. “This is Mary’s mug” or “This is Peter’s

computer,” depending again on the category.  Participants thus became

experts of half the mugs and computers.  These mugs and computers

were inserted in a complex natural office scene.  To tap into the visual

encoding of objects (or percept), the authors used a change detection task

(see Simons & Levin, 1997).  In a trial, two office photographs were

sequentially presented.  Between the two frames, a mug could change (be

replaced by a different mug) or disappear, a computer could change or

disappear, or other office objects could disappear.  The subjects task was

to identify the difference between the two photographs.  The frame

sequence was repeated until subjects could identify the change correctly.

The number of repetitions was used as a basic-levelness measure.  Results
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indicated that physically identical changes were better perceived when

subjects knew the objects at the specific level than when they knew them

at the general level:  subjects perceived a specific-level object change faster

than a general object change.

1.3.5  The developmental literature

Brown (1958) proposed that children first learn “usual utility level”

names because parents have a tendency to first use these names when

asked “what is this thing?”.  Rosch et al. (1976) gave experimental support

to this hypothesis.  To summarise their findings:  On the one hand, they

demonstrated in a number of ways that basic-level names are first

accessed by parents.  On the other hand, they showed that 3 yr-olds are

much more accurate at sorting objects at the basic- than at the

superordinate-level.  Moreover, they analysed the spontaneous speech of

infant Sarah (Brown, 1974) and found that she acquired basic-level terms

before superordinate names which in turn were learned before

subordinate ones (Rosch et al., 1976).

There is an a priori reason to believe that Rosch et al’s and Brown’s

explanation for the linguistic development of children is not the whole

story.  There is compelling empirical evidence that parents do in fact use

basic names for things more often than any other kind (e.g., Rosch et al.,

1976;  Jolicoeur, Gluck & Kosslyn, 1984;  Tversky & Hemenway, 1984;

Murphy & Brownell, 1985;  Tanaka & Taylor, 1991;  Jonhson & Mervis,

1997).  Let us assume that this is the case for the sake of argument.  There

is, however, a catch:  how are children to match these basic names with

their corresponding concepts (read:  a category without a public tag or,

alternatively, meaning in the extensional sense)?  Children face the inverse

problem parents face (remember our discussion of Brown’s problem):

among all the concepts that apply to a situation, how do they know which
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one to associate with the name uttered by their parents?  This is known as

Quine’s “gavagai” problem in philosophy of mind5.

Quine (1960) asks us to imagine that a linguist visits an unknown

country and attempts to learn the native language.  A rabbit passes by and

a native of the country says “gavagai”, pointing his index finger toward

the little furry animal.  How is the linguist to figure out what “gavagai”

means?  It could refer to “white”, “furry”, “medium-sized”, “animal”,

“passing by”, “this individual rabbit at the particular moment”, and so on.

The linguist has to formulate a hypothesis about the meaning, and that

hypothesis requires testing.  To test for the potential meaning of

“gavagai”, the linguist will point to certain things and ask whether it is a

“gavagai”.  If the native denies that the thing is a “gavagai” then the

hypothesis is rejected.   This method can never settle on a single meaning

because there will always be an infinite number of other hypotheses that

are also consistent with the data.

To sum up:  Learning a category consists in making the appropriate

connection between a name and a concept.  We assumed that parents

designate things to their children with basic names.  Thus if children are to

learn new categories at all they must have a bias for basic-level concepts

(Markman & Horton, 1980;  Markman, 1987, 1989).  Of course, this does

not solve Quine’s “gavagai” problem entirely.  In the rabbit example, it

does not explain why the linguist would understand “gavagai” as an
                                    
5  Hofstadter and the Fluid Analogies Research Group (1995) studied several such

underconstrained situations.  The “do-this” toy-problem is perhaps the most telling.

Suppose that someone touches his nose with his index finger and asks you to do the

same.  What are you going to do?  Are you going to touch your nose with your index

finger?  Or touch your nose with his index finger?  Or touch his nose with your index

finger?  Or touch is nose with your nose?  Or wiggle your index finger?  And so on.  Most

people choose the first possibility listed above.  Why is that so?
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equivalent to the English “rabbit” rather than say “finger”.  But this basic-

level bias solves the vertical component of Quine’s problem.

Markman and Horton (1980) were the first to reveal this bias

empirically.  They assessed the ease with which children can learn basic

and superordinate artificial animal categories, independently of parents’

production biases.  Their artificial animals were real animals with novel

features.  For example, a basic category was composed of salamanders

with added wings, feet, and “fourchu” tail.  Some distracting features were

also added: texture, locations of the wings and feet.  And a superordinate

category was composed of animals with horns and a feather tail.  The

overall shape and some added features (e.g., texture, number of feet, etc.)

were distracters here.  They taught children either by showing them

exemplars or by verbally describing the relevant features.  Basic-level

categories were easier to learn for pre-schoolers, kindergarteners, and

first graders.  Giving them verbal descriptions helped only for

superordinate sets.  And the pre-schoolers did not benefit from the verbal

descriptions.

Mervis and Crisafi (1982) replicated Markman and Horton (1980)

with a different basic-level measure and a different artificial taxonomy (see

the middle taxonomy of Figure 7 and the sample objects of Figure 9 in

Chapter 4).  They used an odd task similar to the one devised by Rosch et

al. (1976).  They showed three sets of triads:  subordinate, basic, and

superordinate triads.  All participants were equally good for the basic-level

triads.  For superordinate triads, the 5-6-yr-olds were just as good as 4-yr-

olds and better than 2-3-yr-olds;  and,  for subordinate triads, the 5-6-yr-

olds were better than the 4-yr-olds who were just as good as the 2-3-yr-

olds.  (This experiment is further described in Chapter 4.)

What the “gavagai” problem demonstrates without a doubt is that

learning the correspondence between a name and a concept is
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underconstrained.  So additional (and contingent) constraints must be

used by children (see Marr, 1982, for similar situations in vision).  If

parents have a production bias for basic-level names, children must

somehow constrain their comprehension towards basic-level concepts.

However, there is some evidence that parents use a different  language

when talking to children (e.g., Brown, 1956;  Callanan, Repp, McCarthey

and Latze, 1994;  Markman and Hutchinson, 1984;  Mervis, 1987;  Mervis

and Mervis, 1982).  Maybe children need a different kind of constraint to

understand their parents.  This is precisely what Markman and

Hutchinson (1984) investigated.  They used Rosch et al.’s odd task that is,

out of triads objects they had to select they odd ones.  Here is a sample

triad from their experiment:  police car (standard object), sports car

(taxonomic choice), and policeman (thematic choice).  For example, children

had to respond to a puppet which said either “See this ‘sud’?  Find

another.” (new word condition) or just asked “See this.  Find another.”

(no word condition).  Eighty-three percent of children as young as 2 to 3-

yr-old chose the basic-level option over the thematic one in the new word

condition.  In the no word condition, both options were chosen equally

often (see also Michnick, Golinkoff, Shuff-Bailey, Olguin and Ruan, 1995;

but see Callanan, Repp, McCarthey and Latze, 1994).  This corroborates

the basic-level comprehension bias hypothesis.

Where does this bias come from?  Little works has been done on

this question.  One possibility is that the only concepts children can learn

are basic-level ones, but some experiments rule this out.  It seems that

three- to 4-month-old infants can form categorical representations of

basic- and superordinate-level for natural kinds and for artefacts (Eimas

and Quinn, 1994;  Behl-Chadha, 1996).  This was found using a

familiarisation-categorisation paradigm.  In the learning phase, two stimuli

from the same category are presented at the same time (e.g., two



51

exemplars of the “cat” or the “chair” basic-level category;  or two

exemplars of the “mammal” or the “furniture” superordinate category).

In the testing phase, two new stimuli–a new exemplar from the

familiarised category (e.g., a new cat, chair, mammal, or furniture) and a

distracter (e.g., a horse, bed, bird, or car)–are presented and staring

preferences are recorded.  If infants prefer staring at the distracter this is

taken as an indication that a category was extracted during the learning

phase.  The premiss being that infants prefer novelty (e.g., Karmiloff-

Smith, 1995).  We will propose an explanation for the origin of the basic-

level comprehension bias in Chapter 2.
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Chapter 2.  Strategy length & internal practicability6

In this chapter, we will introduce SLIP (Strategy Length & Internal

Practicability).  We will begin with the presentation of its two

computational factors.  We will then give an informal account of the

model before formalising it.  Following this we will adapt SLIP to

disjunctions, to naming, and–to a lesser extent–to the other basic-levelness

correlates.  Finally, we will discuss where SLIP fits into the diagnostic

recognition framework.

2.1  Two principles of organisation of information in
hierarchies

Consider the top taxonomy in Figure 1 (adapted from Hoffmann &

Ziessler, 1983, Hierarchy I).  Each letter represents a feature.  Underneath

the category names, we give the abstract optimal strategies fed to SLIP.

We will come back to this shortly.  At the bottom of the taxonomy, the

abstract feature constitution of all exemplars is given.  Participants

accessed the high- and mid- levels categories equally fast, and were slower

for low-level categories.

The input can be classified as a ril if it possesses feature a .  A

categorisation strategy is thus Strat(X, ril) = [{“does X  possess a?”}].

Going down the hierarchy, a strategy for classifying the input as kas would

be Strat(X, kas) = [{“does X possess c?”}].  Note that this and the former

strategy are equally long, because the feature they test (a vs. c) is unique

to the category (ril vs. kas).  In contrast, a strategy of length 2 is needed to

classify the input in a low-level category.  The input is a lun whenever one

                                    
6  This chapter elaborates on Gosselin and Schyns (1997, 1998b, 1999) as well as Gosselin,

Archambault and Schyns (in press).
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of these two strategies succeeds: Strat(X, lun) = [{“does X possess a?”} &

{“does X possess g?”}] or, alternatively, Strat(X, lun) = [{“does X  possess

c?} & {“does X possess g?”}].  These strategies are of length 2 because the

feature g is present in the two low-level categories lun and nub7.  One

further feature test (on a or c) is necessary to determine the category

membership of the object.  Overlap between features is common in object

taxonomies (think, e.g., of the number of objects having the same colour,

or having wheels, or having legs  and so forth).  The length of a

categorisation strategy measures the overlap between the features

defining a target category and its contrast categories.  At this stage, it is

worth pointing out that all published verification studies–except Hoffmann

and Ziessler’s (1983, Hierarchy I)–have so far neglected the length of

categorisation strategies. Because features do overlap across many real

world categories, we will here acknowledge this fact and make strategy

length the first computational determinant of SLIP.

                                    
7In the figures, we use a shorthand notation:  [{“does X possess a?”}] = a ;  [{“does X

possess c?”, “does X possess d?”, “does X possess e?”}] = cde;  [{“does X possess c?} &

{“does X possess g?”}] = c&g;  and [{“does X possess a?} or {“does X possess b?”}] = a|b.



54

Figure 1.  The top taxonomy is that of Hoffmann & Ziessler (1983,
Hierarchy I), and the bottom taxonomy is that of Murphy & Smith (1982,
Experiment 1).  Underneath the category names, we provide the optimal
strategies fed to SLIP.  The feature constitution of all exemplars is given
underneath each taxonomy.

The bottom taxonomy of Figure 1 (adapted from Murphy & Smith,

1982, Experiment 1) illustrates the second determinant of SLIP.

Participants were faster at the middle-level, and slower at the higher-level.

First note that features do not overlap between the categories and so
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strategies at all levels have the same length of 1. However, categories at

the middle level all have many different features, each one of which is

sufficient to access the category.  To determine that the input is a bot, one

can apply any one of the following feature tests: “does X  possess c?”,

“does X  possess d?”, or “does X  possess e?”.  For the purpose of

categorisation, these tests on different features are redundant, and taken

together, they form the exhaustive set of redundant feature tests to access

the category.  Feature redundancy is known to be an important

component of speed of access to the levels of a  taxonomy (e.g., Rosch et

al., 1976;  Murphy & Smith, 1982).  It is the second computational

determinant of SLIP.  So, in the bottom taxonomy of Figure 1, a length 1

strategy to place an object in bot is Strat(X, bot) = [{“does X  possess c?”,

“does X possess d?”, “does X possess e?”}].

2.2  SLIP:  an intuitive account

We will now develop SLIP (Strategy Length & Internal

Practicability).  It is an ideal categoriser insofar as it applies optimal feature

testing strategies to determine the category membership of objects.  We

will explain what we mean exactly by “optimal” in the next section.  A

strategy comprises sets of features and SLIP tests their presence, one set at

a time, in a specific order.  Because features in a set are redundant, only

one of them needs to be successfully tested to test the entire set.  We

assume that response time is a linear function of the total number of

features tested when SLIP executes a strategy.  With the varying strategy

lengths of the top taxonomy of Figure 1, SLIP predicts  faster verification

speeds for the high- and mid- levels categories (both have length 1

strategies) than for low-level categories (which have strategies of length

2).

So far the model outlined never slips from an ideal feature testing

strategy.  However we wish to implement the idea that human
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categorisers approximate ideal strategies.  To this end, we will assume that

the processes of SLIP are noisy and sometimes slip off the ideal track to

test random object features.

In general, slippage will increase the number of feature tests and

the time taken to reach a category decision.  However, slippage to a

diagnostic feature is more likely for categories with many redundant

features than for those with fewer features.  Redundant features make

categories more resistant to noise.  In the bottom taxonomy of Figure 1,

SLIP predicts a faster access to the more redundant middle level, even

though the strategies have all an identical length of 1.

In summary, SLIP predicts that an object should be categorised

faster in category X than in category Y (1) if  the length of the optimal

strategy that identifies the object as X is smaller than the length of the

optimal strategy that identifies the same object as Y and (2) if the optimal

strategy associated with category X comprises more redundant attributes

than that of category Y.

2.3  SLIP: a formal model

We will make the simplifying assumption that SLIP always uses the

strategy leading to a category decision in the shortest possible time.  No

doubt, this will turn out to be an oversimplification.  For example, if an

optimal strategy is very complicated, a simpler–but less efficient–strategy

might be preferred.

A strategy succeeds whenever all of its sets of redundant attributes

have been verified in order (e.g., Pashler, 1998;  Treisman & Gelade, 1980;

Wolfe, 1999;  Woodman & Luck, 1999).  A set of redundant attributes is
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successfully tested whenever one attribute8 of the set is successfully tested.
The probability of the success for the set of redundant attributes j is ψ j .

Leaving aside the computation of ψ j  for the moment, we can cast the

testing of a basic unit of a strategy (one set of redundant attributes) as a

Bernouilli trial.  A geometric density function specifies the probability that the

set j has succeeded after exactly t attempts:
1 − ψ j( )t −1

ψ j .  (1)

1 − ψ j( )t −1
 is the probability that set j has not been successfully tested in the

t – 1 first attempts, multiplied by ψ j , the probability that it succeeds on the

tth attempt.  When strategies comprise only one set of redundant

attributes (length 1 strategies), Equation 1 fully describes the behaviour of
SLIP.  When ψ j  is large, 1 − ψ j( )  is small, and thus the probability of

completing this length 1 strategy decreases rapidly with t.  It follows that a

length 1 strategy is completed quickly on average.
ψ j  implements internal practicability.  It corresponds to the

probability that one test in a set of redundant attributes succeeds at time t.   

A number of factors probably contribute to internal practicability.  We

have already mentioned redundancy or the cardinality of the set of

redundant values.  Saliency (e.g., Garner, 1978, 1983;  Rensink, O’Regan &

Clark, 1997) and expertise (e.g., Archambault and Schyns, 1999;

Biederman & Schiffrar, 1987;  Christensen, Murry, Holland, Reynolds,

Landay & Moore, 1981;  Goldstone, 1994;  Norman, Brooks, Coblentz &

Babcock, 1992;  Quinn, Palmer & Slater, 1999) are other likely contributors.

Here we will only consider redundancy and spatial configuration (as a

secondary attribute).  Greater redundancy makes the verification of a set

                                    
8  In our view, there is no fundamental difference between feature and dimension.  The

latter is an ordered set of the former, and both express the idea that objects vary on N

attributes.  We will here use attribute, feature, and dimension interchangeably.
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of redundant attributes easier, and a greater number of spatial

configurations makes it tougher.

We know that configurations of features are important for

recognition (e.g., Garner, 1974;  Schyns & Rodet, 1997) and SLIP is

sensitive to them.  SLIP assumes that a configuration provides the context

for the identification of single attributes.  Suppose three primary

redundant attributes a, b, and c arranged in this order to form a secondary

attribute, the configuration abc.  Suppose further that this configuration is

one of 6 possible combinations of 3 attributes presented in an experiment.
Cj is the probability that the categoriser identifies a configuration of

redundant attributes (it is 1 over the number of possible configurations of

redundant attributes;  1/6 in the example).

When SLIP verifies the presence of an attribute, its processes can

randomly slip with a fixed probability S.  Two independent events can

lead to a successful test:  (1) SLIP guesses the right configuration j and tests
an attribute of set j.   This happens with a probability of Cj(1-S).  (2) SLIP

guesses the right configuration and slips, by chance alone, on an attribute
of the tested set j.  The probability of this event is CjSRj, where Rj is the

number of redundant attributes divided by the total number of attributes
in the input object (the index of redundancy).  Thus ψ j , the probability of

successfully testing one set j  of redundant attributes, is Cj(1-S+SRj).  Note

that this constant Cj implies that a SLIP observer has no memory

whatsoever of the checked configurations.  There is some empirical

evidence for this in humans.  Horowitz and Wolfe (1998) asked people to

search for a letter “T” among “L” distractors.  In some trials, the letters

were jumbled during the search, making it impossible for participants to

keep track of their progress.  This made no difference in the efficiency of

the search.
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So far, we have described SLIP for strategies composed of only one

set j of redundant features (length 1 strategies).  In this case, the speed of

access to a category varies with only the redundancy of its attributes.  We

now turn to the modeling of SLIP for the general case of length n

strategies.  This requires the implementation of strategy length.  The

probability that a length n strategy is completed after t trials in a particular

configuration of successes and misses is
1 − ψ j( ) ω j

ψ j
j =1

n

∏ ,  (2)

where ω j  is a function of the tested set j that counts the number of failed

attempts to verify this set after t trials (it will be further specified below).

When n = 1, Equation 2 reduces to Equation 1.  When n > 1, the solution is

more involving.  We know that the last set of an ordered strategy is

always verified at time t.  This implies that the previous sets have been

verified sequentially in the t-1 preceding steps.  There are different

patterns of successes and misses of verifications of sets of attributes.  For

example, with n = 3, if set 3 is verified at time t, set 2 might have been

verified at t-1 (or t-2, or t-3, or t-4, and so on), and set 1 anywhere

between time 1 and t-2 (or t-3, or t-4, or t-5, and so on).  For any ordered

collection of sets of attributes in a strategy, given that the last set n

succeeds at time t, the number of possible combinations of successes of

verification of n-1 set in t–1 discrete steps is  

λ =
t − 1
n − 1

 
 
  

 
=

t − 1( )!
t − n( )! n − 1( )! .

With the combinatorics of successful tests of multiple sets of

attributes, the probability that a length n strategy is completed after t trials

becomes
P( t) = 1 − ψ j( ) ωi j

ψ j
j =1

n

∏
i =1

λ

∑ ,  (3)

where ω ij  specifies the number of failed verifications of the j th set of

category attributes for the i th configuration of successes and misses.
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The multinomial expansion a1 + a2 +. ..+an( )t − n  implements ω ij :  it

expands into λ  different terms, and the sum of the n  exponents of each

term is equal to t - n.  Thus, the ith exponent of the jth term of the ordered

expansion provides the number of failed verifications of the ith set of

redundant attributes for the jth configuration of successes and misses.  For

example, with a strategy of length n = 3 verified in t = 5 discrete steps, we
obtain the multinome a1 + a2 + a3( )2  which expands into the following λ  =

6 terms:  a1
0a2

0a3
2 + a1

0a2
1a3

1 + a1
0a2

2a3
0 + a1

1a2
0a3

1 + a1
1a2

1a3
0 + a1

2a2
0a3

0.

Random numbers variate for this general case can be obtained by

adding the n  appropriate geometric random number variate
G j :ψ j ; j = 1,.. ., n , the geometric random numbers being computed from

unit rectangular random number variate R  by the relationship
G:ψ ~ log R( ) log 1 − ψ( ) .

2.3.1  Summary

So far, we have identified two computational constraints on the

organisation of information in a taxonomy of categories:  the overlap of

features between categories and the redundancy of features within

categories.  These two constraints determine different feature testing

strategies to access different categorisations of the input.  In general,

greater feature overlap augments the length of a strategy, and higher

feature redundancy augments its accessibility.  SLIP implements the two

constraints to predict the average number of feature tests required to

resolve one categorisation strategy.  Figure 2 schematises the functioning

of SLIP.
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j = 1

Read set j
of the appropriate

strategy
Is j > n?

Yes

Respond
yes

Try to perform a
test on set j

Is set j
verified?

j = j + 1

Yes
No

No

Yes Noise

Figure 2.  SLIP box diagram for positive verification items.  The variables
n and j are, respectively, the length of the considered strategy and a
pointer to a set of redundant attributes.

Equation 1 implements the redundancy of features with the probability

that one set of redundant features is successfully tested in t discrete tests.

Equation 3 generalises Equation 1 introducing the idea that the n  sets of

attributes in a length n strategy have been successfully tested after t

attempts.

2.3.2  The Pascal density function

Equation 3 is rather cumbersome.  Fortunately, when all ψ j  within

a category are equal (which is the case for all taxonomies reported in this

dissertation), it reduces to
P t( ) = λ 1− ψ( )t −n ψn , (4)
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a Pascal density function.  Figure 3 shows four particular Pascal density

functions.  The central limit theorem implies that the limit of the Pascal

density function as n approaches infinity is a Gaussian.
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Figure 3.  Instances of Pascal density functions.

The Pascal density function has a number of well-known

characteristics.  Of particular interest to us here:  Its mean is equal to n ψ

and its variance to n 1− ψ( ) ψ2 ;  the gamma density function provides us

with a continuous approximation of the Pascal density function:
ψ nt n−1e− tψ

Γ n( )

where Γ n( )  is the gamma function, a continuous function that

approximates n − 1( )! , n >0 is the so-called shape parameter, and 0≤ψ ≤1 is

the scale parameter (e.g., Johnson and Kotz, 1969;  Hastings and Peacock,

1975).
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LaBerge (1962) used the negative binomial density function–a close

parent of the Pascal density function–to model reaction times (for an

excellent review see Luce, 1986).  The negative binomial function gives the

probability that n hits will have been encountered after x misses, hence x =

t - n.

Throughout this dissertation, we will use the mean of the

appropriate Pascal density function as a global measure of basic-levelness.

To illustrate, we will now apply this restricted version of SLIP to the

taxonomies in Figure 1.  Remember that in the top taxonomy strategy

length varies and internal practicability is constant whereas the opposite
applies to the bottom taxonomy.  In SLIP terms, ψ j  will be constant in the

top taxonomy, but vary in the bottom taxonomy, whereas n (the length

of a strategy) will vary in the top taxonomy and be constant in the bottom

taxonomy.

In the top taxonomy, the index of redundancy R (remember:  it is

the number of redundant attributes divided by the total number of

attributes in the input object) is equal to .25 (i.e., 1 / 4  = .25), and the

probability that the categoriser has properly identified a configuration, C,
is 1 (i.e., 1 / 1 = 1).  With the default value of S  = .5,  all ψ j  are equal to .63

(i.e., Cj(1-S+SRj) = 1*(1-.5+.5*.25) = .63).

Thus, for the top taxonomy of Figure 1, SLIP predicts a mean

number of feature tests of 1.6 (i.e., n ψ  = 1/.63 = 1.6) for the high- and

mid-level categories, and 3.2 tests (i.e., n ψ  = 2 / .63 = 3.2) for the low-

level categories.  To compute the basic-levelness of a level of generality,

we average the mean basic-levelness of all its categories.  In this case, the

high- and middle levels have a basic-levelness of 1.6 tests, and are accessed

faster (with fewer feature tests) than the low-level one that has a basic-

levelness of 3.2 feature tests.
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Let us now consider the bottom taxonomy of Figure 1.  For the

high- and middle- levels, R = .17 (i.e., 1 / 6 = .17), C = 1 (i.e., 1 / 1 = 1);  with
S  = .5,  ψ j  is .58 (i.e., Cj(1-S+SRj) = 1*(1-.5+.5*.17) = .58).  For the middle-

level, R = .5 (i.e., 3 /6 = .5),  C = 1 (i.e., 1 / 1 = 1), and ψ j  is .75 (i.e., Cj(1-

S+SRj) = 1*(1-.5+.5*.5) = .75).  Using the Pascal density function for each

category and averaging within level of categorisation, we obtain a SLIP

prediction of faster access to the middle level (SLIP = 1.33–i.e., n ψ  = 1 /

.75 = 1.33), and slower access to the top and bottom levels (SLIP = 1.71–i.e.,

n ψ  = 1 / .58 = 1.71).

2.3.3  Disjunctions

So far, we have assumed that a conjunction of several attributes

defines the categories of a taxonomy.  “If we rely on intuitions (our own

and those published by semanticists) and restrict ourselves to concepts

about naturally occurring objects (flora and fauna), [...] we can think of no

obvious disjunctive concepts.” (Smith & Medin, 1981, p. 28)  Even though

we basically share this view, some artefact concepts are nevertheless

obviously disjunctive.  For example, a strike in baseball is either a called, or

a swinging strike (Bruner, Goodnow, and Austin, 1956).  Besides, several

basic-level experiments have examined disjunctive categories.

SLIP can be modified to handle disjunctive categories.  Consider, for

example, the optimal strategy to access the high-level ril category in

Hoffmann and Ziessler’s (1983, Hierarchy II) taxonomy (see the top

taxonomy of Figure 14 in Chapter 4):  Strat(X, ril) = [{“does X  possess

c?”}] or [{“does X  possess f?}].  The average number of feature tests

required to determine that X belongs to the disjunctive ril is computed as

follows:  We start with the average number of attempts to complete the

first strategy term (i.e., [{“does X  possess c?”}]), weighted by the

probability that it applies to the object.  We then compute the average

number of attempts to determine that the first strategy term does not
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apply and that the second one does apply;  this figure is weighted by the

probability that this situation will occur.  This procedure is repeated until

all the terms of the disjunction have been evaluated.  The sum of all these

quantities is the average number of feature tests needed to determine that

X belongs to ril.

The first term strategy of the conjunction defining ril is completed

after an average of 1.6 tests (i.e., ψ  = 5/8) and applies with a probability of

.5.  On average, 3.05 attempts are required to find out that the first term

does not apply (we explain how to compute this in the following section),

and an additional 1.6 tests to complete the second term of the

disjunction–which applies with a .5 probability.  Summing the tests across

the two terms of the disjunction is .5 * 1.6 + .5 * (3.05 + 1.6) = 3.13 tests.

2.3.3.1  Negative verification items9

In a verification experiment, category name and object can either

match (positive items) or mismatch (negative items).  To respond to

negative items, three qualitatively different methods can be used within

SLIP:  (1) a feature-counting method whereby object X is not a member of

category Y if the features of X are exhausted and it has not yet been

classified as a Y, (2) a contrast method whereby object X is not a member

of category Y if it has already been classified as a member of a contrast

category Z, and (3) a Fisherian probabilistic representation.  We only

describe the third method here.

If a classifier has failed to complete a verification of category Y after

t attempts (t ≥ strategy length of Y), either the item is negative, or the

classifier has so far slipped on irrelevant attributes.  In SLIP, we can

compute the likelihood of the latter because we know the density function

of the number of trials necessary to complete the strategy.  Based on this

                                    
9  This section expands on Gosselin and Schyns (1998b).
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distribution, a classifier could conclude that an item is false after t_stop

trials, where t_stop is the number of trials beyond which the probability

that the item is true is smaller than an acceptable level of error α .  This is

the logic of Fisherian statistical testing.  We used α =.05 in all the

simulations of this dissertation.
For length 1 strategies, t_stop is log α( ) log 1 − ψ( )  (Gosselin and

Schyns, 1998b).  This is the inverse geometric survival function of probability

α .  For example, before concluding that an object is not a ril  (or,

alternatively, that the ril strategy does not apply) in Hoffmann & Ziessler

(1983, Hierarchy II, see top taxonomy of Figure 14), t_stop = 3.05 attempts

are required, using the above estimate of ψ  and the default α  = .05 (i.e.,

log(.05) / log(1-.63) = 3.05).

For strategies of length n , the item can be discovered to be

negative after 1, 2, 3, ..., or n - 1 successful set of redundant attribute tests.

Thus the average number of attempts needed to conclude that a length n

strategy does not apply (and hence that the item is negative) is a pondered

sum of n  terms.  The first term is the average number of attempts

required to conclude that the first set of redundant attributes does not
apply (i.e., log α( ) log 1 − ψ( )) pondered by the probability that this

situation will occur (this depends on the design of the experiment).  The

second term is the sum of the average number of attempts required to

check the first set of redundant attributes (i.e., 1 ψ ) (In theory, one should

modify the mean computation so that it includes points up to t_stop, not

up to infinity.  If α  is small, however, it makes very little difference.  We

will not modify it here.) and the mean number of attempts needed to
decide that the second one does not apply (i.e., log α( ) log 1 − ψ( )),

weighted by the probability that this situation will happen.  And so on

until the n th term.  The general formula is thus

Px
x =1

n

∑ x − 1
ψ

+
log α( )

log 1− ψ( )
 

  
 

  ,
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where Px is the probability that the realisation that the item is negative

happens after x - 1 successful tests of redundant attributes.

Figure 4 shows the SLIP complete box diagram for verification

items, positive and negative items combined.  It is essentially the same as

that for positive verification items (see Figure 2) except for the more

elaborate attribute-checking loop and the addition of a disjunctive-term

loop.

jk = 1
k = 1
t = 1

Read set jk
of term k of the 

strategy
Is j > nk?

Yes

Respond
yes

Try to perform a
test on set  jk of 

term k

Is set jk of 
term k

verified?

j = j + 1

Yes

No

No

Noise

Respond
no

No

No

Is t <  t_stop? Is k < m?

k = k + 1
jk = 1
t =1

Try to perform a
test on set jk

Yes

Yes

Figure 4.  SLIP full-blown box diagram for verification items.  The
variables nk , jk , m, t, and t_stop correspond, respectively, to the length of
the kth disjunctive term strategy,  to a pointer to a set of redundant
strategies of the kth disjunctive term strategy, to the number of disjunctive
terms in the considered strategy, to a pointer to the number of attempts at
testing the jth set of redundant attributes of the kth disjunctive term, and
to the number of attempts at testing it before the probability that the item
is positive reaches an acceptable level of error.
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2.3.4  Naming

Although SLIP is primarily designed to model (positive) verification

tasks–the most widely used in basic-level experiments–it is quite

straighhtforward to extend it to predicting naming performance.  When

asked “what is this thing?”, SLIP can apply most of its strategies in

parallel, and output the name associated with the first completed strategy.

Within each strategy, SLIP follows the order of sets of redundant features,

but it  performs its feature tests at random (i.e., S = 1).  The rational for the

latter is that there is no a priori reason why any particular attribute value

tests should be performed.  Again, this is an oversimplification.  Consider,

for example, the following situation:  someone is asked to name an object

from the top taxonomy of Figure 1 at the high-level.  Two attributes

values are diagnostic (i.e., a and b), and so this person would be better off

testing for these rather than for all attribute values indiscriminately.

The functioning of SLIP for a naming task is summarised in the box

diagram of Figure 5.  Note that the model for verification (see Figure 2)

and naming are very similar.
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j1=j2=...= 1

Read sets j1, j2,...
of the appropriate

strategies
Is jx > nx?

Yes

Respond
X

Perform a 
random

feature test 

Is any set jx
verified?

jx = jx + 1

Yes

No

No

Figure 5.  Box diagram of SLIP for naming.  Variable jx is a pointer to a set
of redundant attribute of strategy X, and nx the length of this strategy.

The main difference is the value of one parameter: S, the probability of

slipping to a random feature (in the box diagram of Figure 5 this led to the

removal of the noise box).  When this probability increases, the number of

feature tests required to complete a strategy increases proportionally

(because more tests are made on irrelevant features).  Thus, SLIP predicts

the same qualitative order of speed of access in naming and verification,

but it also predicts that the naming of an object will on average take

longer than its verification (Rosch et al., 1976).

We will illustrate this with the two taxonomies in Figure 1.

Remember that in the top taxonomy strategy length varies and internal

practicability is constant whereas the opposite applies to the bottom
taxonomy.  In SLIP terms, ψ j  will be constant in the top taxonomy, but
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vary in the bottom taxonomy, whereas n (the length of a strategy) will

vary in the top taxonomy and will be constant in the bottom taxonomy.

In the top taxonomy, the index of redundancy R is equal to .25 (i.e.,

1 / 4  = .25), and the probability that the categoriser has properly

identified a configuration, C, is 1 (i.e., 1 / 1 = 1).  With the S naming value
of 1,  all ψ j  are .25 (i.e., Cj(1-S+SRj) = 1*(1-1+1*.25) = .25).  SLIP predicts a

mean number of feature tests of 4 (i.e., n ψ  = 1/.25 = 4) for the top and

mid levels categories, and 8 tests (i.e., n ψ  = 2 / .25 = 8) for the bottom

level categories (compare Hoffmann & Ziessler’s data for the top

taxonomy of Figure 1 in naming:  high = ~750 ms, middle = ~1250 ms, and

low = ~3000 ms;  and in verification:  high = ~500 ms, middle = ~500 ms,

and low = ~700 ms).

Let us now consider the bottom taxonomy of Figure 1.  For the

high- and middle- levels, R = .17 (i.e., 1 / 6 = .17), C = 1 (i.e., 1 / 1 = 1);  with
S  = 1,  ψ j  is .17 (i.e., Cj(1-S+SRj) = 1*(1-1+1*.17) = .17).  For the middle-

level, R = .5 (i.e., 3 /6 = .5),  C = 1 (i.e., 1 / 1 = 1), and ψ j  is .5 (i.e., Cj(1-

S+SRj) = 1*(1-1+1*.5) = .5).  We thus obtain a SLIP prediction of faster

access to the middle level (SLIP = 2–i.e., n ψ  = 1 / .5 = 2), and slower access

to the top and bottom levels (SLIP = 6–i.e., n ψ  = 1 / .17 = 6).

SLIP can also predict the probability that a particular name will be

used in a naming task.  This is also a common measure of basic-levelness.

For the sake of simplicity, suppose that we are only processing length 1

strategies for a particular naming task.  Let X be the completion of the

target set of redundant features;  N, the completion of one set of

redundant features relevant for the considered naming task;  and T, the

completion of any set of redundant features.  Probability theory gives us

the following relationship:  P(X|T) = P(X|S) * P(S|T).  We are interested in

finding P(X|S) that is, the probability that the target set of redundant

features has been completed given that one set of redundant features
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relevant for the naming task has been completed.  P(X|T), the probability

that the target set of redundant features has been completed given that

one has been completed in the total set of redundant features, is equal to

    P X ∩ T( ) P T( )  = P (X) =   ψ X .  Similarly, P(S|T) = P(S);  all the sets of

redundant features being independent,  P(S) = 
  

ψ i
i

∑ , where i spans all the

strategies that apply.  Therefore P(X|S) is equal to
ψ X

ψ i
i

∑ . (5) 10

The numerator is an inverted completion average, and the denominator is

the sum of all of them.  Hence the faster a strategy is completed in

denomination, the more frequently it will be used.  For the bottom

taxonomy of Figure 1, for example, SLIP predicts probabilities of use of .6

for mid-level names (i.e., .5 / (.17 + .17 + .5) = .6), and .2 for high- and low-

level names (i.e., .17 / (.17 + .17 + .5) = .2).

For a set of strategies of various lengths, the calculation is more
arduous because of what happens over nmax (i.e., the length of the longest

strategy considered) geometric variates have to be considered for all

strategies.  By “geometric variate”, we mean a series of attribute tests that

lead to the completion of a set of redundant attributes.  For instance, in the
top taxonomy of Figure 1, each object has three names, and nmax is equal

to 2.  The length 2 strategy (i.e., the low-level strategy) has won the race

against the other two strategies when it has won both geometric variates.

Both have a probability of .33 (i.e., .25 / (.25 + .25 + .25) = .33), and thus

their combined probability is .33 * .33 = .11.  Any length 1 strategy (i.e., the

high- and the mid- level strategies) has won the race when it either won

against the other two strategies on the first geometric variate, or on the

                                    
10 Ties between competing strategies complicate the picture a little bit.  If n is large,

however, Equation 5 is a good approximation.
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second.  For example, the probability that the high-level strategy wins on

the first variate (i.e., .25 / (.25 + .25 + .25) = .33) plus the probability that

none of the two length 1 strategies wins on the first variate but that the

high-level strategy wins on the second (i.e., [.25 / (.25 + .25 + .25)] * [.25 /

(.25 + .25 + .25)] = .11) is equal to .44.

2.4  Generalisation to other correlates of basic-levelness11

We designed SLIP to model category verification, and we have

extended its reach to naming.  However, we pointed out earlier that a

critical aspect of basic-levelness is that it optimises a number of indexes of

performance (see Preamble and Chapter 1).  It is important to show that

SLIP is not limited to model category verification and naming.

You will remember that the basic-level is superior in many other

respects:  more features–especially shapes–are listed at the basic level than

at the superordinate level, with only a slight increase at the subordinate

level (Rosch et al., 1976;  Tversky & Hemenway, 1984);  and throughout

development, basic level names are learned before those of other

categorisation levels (Brown, 1958;  Rosch et al., 1976;  Horton &

Markman, 1980;  Markman, 1989;  Markman and Hutchinson, 1984;

Mervis and Crisafi, 1982).  Furthermore, basic-levelness seems quite

universal across domains (e.g., Murphy & Lassaline, 1997) as well as

cultures (e.g., Berlin, 1992;  Malt, 1995).

We will differentiate two types of basic-levelness correlates:  the

ones that we believe are connected to SLIP's inputs (i.e., strategy length or

internal practicability), and the ones that we think are related to its outputs

(i.e., verification or naming latencies).  We have to stress that this section is

highly speculative.

                                    
11  This section expands on Gosselin and Schyns (1999).
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2.4.1  Input correlates:  proliferation of features, expertise
effect, atypical subordinates, and cultural universality

Another correlate of the basic-levelness is that people tend to list

many more features (especially shape) at this level than at others (Rosch et

al., 1976;  Tversky and Hemenway, 1984).  Remember that most features

of one basic-level category do not overlap with those of contrasting

categories (e.g., Tversky & Hemenway, 1984, Tanaka & Taylor, 1991).

Following the principles of SLIP, the addition of such diagnostic features in

a category increases its internal practicability, and its basic-levelness.  SLIP

therefore predicts a proliferation of listed features at the basic level.  The

fact that these features are mostly shape rather than colour and texture

could reflect the organisation of our perceived world.

A similar reasoning applies to the discovery of Tanaka and Taylor

(1991), and Johnson and Mervis (1997) that expertise induces faster

verification times (and number of listed features) for subordinate

categories.  It also applies to the observation of Jolicoeur, Gluck and

Kosslyn (1984) and Murphy & Brownell (1985) that atypical subordinates

(e.g., penguins, electric knifes) behave more like basic level categories than

other subordinate categories (e.g., robin, Swiss knife).  Murphy & Brownell

(1985) have shown that these atypical subordinates are more informative

(i.e., they have more listed features) and distinctive (i.e., they share fewer

of these listed features with contrasting categories) than other

subordinates.  In other words, atypical subordinate categories have more

internal practicability (are more redundant) than other subordinate

categories.  In sum, the computational principles of SLIP can account for

the most important correlates of basic-levelness:  faster verification,

naming, and number of listed features.

Cognitive anthropologists have shown that folk taxonomies across

cultures have roughly the same preferred level of abstraction.  Given that
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the human experience is quite homogenous throughout cultures (we all

breath air, eat, sleep, and procreate)–and thus so is the input to humans’

SLIP modules–, we would expect the preferred level of categorisation to

be roughly culturally universal.

2.4.2  Output correlates:  learning rate and domain
universality

Turning to development, it has been suggested that children have a

comprehension bias (innate or learned) for the basic-level.  Because adults

show the bias in production, this would enable children and adults to

resolve the level of categorisation ambiguity and understand each other

(Markman & Horton, 1980;  Markman, 1989).  We have argued here that

the production bias for basic names in adults arises from the organisation

of their taxonomic knowledge and the resulting strategies that access the

categories.  The developmental literature is unclear about the origin of the

bias for children to comprehend at the basic level.  SLIP suggests that

infants acquire concept taxonomies (e.g. Eimas & Quinn, 1994), and access

them following the general principles of SLIP.  Adults would produce basic

names because they are first accessed in their “mental race”, and children

would connect these names with basic concepts because the latter are also

accessed first in their “mental race”.  This does not imply that the

taxonomic organisations of adults and children are identical, only that the

same categories are first accessed.  In other words, adults and children can

differ markedly in the number of categories and levels of categorisation

they have in memory, but still access the same basic level categories.

Note that this applies to all taxonomies, including taxonomies in

domains as varied as computer languages, emotions, events, and so on.

Hence the domain universality of basic-levelness.



75

2.5  A special diagnostic recognition model12

It is worth remembering that people who categorise a visual input

seek to obtain a close match between a category representation and a

representation of the object in the input.  This match between memory and

input information is what we call a task for the observer.  Generally

speaking tasks are not rigid.  Instead, different categorisations of an

identical object tend to change the information requirements of the task at

hand.  For example, to assign a visual event to the Porsche, collie, sparrow,

Mary, or New York category comparatively more specific information may

be necessary than when categorising the event as a car, dog, bird, human face

or city.  Task constraints have traditionally been the main focus of

categorisation research, but they are an irreducible factor of any recognition

task, and the first factor of the diagnostic recognition framework outlined

here (Schyns, 1998;  see also Hill, Schyns & Akamatsu, 1997;  Schyns &

Oliva, 1999).  Recognition is successful resolution of task constraints on a

given input.

The second factor of diagnostic recognition is the a priori structure of

perceptual information available to construct hierarchically organised

categories.  We group objects into perceptual categories because they “look

alike”–i.e., they share cues such as a similar silhouette or global shape,

distinctive sets of parts similarly organised (e.g., nose, mouth, eyes, ears, hair

and their relationships), typical surface properties (e.g., smooth  vs.

discontinuous, symmetric vs. asymmetric, and textural, colour and illumination

cues), or biological motion.  Generally speaking, not all image cues are

equally available; there are perceptual limitations to their extraction from

the image. The structure and perceptual availability of object information

                                    
12  This section has been further developed in Gosselin, Archambault and Schyns (in

press).
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has traditionally concerned perceptually-oriented object recognition

researchers.  However, perceptual cues are an irreducible factor of any

object categorisation, and the second factor of diagnostic recognition.

In the diagnostic recognition framework the two factors just

discussed interact:  When the information required to assign an object to a

category matches with input information, a subset of object cues become

particularly useful (i.e., diagnostic) for the task at hand.  Diagnosticity is

the first component of recognition performance.  However, perceptual

limitations on the extraction of diagnostic cues should also affect

performance.  Thus, diagnostic recognition frames explanations of

performance as interactions between cue diagnosticity and cue

availability.  It is our view that the nature and the implications of these

interactions have been largely neglected both in object recognition and in

object categorisation research.

SLIP incorporates these two critical aspects of diagnostic

recognition:  task constraints and information availability.  Task

constraints correspond here to the different strategies associated with a

vertical organisation of categories–i.e., the idea that different

categorisation strategies can be applied to the same object.  This enables us

to examine whether the two determinants of SLIP (i.e., strategy length

and internal practicability) determine the speed of access to the different

levels of a taxonomy.  We will provide several examples of this in

Chapters 4 and 5.  Furthermore, SLIP has two perceptual constraints:

First, the features prescribed in a categorisation strategy are the only ones

sampled in the input.  This implies that changing the features of a strategy

(e.g., via the acquisition of conceptual expertise) could, to some extent,

control the features that are (or are not) seen in a given object.

Archambault, O’Donnell and Schyns (1999) gave support for this:  they

showed that two groups of people with different strategies applied to the
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same object were relatively blind to changes that fell outside the feature

tests prescribed by their strategies.  Second, SLIP postulates that feature

sets in a strategy are tested serially, in a specific order.  Some of the

implications of this last perceptual constraint will be explored in

Experiment 7 (see Chapter 5).
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Chapter 3.  Other models of basic-levelness13

In this chapter we will review all formal models of basic-levelness

before turning to a detailed comparison of their performance with that of

SLIP.  All of these formal models originate from two fundamental ideas:

utility and similarity.  The former led to the suggestion that the basic level

is the most useful level of abstraction in a taxonomy.  This was first

exploited by Brown (1956) with his level of usual utility and by Rosch

(Rosch & Mervis, 1975;  Rosch et al., 1976;  Rosch, 1978).  Models that

embrace utility are Rosch et al.’s (1976) cue validity, Jones’s (1983) category

feature-possession, Corter and Gluck’s (1992) category utility,  Fisher’s (1986)

COBWEB,  Anderson’s (1990) rational analysis,  Pothos and Chater’s (1998a)

compression.  The second class of models assumes that the basic level

maximises a measure of exemplar similarity at this level of abstraction.

These are Rosch’s (1976) differentiation model, Tversky’s (1977) contrast

model,  and Medin and Schaffer’s (1978;  modified by Estes, 1994) context

model.

For each model, we will discuss whether or not it can predict the

standard basic-level phenomenon, i.e. a preference for an intermediate

level of abstraction.  A successful example suffices to prove that a model

possesses this potential;  to show the contrary, a formal proof is required.

The models that do not fulfil this requirement will not be included in our

numerical simulations later on.  To illustrate the functioning of the

successful models, we will provide detailed numerical simulations of

Murphy and Smith’s (1982, Experiment 1) and Hoffmann and Ziessler’s

(1983, Hierarchy I) category structures (see Figure 1).

                                    
13  This chapter expands on Gosselin and Schyns (1997, 1999).
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We will mention two more explanations of basic-level performance:

Murphy and Smith’s (1982) preparation model which emerged neither from

the utility, nor from the similarity tradition.  It is not a fully worked-out

model, but it is the only explicit attempt–before SLIP–to formalise

participants’ behaviour in verification tasks.  Finally, we will review the

most influential part-based accounts.

3.1  Utility and  category cue validity

Brown (1956) suggested that “... things are first named so as to

categorise them in a maximally useful way.” (p. 20)  For example, a dime

is a “dime”, instead of “metal object” because, for most purposes, this is

what is relevant about the object.  Rosch et al.’s (1976) cue validity  builds
on this idea.  The cue validity of category ci corresponds to the sum of the

conditional probabilities that an object belongs to ci given that it possesses

each one of n features.  Formally,
P ci | fj( )

j =1

n

∑ .

Cue validity can be framed as a measure of category utility because the

more informative a cue is, the higher its cue validity is, and the more

useful it is.  Murphy (1982) proved that the cue validity of a more general

category (e.g. white whale) is necessarily greater or equal to the cue validity

of a more specific category (e.g. Moby Dick).  Hence, cue validity cannot

predict a superiority for an intermediate categorisation level, a minimal

requirement of models of basic-levelness.

3.1.1  Category feature-possession

Jones (1983) proposed that the basic level maximises the average

category feature-possession, another measure of usefulness.  Like cue
validity, it starts from the probability that an object belongs to category ci
given that it possesses feature fj, P ci | fj( ) .  However, it also considers the
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probability that the object possesses feature fj given that it belongs to
category ci, P f j |ci( ) .  Together, the conjunction of these two probabilistic

events, Kij = P ci | fj( )P fj | ci( ) , is called the collocation of category ci and

feature fj.  Collocations are computed for all categories and features, and

the largest collocations of each feature are extracted,
Kij = max K1j ,K2 j ,. .. ,Kmj( ) .  For each category, the number of largest

feature collocations are counted.  This number weighted by a number

between 0 and 1 (following Jones, 1983, we set this weight to 1) is the

feature possession of a category.  It reflects the number of strong bi-

directional links between a category and its features, or their mutual

predictability.  The category feature-possession of a level of categorisation

is the average of the category feature-possession of its categories.

Consider the taxonomies of Figure 1.  First, we must compute
P(ci|fj)’s and P(fj|ci)’s for i, j ∈ f1, f2, .. ., fn{ } .  For example, in the top

taxonomy, P(a|ril) and P(ril|a) are equal to 1;  and, in the bottom

taxonomy, P(d|hob) is equal to .5 and P(hob|d) to 1.  Second, we calculate

all the collocations.  In the top taxonomy, the collocation of category ril

and feature a is P(a|ril)P(ril|a), that is 1 (see Table 2 for all collocations of

category feature-structures of the top taxonomy in Figure 1);  and the

collocation of category hob and feature d is P(d|hob)P(hob|d), or .5 (see

Table 3 for all collocations of category structure of the bottom taxonomy

in Figure 1).

Table 2:  Collocations for the numerical simulation of the category
feature-possession (Jones, 1983) with the top taxonomy in Figure 1
(Hoffmann & Ziessler, 1983, Hierarchy I).
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Table 3:  Collocations for the numerical simulation of the category
feature-possession (Jones, 1983) with the bottom taxonomy in Figure 1
(Murphy & Smith, 1982, Experiment 1).

Third, we locate the largest collocation for every feature in the

columns of Tables 2 and 3 (see the shaded figures of Tables 2 and 3).  For

example, the largest collocation for feature a in Table 2 is equal to 1 and

the largest one for feature d in Table 3 is also equal to 1.  Fourth, a count of

the number of shaded figures provides the category feature-possession

measures (see the rightmost column of Tables 2 and 3).  Both the ril and

the hob feature-possession scores are 3.  Finally, these category feature-

possessions are averaged within level of categorisation.  For the top

taxonomy of Figure 1, feature-possession predicts that reaction times

should be fastest at the high level of categorisation (high-level feature-

Feature
a b c d e f g h i j k l

ril 1 0 .5 .5 0 0 .125 .125 .125 .125 .25 .25 3
mip 0 1 0 0 .5 .5 .125 .125 .125 .125 .25 .25 3
kas .5 0 1 0 0 0 .25 .25 0 0 .125 .125 1
jad .5 0 0 1 0 0 .25 .25 0 0 .125 .125 1
gam 0 .5 0 0 1 0 0 0 .25 .25 .125 .125 1
saf 0 .5 0 0 0 1 0 0 .25 .25 .125 .125 1
lun .25 0 .5 0 0 0 .5 0 0 0 .063 .063 1
fuk .25 0 .5 0 0 0 0 .5 0 0 .063 .063 1
tuz .25 0 0 .5 0 0 0 0 .5 0 .063 .063 1
zut .25 0 0 .5 0 0 0 0 0 .5 .063 .063 1
nub 0 .25 0 0 .5 0 .5 0 0 0 .063 .063 1
duw 0 .25 0 0 .5 0 0 .5 0 0 .063 .063 1
pux 0 .25 0 0 0 .5 0 0 .5 0 .063 .063 1
bur 0 .25 0 0 0 .5 0 0 0 .5 .063 .063 1

Feature
a b cde fgh ijk lmn o p q r s t u v w x

hob 1 0 .5(*3) .5(*3) 0 0 .25 .25 .25 .25 0 0 0 0 .25 .25 3

som 0 1 0 0 .5(*3) .5(*3) 0 0 0 0 .25 .25 .25 .25 .25 .25 3

bot .5 0 1(*3) 0 0 0 .5 .5 0 0 0 0 0 0 .125 .125 3
rel .5 0 0 1(*3) 0 0 0 0 .5 .5 0 0 0 0 .125 .125 3
pim 0 .5 0 0 1(*3) 0 0 0 0 0 .5 .5 0 0 .125 .125 3
nop 0 .5 0 0 0 1(*3) 0 0 0 0 0 0 .5 .5 .125 .125 3
com .25 0 .5(*3) 0 0 0 1 0 0 0 0 0 0 0 .063 .063 1
vad .25 0 .5(*3) 0 0 0 0 1 0 0 0 0 0 0 .063 .063 1
lar .25 0 0 .5(*3) 0 0 0 0 1 0 0 0 0 0 .063 .063 1
zim .25 0 0 .5(*3) 0 0 0 0 0 1 0 0 0 0 .063 .063 1
wam 0 .25 0 0 .5(*3) 0 0 0 0 0 1 0 0 0 .063 .063 1
tis 0 .25 0 0 .5(*3) 0 0 0 0 0 0 1 0 0 .063 .063 1
mul 0 .25 0 0 0 .5(*3) 0 0 0 0 0 0 1 0 .063 .063 1
fac 0 .25 0 0 0 .5(*3) 0 0 0 0 0 0 0 1 .063 .063 1
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possession = 3), and that they should be equally slow at the middle- and

low- levels (middle- and low- levels feature-possession = 1).  And for the

bottom category taxonomy of Figure 1, feature-possession predicts that

reaction times (RT) should be fastest at the middle- and high- levels of

categorisation (high- and mid- level feature-possession = 3), and that they

should be slowest at the low-level (low-level feature-possession = 1).

Feature-possession accounts for the observed mid-level preference in

Murphy & Smith (1982, Experiment 1).

When category organisations are entirely composed of non-

overlapping features and no nondiagnostic features are present, the

category feature-possession measure is equal to the number of added

features for this category (we will see that, in this case, SLIP’s predictions

are proportional).  Proof:  collocation is equal to 1–the maximum–for such

categories and feature pairs;  otherwise it is smaller than 1 (either the
feature is added above the category and P ci | fj( )  is smaller than 1, or the

feature is added below the category and P f j |ci( )  is smaller than 1).  Each

feature is added at one category (by definition of the considered

hierarchies).  Thus each feature will be associated with one and only one

collocation of 1.  It follows that, here, category feature-possession is equal

to the number of unique features added to this category.  The number of

unique added features is a measure of redundancy.  For non diagnostic

features (the ones with equal probability of occurring in all low-level
categories), the highest level always wins.  This is simply because P ci | fj( )
(which is equal to P ci( )  here) is always maximum at the highest level and

because P f j |ci( )  is constant for non diagnostic features.  It is more difficult

to grasp what happens when strategy length varies.  Judging by our

above simulation of Hoffmann and Ziessler (1983, Hierarchy I) as well as

by the other simulations with varying strategy length presented in this
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dissertation (see Chapter 5), category feature-possession seems to be

biased for high-level categories.

3.1.2  Corter and Gluck’s category utility measure

Corter and Gluck’s (1992) category utility is grounded on strong

logical principles.  For the authors, a useful category is more capable of
predicting the features of its members.  Starting from P f j |ci( ) , the

probability of feature fj given category ci, the probability of guessing
correctly this feature is P f j |ci( ) 2

.  If the category is useful, the informed

feature guess should be better than a guess made without knowledge of
the category.  If P f j( )  is the probability of such a raw feature guess, the

probability of being correct is P f j( )2
.

The category utility of ci  for feature fj  is P ci( ) P fj |ci( )2
− P fj( )2[ ] , the

subtraction between the informed and the raw feature guesses, given
P ci( ) , the probability that the object belongs to ci.   Summed across all

features of the input, category utility becomes
P ci( ) P fj |ci( )2

− P f j( )2[ ]
j =1

m

∑ .  (6)

Equation 6 computes the basic-levelness of category ci.  The basic-

levelness of a level of abstraction is the average basic-levelness of its

categories.

Let us illustrate this with the taxonomies from Figure 1.  We start
with the computation of all P c( )‘s, P fk( )‘s, and P fk |c( )‘s.  In both

taxonomies in Figure 1, the P c( )‘s are equal to .5, .25, and .125,

respectively, for the higher, middle, and lower levels of categorisation.  In
the top taxonomy in Figure 1, the P fk( )‘s are equal to .5 for a,b,k, and l, and

to .25 for the other features.  For the bottom taxonomy of Figure 1, the
P fk( )‘s are equal to .5, .25, and .125, respectively, for features a and b, c to

n, and o to x.  Here are a few P fk |c( )‘s samples:   P(a|ril) is 1, P(b|ril) is 0,

and P(g|ril) is .25;  and P(a|hob) is 1, P(b|hob) is 0, and P(d|hob) is .5.  Next,
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we subtract the squares of the P fk |c( )  from the squares of the P fk( )‘s.  For

instance, [P(g|ril)2-P(g)2] is equal to 0, and [P(d|hob)2-P(d)2] to .188 (Table 4

summarises all these differences for the high-level category ril, the middle-

level category kas, and the low-level category lun from the top taxonomy

of Figure 1;  and Table 5 summarises them for the high-level category hob,

the middle-level category bot, and the low-level category com from the

bottom taxonomy of Figure 1).

Table 4:  Key computations for the numerical simulation of the category
utility measure (Corter & Gluck, 1992) with the top taxonomy of Figure 1
(Hoffmann & Ziessler, 1983, Hierarchy I).

Table 5:  Key computations for the numerical simulation of the category
utility measure (Corter & Gluck, 1992) with the bottom taxonomy of
Figure 1 (Murphy & Smith, 1982, Experiment 1).

Then, we sum all the differences within categories (i.e., the rows in

Tables 4 and 5).  The totals appear in the rightmost column of Tables 4 and

5.  Fourth, we obtain the category utility scores by weighting each sum by

the appropriate P c( ) .  For the top taxonomy of Figure 1, the ril category

utility is 0.375 (.5 * .75), that of kas, 0.375 (.25 * 1.5), and that of lun, 0.25

(.125 * 2).  For the bottom taxonomy of Figure 1, the hob category utility is

0.687 (1.374 * .5), that of bot is 0.780 (3.119 * .25), and that of som is 0.452

(3.619 *.125).  Finally, the average of all category utilities is computed

within a level of abstraction.  For the top taxonomy of Figure 1, the high-

Feature
a b c D e f g h i j k l

ril .75 -.25 .188 .188 -.063 -.063 0 0 0 0 0 0 .75
kas .75 -.25 .938 -.063 -.063 -.063 .188 .188 -.063 -.063 0 0 1.5
lun .75 -.25 .938 -.063 -.063 -.063 .938 -.063 -.063 -.063 0 0 2

Feature
a b cde fgh ijk lmn o p q r s t u v w x

hob .75 -.25 .188 .188 -.063 -.063 .047 .047 .047 .047 -.016 -.016 -.016 -.016 0 0 1.374

bot .75 -.25 .938 -.063 -.063 -.063 .234 .234 -.016 -.016 -.016 -.016 -.016 -.016 0 0 3.119

com .75 -.25 .938 -.063 -.063 -.063 .984 -.016 -.016 -.016 -.016 -.016 -.016 -.016 0 0 3.619
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and mid- levels category utility is 0.375, and the low-level category utility

is 0.25.  This is exactly what Hoffmann and Ziessler (1983, Hierarchy I)

observed.  For the bottom taxonomy of Figure 1, the middle-level utility is

the greatest which is 0.780, followed by the high-level utility which is

0.687, and trailed by the low-level utility which is 0.452.  Murphy and

Smith (1982, Experiment 1) observed a slightly different pattern of

response times:  the high-level categories RTs trailed the pack and the low-

level categories were verified the second fastest.  Nevertheless, this last

example demonstrates that the utility of a level of abstraction can be

maximum at an intermediate level of categorisation.

Category utility also has a bias for higher levels of categorisation.

The following equation

P c( ) P fk |c( )2
−

k =1

m

∑ P fk( )2

k =1

m

∑ 
  

 
  

was obtained by distributing the summation of Equation 6 over the two
terms of the subtraction.  P fj( ) 2

j =1

m

∑  is a constant and the two remaining

variable terms are biased for higher levels.  The probability P ci( )  that an

object belongs to category ci decreases exponentially with increasing

levels of category specificity, quickly reducing utility at each level (e.g. in

the top taxonomy of Figure 1, starting from the top level, utility is halved
at each level down the hierarchy).  At the same time, P fj |ci( )2

j =1

m

∑  usually

increases almost linearly with increasing specificity, and can only
compensate the exponential reduction of P ci( )  with an exponential

addition of redundant features at lower levels.  Hence the bias of category

utility for the higher levels of a taxonomy.

The addition of features at any level of the hierarchy increases

utility, but as just discussed, exponential additions at lower levels are

necessary to compensate for the exponential decrease in the likelihood of

these categories.  When the added features are unique to the category
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their number is proportional to redundancy, and thus category utility is

sensitive to redundancy.  However, when added features overlap

between categories category utility and SLIP tend to diverge in their

predictions.

3.1.2.1  Fisher’s COBWEB

Fisher’s (1987, 1988) COBWEB is an incremental clustering

algorithm.  Clustering consists in placing items into contrasting categories

based on some entirely unsupervised rules;  it is thus different from other

categorisation tasks in which feedback informs people on whether or not

an object belongs to a category.  COBWEB’s clustering criteria is Corter

and Gluck’s (1992) category utility.  When an object is encountered,

COBWEB places it either into an already existing category, or into a new

singleton category.  To be exact, COBWEB considers all possible

categorisations for this object, including the one putting it in a new

singleton category;  for each categorisation, COBWEB computes the

average category utility:

P Ck( ) P fij |k( ) 2
−

j
∑

i
∑ P fij( )2

j
∑

i
∑ 

  
 
  k

∑
n ,

where P fij |k( )  is the probability of attribute i  possessing value j  in

category k, P fij( )  is the base rate of attribute i possessing value j, and n is

the number of categories in the partition.  The categorisation with the

greatest average category utility score is the selected one.  Fisher

proposed that COBWEB partitions objects into their basic categories.

COBWEB’s clustering criteria is Corter and Gluck’s (1992) category

utility summed across categories and divided by the number of categories,

and it thus predicts more or less the same thing.
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3.1.3  Rational analysis

Anderson (1990, 1991) has devised an iterative algorithm of

categorisation.  It inputs the dimensional descriptions of objects one at a

time, and outputs the “optimal” probability that a new object will display

a certain value on a dimension given a set of dimensional values for that

object.  For example, it could inform an animal whether or not a novel

object has a positive value on the “dangerous” dimension.  As a by-

product, this algorithm partitions objects into “horizontal” categories (i.e.,

this partitioning does not possess a “vertical” or hierarchical dimension).

Anderson proposed that the most robust partitioning occurs at the

abstraction level with highest basic-levelness.  The algorithm is optimal

inasmuch as it realises a version of Rosch’s (1978) cognitive economy

principle which states that “what one wishes to gain from one’s categories

is a great deal of information about the environment while conserving

finite resources as much as possible” (p. 28).  We will not explain its

derivation because it is quite complicated.  The interested reader is

referred to Anderson (1990, 1991).

We will follow Anderson’s 1991 formulation of his iterative

categorisation algorithm with the exception of Equation 7 taken from his

1990 book.

The first object is categorised into a new singleton category.  Then

every time a new object is encountered a three-step process is repeated:

(a) given a partitioning for the first m objects, calculate for each category k

the probability P k| F( )  that m+1st object comes from category k  (this

includes the existing categories and a new category) given that the object

has features F;  (b) create a partitioning of the m+1 objects with the m+1th

object assigned to the category with maximum probability;  and (c) to

predict value j on an unobserved dimension i for the n+1st object with

observed features F, calculate
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Pi j|F( ) = P k|F( )Pi j|k( )
k

∑ ,

where P k| F( )  is the probability that the n+1st object comes from category

k;  and Pi j|k( )  is the probability of displaying value j on dimension i.

Only steps (a) and (b) concern us;  we are solely interested in the
partitioning of objects.  Therefore, we only need to compute P k| F( )s.  In

Bayesian analysis, P k| F( )  is a posterior probability that the object belongs

to k  given that it has features F.  It can be expressed as follows,
P k| F( ) =

P k( )P F|k( )
P k( )P F|k( )

k
∑

,

where the summation in the denominator is over all categories k currently

in the partitioning, including the potential new one.
Anderson derived the prior probability, P k( ) , by making the

assumption that there is a fixed coupling probability (c) that two objects

come from the same category, and that this probability is independent of

the number of objets categorised so far:
P k( ) =

cnk

1− c( ) + cn
,

where nk  is the number of objects assigned to category k so far;  and n is

the total number of objects seen so far.  P 0( ) , the probability that the

object comes from a entirely new category, is
P 0( ) =

1 − c( )
1 − c( ) + cn

.

The coupling probability is crucial for the finding of the basic level.  With

large c , only one category will be created.  As it gets smaller and smaller,

more and more categories will be created.  Anderson proposes–in a very

ad hoc fashion–that, at c = .3, only the groupings associated with the

greatest basic-levelness emerge.
To derive the conditional probability or likelihood term, P F|k( ) ,

Anderson made the additional assumption that objects’ dimensions are

independent:
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P F|k( ) = Pi j|k( )
i

∏ ,

where the values j on dimensions i constitute the feature set F;  and where
Pi j|k( )  is the probability that an object from category k displays value j on

dimension i.  Pi j|k( )  is given by

Pi j|k( ) =
cj + 1
nk + m

, (7)

where nk  is the number of objects in category k  that have a value on

dimension i;  cj  is the number of objects in category k with the same value

as the object to be classified;  and m  is the number of dimensions to be

classified (Anderson, 1989).

Anderson has modelled Murphy and Smith’s (1982, Experiment 1)

category structure, with Corter and Gluck’s coding (see Figure 17 in

Chapter 4), but added another dimension–a label dimension–per level of

abstraction.  For c > .96, all items are put in one category;  for .8 > c > .95,

only the high-level clustering emerges;  for .4 > c > .8, the model fluctuates

between the high- and middle- level clusterings;  for .4 > c > .2, it extracted

only the middle-level clustering;  for .2 > c > .05, it usually grouped the

items in the intermediate clusters, and sometimes in singleton categories;

and, for c < .05, the rational algorithm only extracted singleton sets.

Hoffmann and Ziessler’s experiments (including Hoffmann & Ziessler,

1983, Hierarchy I) were also successfully modelled.

We will not include rational analysis in our numerical simulations

because it is not a basic-levelness metric per se;  in the best of worlds, it

only identifies the level with highest basic-levelness.
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3.1.4  MDL and compression14

Minimum Description Length (MDL) is a method that uses

partitioning of data to compress them (Chater & Pothos, 1999;  Pothos &

Chater, 1998, 1999).  The amount of compression that a particular

partitioning achieves is the difference in bits between a raw and a

compressed description of the same data set.  Different levels of a

taxonomy correspond to different partitionings of the same data set.  In

Pothos and Chater (1998, 1999), the suggestion is made that the maximal

compression of the data set is accomplished at the basic-level.
With r objects in a data set, there are s =

r r − 1( )
2

 possible pairwise

similarities between the objects.  There are A =
s s − 1( )

2
 possible binary

relationships (inequalities) between the similarities.  The representation of

these inequalities requires A bits of information (one bit per similarity

relationship).  A bits of information describe the data set before
partitioning.  If Di bits of information describe one partition of the same

set, then A - Di, measures the compression efficiency of this partition.  The

basic level should maximise this difference if this level achieves the

maximal compression.  Compression is therefore a measure of the utility

of the basic level.
We now derive Di , the encoding of a partitioning.  The number of

possible partitions of r items into n clusters, Part(r,n), is

−1( )v n − v( )r

n − v( )!v!v = 0

n

∑

                                    
14  Pothos and Chater (1999) present their model as a version of Rosch et al.’s (1976)

differentiation model (see 3.2 Similarity and the differentiation mode l ), but we

believe it bears more commonalties with the utility tradition than with the similarity

one.
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To encode this partitioning, we need log2 Part r, n( )[ ]  bits of

information.  We then compute u, the combinatorics of all within-cluster

similarities with all between-cluster similarities.  The scheme assumes that

within-cluster pairwise similarities s(i, j) are all greater than any between-

cluster pairwise similarities, s(k, l).  However, this does not always hold

and e counts the number of times the assumption is violated (e can vary

between 0 and u and be encoded on a maximum of log2 u + 1( )  bits).  There
are Ce

u =
u!

(u − e)!e!
 possible ways of selecting e  errors among the

combinatorics of relationships u.  A total of  log2 u + 1( ) + log2 Ce
u( )  bits

encode the errors.

Remember that A  bits specify all possible binary relationships

between pairwise similarities, whereas u  specifies those constrained by

the clustering.  A - u  counts the relationships left outside the clustering.  A

- u bits encode them.

The compression of information offered by one partitioning of the
data is A - Di, where Di  =  log2 Part r, n( )[ ]  + [log2 u + 1( ) + log2 Ce

u( ) ] + (A -

u.).  Hence A - Di is equal to
u − log2 Part r, n( )[ ] + log2 u + 1( ) + log2 Ce

u( ){ } .

We will illustrate this with the taxonomies in Figure 1.  First, the

parameters u  and e  must be calculated (r  is simply the number of

objects).  Note that the category tree is the same in both cases:  two high-

level categories, each divided into two mid-level categories, each divided

into two low-level categories, each containing two exemplars.  It is the

feature definitions of the categories of these category structures that

differ;  this will play a role in phase two of the computations.  r  = 16 (2

exemplars * 8 low-level categories).  How many binary inequalities are

constrained by the assumption that all within cluster pairs of similarities

are greater than all between cluster ones at the high-, middle- and low-

levels of categorisation?
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At the high-level, we have two clusters with eight objects each.  We

have a total of 56 within-cluster pairwise similarities (28 pairs per cluster *

2 clusters), and 64 between-cluster pairwise similarities (8 objects in the

first cluster * 8 objects in the second).  Thus, we have u  = 3584 (56 within-

cluster pairs * 64 between-cluster pairs).  At the middle-level, we have four

clusters each containing four objects.  A total of 24 within-cluster pairs (6

pairs per cluster * 4 clusters), and 96 between-cluster pairwise similarities

(4 objects in a first cluster * 4 objects in a second cluster * 6 permutations).

And u  = 2304 (24 within-cluster pairs * 96 between-cluster pairs) for the

middle-level clustering.  At the low-level, we have eight clusters with two

objects each.  This implies 8 (1 pair per cluster * 8 clusters) within-cluster

pairs and 112 (2 items in a first cluster * 2 items in a second cluster * 28

permutations)  between-cluster pairwise similarities, for a grand total of u

= 896 (8 within-cluster pairs * 112 between-cluster pairs).
The tree branching cost term, log2 Part r, n( )[ ] , is equal to about 15,

27.36, and 31 bits, at the high-, middle-, and low- levels of abstraction,

respectively.  Second, this description must be corrected for

similarity errors.  The taxonomies of Figure 1 must be treated separately

from now on.  How many of these constraints are false in the top and

bottom taxonomies of Figures 1?  Remember that Pothos and Chater

(1998, 1999) assumed that one similarity can be either greater or smaller

than–but that it cannot be equal to–another.  This is false of many pairwise

similarities here.  For example, in the bottom taxonomy of Figure 1, the

similarity (defined à la Tversky–see section 3.2.1 Contrast model) between

acdeox (small com) and afghrw (large lar) is the same as that between the

acdeox (small com) and the bijksx (small wam).  Following Pothos (1999), we
will only count Swithin > S between as an error, but not S within =

Sbetween which will be treated as Swithin < Sbetween.  Therefore not a

single constraint derived from the categorisation-level partitionings in the
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bottom taxonomy of Figure 1 description is incorrect.  The worst high-

level within similarity is S(acdeox, afghrw) (share 1 feature, contrast on 5) is

equal to all high-level between similarities;  the worst middle-level within

similarities share 4 features and differ on 2, e.g. S(acdeox, acdepw), which is

better than all middle-level between similarities;  and the worst low-level

similarity is S(acdeox, acdeow) (share 5 features, contrast on 1) is greater

than all low-level between similarities.  So compression is equal to 3569

bits at high-level, 2273.64 bits at the mid-level, and 865 bits at the low-

level.  The middle level advantage for Murphy and Smith (1982,

Experiment 1) is not predicted.  However, Pothos and Chater (1998, 1999)

have modelled the same experiment with Corter and Gluck’s coding, and

predicted a middle level advantage (see section 4.5 A cautionary note about

coding).

Given the top taxonomy of Figure 1, however, mistakes are made

with the simple category tree description.  Trouble arises at the high-level:

The worst high-level within pairwise similarity is, for example, S(acgk, acil)

(1 shared feature;  3 contrasting features), and the best high-level between

similarity is S(acgk, begk) (2 shared features;  2 contrasting features).  No

error is made at the mid- and low- levels.  The worst mid-level within

similarity is S(acgk, achl) (2 shared features;  2 contrast features) and the

best mid-level between similarity is S(acgk, adik) (2 shared features;  2

contrast features).  And the worst low-level within similarity is S(acgk, acgl)

(3 shared features;  1 contrast feature);  this is just as good as the best low-

level between similarity, S(acgk, achk).  The information required to correct

all the high-level pairwise similarity mistakes is 809.68 bits.  The net

compression indexes are thus 2759.32, 2276.64, and 865.00, respectively, at

the high-, mid-, and low- levels of abstraction.  This is not too far from the

pattern of response times observed by Hoffmann and Ziessler (1983,

Hierarchy I).
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When there is little feature overlap, MDL is essentially dependent

on u, the combinatorics of within and between category similarities (or the

category tree structure–see Preamble).  This combinatorics grows with

level of generality and so compression is greater when fewer categories

are considered, irrespective of how redundant the features are within the

categories.  Compression thus has a bias for high levels of abstraction.

Variations of strategy length create overlap between features and adds

errors to the MDL description.  However, these tend to be insufficient to

counterbalance the bias for the higher levels.

3.2  Similarity and the differentiation model

So far, the models reviewed implemented the principle that the

basic level is the most useful level of a taxonomy.  Another principle for

formal models is that of differentiation, or dissimilarity.  As Rosch et al.

(1976) put it, categories at the basic level “... have the most attributes

common to members of the category and the least attributes shared with

members of other [contrasting] categories.” (p. 435)  This is family

resemblance applied vertically, or to embedded categories, rather than

horizontally, or to contrasting categories (Rosch, 1978).  The horizontal

category with the greatest family resemblance index is called the prototype

(Rosch and Mervis, 1975), and the vertical category with the greatest

family resemblance index is called basic (Rosch et al., 1976).  The first

component of this family resemblance definition has been called the

specificity  (Murphy & Brownell, 1985), or the informativeness  (Murphy,

1991a) of a category, and the second component the distinctiveness of a

category (Murphy & Brownell, 1985;  Murphy, 1991a)15.  However,

                                    
15  The two determinants of SLIP can loosely be mapped onto those of the differentiation

model.  Both strategy length and informativeness have a tendency to increase with

specificity;  both internal practicability and distinctiveness have a tendency to
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category differentiation is not sufficiently specified to be refuted.  For

example, there is a polynomial on distinctiveness (or on informativeness)

of degree n that fits perfectly an arbitrary RT pattern on n+1 levels of

categorisation.  A similar point was made by Medin (1983).

3.2.1  Contrast model

Tversky’s (1977) contrast model is a measure of similarity between

pairs of exemplars.  It is a particular case of the matching function.  The

matching function states that the similarity between two exemplars is a

function of the number of their shared and distinctive features.  Formally

the contrast model can be expressed as follow:

S a, b( ) = θf A ∩ B( ) − αf A − B( ) − βf B − A( ) ,

where a  and b  are two exemplars;  S a, b( )  is the similarity of a  to b ;  A

and B  are the sets of features of objects a  and b , respectively;  and  θ , α ,

and β  are three constants between 0 and 1.  Providing that

f A − B( ) ≠ f B − A( )  and that α ≠ β , the contrast model predicts

asymmetrical similarities that is, S a, b( ) ≠ S(b, a) , as, for example, North

Korea is more similar to Red China than Red China is to North Korea.

The contrast model needs to be specified further if it is to be used at

all for modelling.  In the literature, applications of the contrast model are

limited to the special case in which f X( )  denotes the number of features in

X  (Estes, 1994).  We will call this the special contrast model.

Tversky applied this model to a number of problems among which

was the determination of the basic-level of categorisation.  The basic-

levelness, or–as Tversky put it himself–the category resemblance, of

category L  is the mean of the similarities of all the pairs of distinct

exemplars of L .  Formally,

                                                                                                    
increase with generality.  It can thus argued that SLIP is one instance of the

differentiation model (Schyns, 1998).
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R L( ) =
S a, b( )∑
n
2

 
 
  

 

,

with a and b distinct.  R L( )  is the category resemblance of L , and n  is the

cardinality of L .

We run into a problem when the low-level is the identity-level that

is, when low-level categories contain a single exemplar.  To deal with this

problem, a straightforward variation of Tversky’s measure–the average

of the similarities of all possible pairs, including object X and itself–can be

used.  Formally,

R L( ) =
S a, b( )∑

n n + 1( ) 2
.

However, this special contrast model cannot have a mid-level

advantage.  As we get away from the top level of abstraction, the

numerator increases (this is simply a feature of category

hierarchies–categories get more and more similar as they become more

and more specific) and the denominator decreases.  Thus the most specific

level of categorisation will always have the largest category resemblance

score.

3.2.2  Context model

Estes (1994) has transformed Medin and Schaffer’s (1978) influential

context exemplar model of categorisation (see Nosofsky, 1986 and

Lamberts, 1994, for developments) into a measure of basic-levelness.  In

this model, a multiplicative rule computes the similarity S a, b( )  between

any two exemplars of a category.  A match between the corresponding

attributes of two objects is assigned value 1, and a mismatch is assigned

α D , a dissimilarity parameter (α D  varies between 0 and 1, corresponding

to the saliency, or attentional weight of the considered attribute).  To

compute the similarity of any two exemplars, the local similarities of their

component attributes are multiplied with one another.
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A ratio provides an index of basic-levelness of an exemplar:  The

numerator sums the within-category similarity of one exemplar with all

other exemplars of this target category–including itself.  The denominator

sums similarities extending the comparisons to the exemplars comprised

in the related higher level category.  The index of basic-levelness of a

category is the average of such ratios, across all exemplars of the category.

The basic-levelness of a level of categorisation is the average basic-

levelness of all its categories.

We will illustrate this with the taxonomies from Figure 1.  The

bottom taxonomy is defined by a total of six dimensions.  The measure of

similarity between any pair of exemplars (i.e., S(a,b)) is thus a six-factor

multiplication.  Exemplars acdeow and acdeox, for instance, share values on

five dimensions:  a, c, d, e, and o;  and they differ on a single dimension’s

value (w vs. x).  Following Estes (1994), we will use a single mismatch

parameter: α .  So, the six-factor multiplication defining the similarity

between acdeow and acdeox is:  1 * 1 *  1 * 1 * 1 * α  = α .  Similarly, we

obtain S(acdeow, acdeow) = 1, S(acdeow, acdeox) = S(acdeow, acdepw) = α ,

S(acdeow, acdepx) = α2 , S(acdeow, afghqw) = S(acdeow, afghrw) = α4 ,

S(acdeow, afghqx) = S(acdeow, afghrx) = S(acdeow, bijkw) = S(acdeow, bijktw) =

S(acdeow, blmnuw) = S(acdeow, blmnvw) = α5 , S(acdeow, bijksx) = S(acdeow,

bijktx) = S(acdeow, blmnux) = S(acdeow, blmnvx) = α6 .

Applying the same multiplicative rule to the top taxonomy of

Figure 1 we get S(acgk, acgk) = 1, S(acgk, acgl) = S(acgk, achk) = α , S(acgk,

achl) = S(acgk, adik) = S(acgk, adjk) = S(acgk, begk) = α2 , S(acgk, adil) = S(acgk,

adjl) = S(acgk, begl) = S(acgk, behk) = S(acgk, bfik) = S(acgk, bfjk) = α3 , and

S(acgk, behl) = S(acgk, bfil) = S(acgk, bfjl) = α4 .

The next step consists in computing the sum of the similarities of

one exemplar of category X (any exemplar) to every other exemplar of

this category.  For high-, mid-, and low-level categories of the bottom
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taxonomy of Figure 1 these are 1 + 2α + α 2 + 2α 4 + 2α5 , 1 + 2α + α 2 , and

1 + α , respectively;  and, for high-, mid-, and low-level categories of the

top taxonomy of Figure 1 these are 1 + 2α + 3α2 + 2α3 , 1 + 2α + α 2 , and

1 + α , respectively.

Finally, these summed similarities are divided by the summed

similarities that extend the comparisons to the exemplars comprised in the

related higher level category.  For example:  The probability that exemplar

acgk in the top taxonomy of Figure 1 will be categorised as a ril is
1+ 2α + 3α2 + 2α 3

1 + 2α + 4α2 + 6α3 + 3α 4 , as a kas , 1 + 2α + α 2

1 + 2α + 3α2 + 2α3 , and as a lun,
1+ α

1 + 2α + α 2 .  If, for instance, α =.3  (this is the value used by Estes to model

Corter, Gluck & Bower’s, 1988, results), these probabilities become .896,

.878, and .769, respectively.  This is not too far from what Hoffmann and

Ziessler (1983, Hierarchy I) observed.

And the probability that exemplar acdeow in the bottom taxonomy
of Figure 1 will be categorised as hob is 1+ 2α + α2 + 2α4 + 2α 5

1 + 2α + α 2 + 2α 4 + 6α5 + 4α6 , as bot,
1 + 2α + α2

1 + 2α + α 2 + 2α 4 + 2α5 , and as c o m , 1+ α
1 + 2α + α 2 .  With α =.3 , these

probabilities are .993, .988, and .769, respectively.  Here, the model does

not account for the observed middle-level preference.  Estes showed,

however, that it can account for the observed middle level preference in

Corter, Gluck and Bower’s taxonomy (1988;  this taxonomy is isomorphic

to Hoffmann & Ziessler’s, 1983, Hierarchy II).  The context model thus

fulfils the basic requirement of possessing the capacity of predicting a

middle-level preference.

The context model also has a bias for the higher-levels of a

taxonomy.  The measure is a ratio of two polynomials where the

numerator differs from the denominator by only one term.  With

increasing levels of abstraction in a taxonomy, the numerator increases

and the ratio approaches 1.  The bias for the high level can be overcome



99

by increasing the similarity between the target exemplars and those of

lower level contrast categories.

3.3  Preparation model

Murphy and Smith (1982) proposed a different kind of model to

explain basic-levelness that they called the preparation model.  It is not a

fully articulated formal model of basic-levelness.  What is interesting about

it is that it breaks with the utility and the similarity traditions.  Moreover it

is an embryo of a response-time model of basic-levelness (not entirely

unlike SLIP) with a signal detection flavour.  The model is schematised in

Figure 6.

Set true and false
criteria for category

Prepare perceptual
representation of

category (C)

Category
name 1 sec Picture

Encode perceptual
representations of

picture (P)

Compare 
features

of C and P
Respond

Criterion
matches

or 
mismatches

Yes

No

Figure 6.  Box diagram of the preparation model.  Adapted from Murphy
& Smith (1982, Figure 4).

When the category is named, the participant gets ready for the

forthcoming picture in two ways:  (1) he activates a representation of the

category;  and (2) he sets a criteria on the number of matches and

mismatches that will be needed to respond true and false, respectively.  As

soon as the picture appears, the perceiver starts to compare its features to

those of the representation of the category, keeping track of matches and
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mismatches. When one of the pre-set criteria is reached, the participant

responds either true, or false.

The superiority of the basic and subordinate categories over

superordinate ones would result from people usually not having a single

perceptual representation for a superordinate;  two (or more)

representations must thus be activated when the target category is a

superordinate.  The presence of these additional representations implies

that additional matches will be needed on average.  As a result RTs are

lengthened compared to the case when the category is at a lower level,

and a single perceptual representation is activated.  This is in essence

Jolicoeur, Gluck and Kosslyn’s (1984) explanation.  We address this

explanation in the next section.

The advantage of the basic over the subordinate categories would

occur because participants set different true and false criteria for categories

at the two levels.  Murphy and Smith assume that the criteria is set so as to

maximise discrimination between the target category and contrasting

ones.  For example, take the taxonomy represented in the bottom of

Figure 1.  If the category presented was rel criteria are set so as to

maximise discrimination from bot, since that is the closest “false”

contrasting category.  Because subordinates overlap more with their

contrast categories than do basics, the true threshold should be set higher

for subordinates;  the greater the criterion, the longer the feature-

comparison process, and therefore the longer the RT.

3.4  Part-based accounts

A commonality of all the reviewed models so far is that they are

determined by category feature-structures.  Provided that this abstract

structure is unchanged, the content of these attributes is of no importance:

it can be shapes, colours, textures, shapes and colours, and so on.  To conclude

this section on models of basic-level performance, we will examine the
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influential content-based or, more specifically, part-based accounts (e.g.,

Jolicoeur, Gluck & Kosslyn, 1984;  Biederman, 1987).

We have already told part of the story (see section 1.3.3 Importance

of shapes for basci-levelness) but we believe it is worth repeating here.  You

will remember that Rosch et al. (1976) found a large and reliable increase

in similarity of the overall look of objects from basic level to superordinate

categories, and a significant–but significantly smaller–increase from basic

to subordinate.  They also found that averages of basic-level objects (i.e.,

some sort of primitive average interpolation between standardised objects

belonging to the same basic-level categories) were the most inclusive

average objects that were readily identifiable (see also Rosch, 1978).  This

suggests that shape is an important factor of basic-levelness for natural

categories.

One determinant of shape is part structure.  Tversky and

Hemenway (1984) found–for a broad range of natural categories including

both objects and organisms–a sharp increase of listed part-features from

the superordinate to the basic level (e.g., handle and blade for “knife”; peel

and pulp for “banana”), but little rise from the basic to the subordinate

level.  So it seems that parts–rather than their spatial relationships–are a

crucial factor of basic-levelness.

In parallel to Tversky and Hemenway’s research, Jolicoeur, Gluck,

& Kosslyn (1984) took Rosch et al.’s (1976) claim one step further:  not

only are objects first recognised at their shape-based basic categories, on

average, they are necessarily first recognised at their shape-based entry

point categories.  Entry point categories are usually at the basic-level but

not always;  for example, Jolicoeur, Gluck and Kosslyn showed that this

was not the case for atypical objects (e.g., a penguin is accessed at the

subordinate category “penguin” rather than the basic category “bird”).

To access categories above the entry point, such as Rosch’s
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superordinates, a search in the semantic tree is necessary after the entry

point identification (note:  this is equivalent to saying that a superordinate

category is defined by the disjunction of entry point categories), and to

access categories below the entry point, such as Rosch’s subordinates,

additional perceptual information is required.  Thus the entry point is the

point of contact between perception and semantic memory.

Both Jolicoeur, Gluck and Kosslyn’s (1984) theory and Tversky and

Hemenway’s (1984) empirical findings have been extremely influential

among the object recognition community (e.g., Neisser, 1987;  Biederman,

1987;  Biederman and Gerhardstein, 1993;  Edelman, 1998).  But, perhaps, it

is in Biederman’s hands that is best known.

Biederman developed a theory of object recognition called

recognition by components (Biederman, 1987).  This theory supposes that all

objects can be decomposed into under 50 geometrical primitives or geons

(Biederman, 1998).  Geons are defined by visual properties that are

invariant through most views and most orientations such as parallel lines

and surface intersections.  They include shapes such as cube, sphere,

cylinder, etc.  Once an object has been decomposed into geons, and once

the structure of these geons (e.g., a typical house = a wedge ON TOP OF a

cube) has been described, object identification ensues at the basic level.  For

Biederman, objects are first identified at the basic level and then they are

identified at other levels.  The superiority of basic and subordinate

categories would come from the fact that no unique geon-structure

representation exists for superordinate categories.  The superiority of

basic categories over subordinate categories results from the fact that the

latter–but not the former–”[...] have a high degree of overlap in their

components and in the relations among these components [...]”

(Biederman, 1987, p. 143), and it takes more time to distinguish them.  In

other words, objects are recognised more rapidly at the basic level than at
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the subordinate level because the geon-based basic level categories are

more dissimilar to one another than the geon-based subordinate level

categories.

McMullen and Jolicoeur (1992) suggested that this “additional

processing” required at the subordinate level could include determining

spatial relations between geons.  And that objects could be categorised at

the basic level following only geon identification.  This was latter

corroborated by empirical findings (Hamm & McMullen, 1998).

To sum up:  Biederman made two separate claims:  (1) basic (or

entry point) categories are necessary halts before accessing related higher

or lower level categories, and (2) these basic categories are necessarily

defined by parts.  We believe that both are incorrect.

It has been shown several times that you can get a basic level effect

in all kinds of taxonomies without parts (Corter, Gluck & Bower, 1988).

Furthermore, Murphy (1991a) has shown that in a taxonomy with parts,

you can have a superiority effect at a level of abstraction not defined by

parts (see 1.3.3 Importance of shape for basic-levelness).

As for Biederman’s other claim, Thorpe, Fize, and Marlot (1996;  see

also Thorpe, Gegenfurtner, Fabre-Thorpe & Bülthoff, 1999), for example,

have shown that people can decide whether new natural scenes presented

for a very short presentation time (28 ms) contains an animal or not (this

is a superordinate categorisation).  In fact, people do this very efficiently;

they are 93% accurate.  More importantly for our argument, people could

not identify the basic name of the animal in almost all cases.  This

demonstrates that basic-level identification is not necessary for

superordinate recognition of natural objects.  It does not imply that the

superordinate category animal has a greater basic-levelness than its basic

subdivisions.  For the superordinates the participants had only two known
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choices whereas for the basic-level categories their responses were

unrestricted, and thus much more uncertain or difficult.

3.5  Summary

We will not compare the performance of all the reviewed models in

the following chapters.  Instead we will concentrate on Jones’s (1983)

category feature-possession, Corter and Gluck’s (1992) category utility,

Pothos and Chater’s (1998, 1999) compression measure, and Medin and

Schaffer’s (1978;  modified by Estes, 1994) context model.

We have left aside Rosch et al.’s (1976) cue validity and Tversky’s

(1977) contrast model because they cannot predict the classic advantage

for an intermediate level.  Fisher’s (1986) COBWEB measure has been

discarded because it is based on Corter and Gluck’s category utility, and

makes roughly the same predictions.  We have also excluded Anderson’s

(1989, 1990) rational analysis model because it does not provide a metric of

basic-levelness.  Finally, Murphy and Smith’s (1982) preparation model as

well as Biederman’s (1987) recognition-by-component theory are too

crude to allow comparisons with the other basic-level models.
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Chapter 4.  Numerical simulations of published
experiments16

In this chapter, we will compare the predictive performance of SLIP

with those of Jones’s (1983) category feature-possession, Corter and

Gluck’s (1992) category utility, Pothos and Chater’s (1998) compression

measure and Medin and Schaffer’s (1978) context model.  The database

comprises 21 (all, as far as we know) basic-level experiments.  We will first

present the experiments before turning to their simulations with the

models.  In the following sections, the experiments are organised

according to the factor of SLIP they test–strategy length or internal

practicability.  For variations of internal practicability, we will examine the

experiments that found faster access at an intermediate, low, and high

level of categorisation.  We will then describe the only two experiments

that explicitly tested strategy length, the second computational factor of

SLIP.  Finally, we will examine taxonomies with disjunctions of attributes,

or mixtures of conjunctions and disjunctions.  

4.1  Variations of internal practicability determines
basic-levelness

4.1.1  Faster access at an intermediate level

One of the most influential experiments on the basic-level is that of

Murphy and Smith (1982, Experiment 1).  It is influential because most

subsequent experiments on the basic level used the same procedure.

Their participants were initially taught the artificial taxonomy represented

at the top of Figure 7.  (We have normalised the notation of information in

taxonomies, substituting letters of the alphabet for the actual features.
                                    
16  This chapter expands on Gosselin and Schyns (1997, 1999).
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This enables direct comparisons of the taxonomies;  the mapping between

the letters and what they signify is provided in the figures.  Underneath

the category names, we give the abstract optimal strategies fed to SLIP in

the shorthand notation described earlier.  At the bottom of each

taxonomy, the abstract feature constitution of all exemplars is given.)
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Figure 7.  Taxonomies for all experiments with varying redundancy that
exhibited an advantage for an intermediate level of categorisation.  From
top to bottom:  Murphy & Smith (1982, Experiment 1–see also Murphy,
1991, Experiment 4, Simple, for a replication);  Murphy & Crasifi (1982);
Murphy (1991, Experiment 4, Enhanced).  Underneath the category
names, we provide the optimal strategies fed to SLIP.  The feature
constitution of all exemplars is given underneath each taxonomy.  An
index for these abstract features is also provided.
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Murphy and Smith used 16 artificial tools.  Four of these artificial tools are

shown in Figure 8.  Their tools were either pounders, or cutters (higher

level);  they had non-overlapping handles, shafts, and heads (which defined

the middle level);  and they had one more non-overlapping feature such

as narrow and wide heads (at the lower level).  Each low-level category

contained a large and a small tool exemplar (size is thus a nondiagnostic

dimension).  In a later testing phase, participants were shown a category

name followed by a stimulus.  Subjects’ task was to verify as quickly as

possible whether the name and stimulus matched.

Figure 8.  Four artificial tools used by Murphy & Smith in their
Experiment 1.  Scanned from Murphy & Smith (1982, Figure 1).

As illustrated in Figure 7, mid-level categories have the highest

practicability.  Table 6a shows that they were verified faster, and the high-
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level categories slowest.  Murphy (1991a, Experiment 4, Simple) replicated

these results.

In fact, the highest practicability of the middle level is also

responsible for its faster access in Mervis and Crasifi (1982) and Murphy

(1991a, Experiment 4, Enhanced).

Mervis and Crisafi (1982) used 24 abstract artificial objects similar to

the ones shown in Figure 9.

Figure 9.  Eight sample objects used by Mervis & Crisafi.  Scanned from
Mervis & Crisafi (1982, Figure 1).

Each low-level category contained three highly similar exemplars.  The

superordinate categories were defined by a value on two redundant

dimensions:  curvature (either straight or curved) and angularity (either

sharp or smooth corners).  The basic categories were defined by a set of

redundant values on four dimensions:  the overall shape (triangle, square, fat

cell, and slim cell) and three additional internal characteristics (e.g., line

texture, black stripe, and diamond).  The subordinate categories were defined

by one configural change dimension.  This taxonomy is the middle one in

Figure 7.
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In Murphy (1991, Experiment 4, Enhanced), two dimensions (i.e.,

colour and texture: either red dots, yellow circles, green stripes, or blue solid

colour) were added to the artificial tools of Murphy and Smith (1982,

Experiment 1) at the middle level of categorisation.  This category

hierarchy is illustrated at the bottom of Figure 7.

Our numerical simulations also include natural taxonomies.  We

assumed that the features subjects listed reflected their representations

(see Rosch & Mervis, 1975).  In addition, following Tversky and

Hemenway (1984) and Tanaka and Taylor (1991), we assumed that one

feature was never listed for two contrasting categories (see 4.1.1.1

Rationale for using listed features to approximate the structure of natural

objects).  Five natural taxonomies had a greater redundancy at the

intermediate level:

In Rosch et al. (1976), Experiment 7, subjects had to verify the name

of 18 objects at three levels of categorisation.  These objects belonged to

six non-biological taxonomies:  musical instruments, fruit, tool, clothing,

vehicle, and furniture.  Three pictures per category structure were carefully

selected.  In a previous experiment (Experiment 1), subjects had to list the

attributes of these categories.  The mean number of added features at the

lowest-level was 1.85, at the mid-level was 5.55 , and at the highest level

was 3.5 (these numbers arise from Rosch et al., 1976, Table 2, non-

biological taxonomies, raw tallies;  we rounded these averages to integers

for the simulations).

Tanaka and Taylor’s (1991) subjects were taught the names of 16

natural animals at three levels of categorisation (e.g., animal, dog, Beagle).

They were either bird experts (and dog novices), or dog experts (and bird

novices).  In Experiment 1, Tanaka and Taylor found that novices listed

approximately 8, 12, and 7 new features for the higher, middle, and lower

levels of categorisation, respectively (we have extracted these figures from
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Tanaka and Taylor, 1991, Figure 1, and then we have rounded them to the

nearest integers).  In Table 6a we give the mean verification RTs for bird

and dog novices together.

Johnson and Mervis’s (1997, Experiment 1, Songbirds condition)

participants had to list the features of songbirds at four levels of

abstraction (superordinate, basic, subordinate, and sub-subordinate).  The

participants were either novices, tropical freshwater fish experts,

intermediate songbird experts, or advanced songbird experts (we have

pooled the data obtained from the tropical freshwater experts with that

obtained from the novices because no significant difference between the

two groups was found).  Their advanced songbird experts listed 1.75, 5,

6.02, and 3.75 for the superordinate, basic, subordinate and sub-

subordinate levels, respectively.   For the intermediate songbird experts,

these numbers were 1, 4.87, 4.28, and 2.47, for the same levels.  For the

novices and the tropical freshwater fish experts, the numbers were 1.08,

2.47, 0.23, and 0.02.  (For the simulations, we have multiplied the average

number of features by 100 to end up with a integer value with sufficiently

fine discrimination.)

In all these experiments, feature redundancy was therefore the sole

determinant of basic-levelness. Table 6a reveals that basic-levelness was a

direct function of the average number of redundant attributes at each

level.

Table 6:  Observations as well as numerical predictions of feature-
possession (Jones, 1983), category utility (Corter & Gluck, 1992),
compression (Pothos & Chater, 1998a), context model (Medin & Schaffer,
1978;  Estes, 1994), and SLIP for 21 published basic-level experiments.  For
each taxonomy, the greyshade indicates the order of predicted or of
observed basic-levelness, with the lightest being the greatest.
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Table 6a:  Variations of internal practicability determines basic-levelness.
Faster access at an intermediate level.

Level
Source Model H - 3 H – 2 H - 1 Highest (H)

Murphy & Smith, Observation 723 ms 678 ms 879 ms
Exp. 1 Possession 1 3 3

Utility 0.453 0.725 0.688
Compression 865 bits 2277 bits 3569 bits

Context .769 .988 .993
SLIP 1.667 attempts 1.25 attempts 1.667 attempts

Murphy, Observation 862 ms 811 ms 980 ms
Exp. 4, Possession 1 3 3
Simple Utility 0.453 0.725 0.688

Compression 865 bits 2277 bits 3569 bits
Context .769 .988 .993

SLIP 1.667 attempts 1.25 attempts 1.667 attempts
Mervis & Crisafi, Observation 3rd 1st 2nd

Exp. 1 Possession 1 4 2
Utility 0.609 1.094 1.063

Compression 5992 bits 12916.59 18985.00
Context .769 .996 .999

SLIP 1.75 attempts 1.273 attempts 1.556 attempts
Murphy, Observation 1,132 ms 854 ms 955 ms
Exp. 4, Possession 1 5 1

Enhanced Utility 0.640 1.100 0.938
Compression 865 bits 2277 bits 3569 bits

Context .769 .999 1.000
SLIP 1.75 attempts 1.167 attempts 1.75 attempts

Rosch et al., Observation 659 ms 535 ms 591 ms
Exp. 7 Possession 2 6 4

Utility 1.030 1.701 1.874
Compression 0 bit 85 bits 185 bits

Context .917 1.000 1.000
SLIP 1.714 attempts 1.333 attempts 1.5 attempts

Tanaka &
Taylor,

Observation 777.5 ms 677.5 ms 745.5 ms

Novice Possession 7 12 8
Utility 2.387 3.517 3.934

Compression 0 bit 85 bits 185 bits
Context 1.000 1.000 1.000

SLIP 1.588 attempts 1.385 attempts 1.543 attempts
Johnson &

Mervis,
Observation ~2100 ms ~1950 ms ~1600 ms ~1900 ms

Songbird, Possession 2 23 247 108
Novice Utility 16.323 32.519 60.778 59.429

Compression 0 bit 865 bits 2277 bits 3569 bits
Context .506 .572 .958 .978

SLIP 1.990 1.886 attempts 1.212 attempts 1.557 attempts
Johnson &

Mervis,
Observation ~1725 ms ~1600 ms ~1550 ms ~1800 ms

Songbird, Possession 247 428 487 100
Intermediate Utility 65.551 115.417 137.706 128.219

Compression 0 bit 865 bits 2277 bits 3569 bits
Context .951 .999 1.000 1.000

SLIP 1.673 1.493 attempts 1.443 attempts 1.853 attempts
Johnson &

Mervis,
Observation ~1600 ms ~1625 ms ~1500 ms ~1750 ms

Songbird, Possession 375 602 500 175
Advanced Utility 86.434 149.056 165.302 167.574

Compression 0 bit 865 bits 2277 bits 3569 bits
Context .989 1.00 1.00 1.00

SLIP 1.630 1.466 attempts 1.535 attempts 1.808 attempts
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4.1.1.1  Rationale for using listed features to approximate the

structure of natural objects

With artificial objects, we can use the construction features to build

the category structures.  What about natural objects?  No one knows the

true construction features of natural objects.  There is some empirical

evidence that the features listed by participants reflect quite well the

construction features of objects.  In his Experiment 1A, Murphy (1991a)

asked some subjects to list features for the artificial objects used in

Murphy, Experiment 3.  He found a mean of 1 feature at the higher level

of categorisation, a mean of 5.75 features added at the middle level of

categorisation, and a mean of 0.87 features added at the lower level of

categorisation (cf. the “true” numbers of added features were 1, 3, and 1,

at the higher, middle, and lower levels of categorisation, respectively).

Additional support is given by Mervis and Crisafi (1982, Experiment 2).

Adults listed an average of 1.47 added features at the superordinate level,

of 4.06 added features at the basic level, and of 0.82 added features at the

subordinate level (cf. the “true” number of added features were, 2, 4, and

1, at the superordinate, basic, and subordinate levels of categorisation,

respectively).

The good news is that Rosch et al. (1976), Tanaka and Taylor (1991),

and Johnson and Mervis (1997) conducted verification as well as feature-

listing experiments with natural objects;  the bad news is that none of

them reported these listed features, only the average number of added

features per level of abstraction.

All is not lost:  We know from Tversky and Hemenway (1984) as

well as from Tanaka and Taylor (1991) that relatively few added features

listed for any given category overlapped with those listed for contrasting

categories (e.g., 2/25 in the fruit hierarchy of Tversky and Hemenway,

1984).  “The relatively high percentage of non overlapping features
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indicated that subjects listed features with respect to some implicit contrast

set, which appeared to be objects that shared the same level of abstraction

(Tversky and Hemenway, 1984).” (Tanaka and Taylor, 1991, p. 464).  Here

we will assume that none overlapped.

The only piece of information now missing that is needed to

reconstruct the taxonomy is the distribution of features among categories

of a given level of abstraction.  We will assume here that it was a uniform

distribution (i.e., the number of added non overlapping features was

constant within level of categorisation).  This assumption has very few

consequences for the considered basic-levelness measures.

4.1.2  Faster access at the lower level

Murphy and Smith (1982, Experiment 3) used eight of the artificial

tools from Experiment 1 (see Figure 8), and added eight new tools to

produce a total of sixteen.  Their artificial tools were either large, or small

(higher level);  they were either pounders, cutters, scrapers, or stirrers

(middle level);  and they had non-overlapping features handles, shafts, and

heads (lower level).  Each low-level category contained two highly similar

tools (e.g., serrated and straight-edge knifes). Figure 10 illustrates the

abstract organization of the features.  It also shows that the lower-level

categories were more practicable because they had more redundant

attributes.  Table 6b reveals that these categories were accessed faster than

categories at the other levels.
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Figure 10.  Taxonomy of Murphy & Smith (1982, Experiment 3), the only
experiment with varying redundancy that exhibited an advantage at the
lower level of categorization.  Underneath the category names, we
provide the optimal strategies fed to SLIP.  At the bottom of the
taxonomy, the abstract feature constitution of all exemplars is given.  An
index for these abstract features is provided left of the taxonomy.  The
feature constitution of all exemplar is giving underneath the taxonomy.

Tanaka and Taylor’s (1992, Expert) is a variation on this theme:

they used expertise to “add” redundant features at the lower level and

thus speed up its access (remember section 1.3.1 Tests of the differentiation

model).  Their subjects listed approximately 8, 10, and 10 new features for

the superordinate, basic, and subordinate levels of categorisation,

respectively (we have extracted these figures from Tanaka and Taylor,

1991, Figure 1, and then we have rounded them into integers).  Compare

this with 8, 12, and 7 for the superordinate, basic, and subordinate levels in

their Novice condition (see previous section).  They found that the basic

and subordinate categories were equally fast and the superordinate

categories the slowest (Table 6b gives the mean RTs of bird and dog

experts).

Table 6b:  Variations of internal practicability determines basic-levelness.
Faster access at the lower level.
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4.1.3  Faster access at the higher level

In his Experiment 5, Murphy used eight of Murphy and Smith’s 16

artificial tools.  He added a set of unique values on four dimensions

(colours, textures, edges, and size cues) to the high-level categorisations.

Figure 11 shows that this level becomes more practicable and Table 6c

reveals that it was indeed accessed faster. Note:  low-level categories

contained only one item here.

Figure 11.  Taxonomy of Murphy (1991, Experiment 5), the only
experiment with varying redundancy that exhibited an advantage at the

Level
Source Model H - 2 H - 1 Highest (H)

Murphy &
Smith,

Observation 574 ms 882 ms 666 ms

Exp. 3, Possession 3 1 1
Size Utility 0.483 0.428 0.561

Compression 865 bits 2277 bits 3569 bits
Context .974 .984 .991

SLIP 1.25 attempts 1.667 attempts 1.667 attempts
Tanaka &

Taylor,
Observation 621.5 ms 623.0 ms 728.5 ms

Expert Possession 10 10 8
Utility 2.526 3.258 3.870

Compression 0 bits 85 bits 185 bits
Context 1.000 1.000 1.000

SLIP 1.474 attempts 1.474 attempts 1.556 attempts
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higher level of categorization.  Underneath the category names, we
provide the optimal strategies fed to SLIP.  At the bottom of the
taxonomy, the abstract feature constitution of all exemplars is given.  An
index for these abstract features is provided left of the taxonomy.  The
feature constitution of all exemplar is giving underneath the taxonomy.

Table 6c:  Variations of internal practicability determines basic-levelness.
Faster access at the higher level.

4.2  Variations of strategy length determines basic-
levelness

In all the experiments reviewed so far, the length of categorisation

strategies was constant–only one feature test was required in each case.

Variations of strategy lengths were first tested in Hoffmann and Ziessler

(1983, Hierarchy I).  They used 16 artificial objects similar to “PacMan

ghosts” (see Figure 12) organised in the top taxonomy of Figure 13.

Strategy length was 1 at the high- and middle- levels, but 2 at the low-

level.  At the top level, the objects were defined by a shell (either curved or

rectangular), and at the middle level by an interior shape (either square,

triangle, star, or circle).  To identify an object at the low categorisation level,

however, the combination of a shell value and of a bottom edge value

(broken vertical lines, triangular, rectangular, or circular saw teeth) is required.

Two objects with different non diagnostic textures were members of each

low-level category.  Participants accessed the high- and mid- level

categories equally fast, and were slower for low-level categories (see Table

6d).

Level
Source Model H - 2 H - 1 Highest (H)

Murphy, Observation 1,072 ms 881 ms 854 ms
Exp. 5 Possession 1 3 5

Utility .703 1.281 1.688
Compression 0 bits 85 bits 185 bits

Context .769 .988 1.000
SLIP 1.8 attempts 1.5 attempts 1.286 attempts
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Figure 12.  Complete set of “PacMan ghosts” used by Hoffmann &
Ziessler in their experiments, leaving aside the two nondiagnostic textures.
Scanned from Hoffmann & Ziessler (1982, Figure 2).

Figure 13.  Abstract taxonomies of all experiments with varying strategy
length.  At the top:  Hoffmann & Ziessler (1983, Hierarchy I);  at the
bottom:  Gosselin & Schyns (1998a).  Underneath the category names, we
provide the optimal strategies fed to SLIP.  The feature constitution of all
exemplars is given underneath each taxonomy.  An index for these
abstract features is also provided.
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Table 6d:  Variations of strategy length determines basic-levelness.

4.3  Disjunctions and mixtures

We do not believe that there are many–if any at all–natural

categories which have disjunctive strategies (see also Smith & Medin,

1981).  However, some artefact concepts are clearly disjunctive (e.g., a

strike in baseball is either a called, or a swinging strike), and several basic-

level experiments have examined disjunctive categories.

4.3.1  Simple disjunctions

Figure 14 illustrates the Hierarchy II of Hoffmann and Ziessler

(1983).  They used the 16 objects from their Hierarchy I.  At the middle

level, the objects were defined by an interior shape;  at the bottom level, by

the conjunction of a bottom edge and an interior shape;  and, at the top level,

by the disjunction of two interior shapes.  Two exemplars varying on non

diagnostic internal texture belonged to each low-level category. The

results (see RT in Table 6e) revealed that mid-level categories were

accessed fastest, with high- and low-level categories equally slow (see also

Corter, Gluck & Bower, 1988, for a replication using categories of artificial

diseases and conceptual features).

Level
Source Model H - 2 H - 1 Highest (H)

Hoffmann &
Ziessler,

Observation ~700 ms ~500 ms ~500 ms

Hier. I Possession 1 1 3
Utility 0.25 0.375 0.375

Compression 865 bits 2277 bits 2759 bits
Context .769 .878 .896

SLIP 3.2 attempts 1.6 attempts 1.6 attempts
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Figure 14.  Taxonomies of all experiments with simple disjunctions.  From
top to bottom:  Hoffmann & Ziessler (1983, Hierarchy II);  Lassaline (1990,
Experiment 3, 1D);  Lassaline (1990, Experiment 3, 4D);  Murphy (1991,
Experiment 3).  Underneath the category names, we provide the optimal
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strategies fed to SLIP.  The feature constitution of all exemplar is giving
underneath each taxonomy.  When possible, an index for these abstract
features is also provided.

Table 6e:  Simple disjunctions.

Lassaline (1990;  also reported in Lassaline, Wisniewski, & Medin,

1992) constructed a disjunctive, two-level taxonomy using 16 artificial tools

similar to those of Murphy and Smith (1982).  Each one of the 16 objects

was constructed by combining single values on each of four dimensions:

Level
Source Model H - 2 H - 1 Highest (H)

Hoffmann &
Ziessler,

Observation ~700 ms ~500 ms ~700 ms

Hier. II Possession 1 2 2
Utility 0.25 0.375 0.125

Compression 865 bits 2277 bits 189 bits
Context .769 .960 .853

SLIP 3.2 attempts 1.6 attempts 3.127 attempts
Corter, Gluck

& Bower
Observation 3,045 2,567 3,115

Possession 1 2 0
Utility 0.25 0.375 0.125

Compression 0 bits 85 bits 0 bits
Context .769 .960 .853

SLIP 3 attempts 1.5 attempts 2.863 attempts
Lassaline, Observation 1 st 2 nd

Exp. 3, Possession 1 6
1-Dim. Utility .259 .167

Compression 119 bits 135 bits
Context .908 .873

SLIP 3.694 attempts 1.818 attempts
Lassaline, Observation 2 nd 1 st

Exp. 3, Possession 9.25 0
4-Dim. Utility .316 .048

Compression 527 bits 389 bits
Context .944 .900

SLIP 3.694 attempts 1.818 attempts
Murphy, Observation 776 ms 688 ms 779 ms

Exp. 3 Possession 1 3 2
Utility 0.531 0.719 0.563

Compression 865 bits 2277 bits 3569 bits
Context .769 .988 .989

SLIP 2 attempts 1.333 attempts 2.666 attempts
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outer shape (corresponding to the head of Murphy & Smith’s tools), texture

of a middle rectangle (corresponding to the handle of Murphy & Smith’s

tools), the texture of a small rectangle on the end of the object, and a shape at the

end of each object.  For each subject, Lassaline randomly assigned the values

of these dimensions to the letters of the two middle taxonomies of Figure

14.  In two conditions (One-Dimension and Four-Dimension) of her

Experiment 3, two-feature disjunctions defined the high level and a single

feature defined each low-level category.  In the One-Dimension condition,

the features defining the low-level categories were extracted from a single

dimension;  in the Four-Dimension condition, the features defining the

four low-level categories were extracted from four different dimensions

(see Table 6e).  A verification advantage was found at the low-level in the

One Dimension condition, but, surprisingly, a verification advantage for

the high-level was reported in the Four Dimensions condition (see Table

6e).

Murphy (1991) used 16 artificial “stamps” of various colours,

textures, types of edge, and sizes (see Figure 15).  His taxonomy was very

similar to Murphy and Smith’s (1982, Experiment 1).
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Figure 15.  Sample artificial “stamps” Murphy used in his Experiment 3.
Scanned from Murphy (1991a, Figure 1) and then coloured.

The only difference between the two was that, as Figure 14 shows,

disjunctions of features defined the higher level categories (i.e., nop = blue

or yellow;  som = red or green).  Table 6e reveals that middle level categories

were the fastest with the other two being equally slow.

4.3.2  Mixtures of disjunctions and conjunctions

In their Hierarchy III, Hoffmann and Ziessler arranged the objects

of their Hierarchy I in yet another way.  Conjunctions of a shell and a

bottom edge defined the low-level categories;  disjunctions of two two-

feature conjunctions defined the mid-level;  disjunctions of four two-

feature conjunctions defined the high-level (see Figure 16). In this

taxonomy, low-level categories were accessed faster than the mid-level,

itself faster than the low-level (see RT estimations in Table 6f).
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Figure 16.  Taxonomies of all experiments with mixtures of disjunctions
and conjunctions.  From top to bottom:  Hoffmann & Ziessler (1983,
Hierarchy III);  Lassaline (1990, Experiment 1);  Lassaline (1990,
Experiment 2).  Underneath the category names, we provide the optimal
strategies fed to SLIP.  The feature constitution of all exemplar is giving
underneath each taxonomy.  When possible, an index for these abstract
features is also provided.
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The taxonomy of Lassaline (1990, Experiment 1) is shown in Figure

16.  Two-feature disjunctions defined categories at the high level, and a

conjunction of a feature with a disjunction of features defined the low

level.  In these conditions, the higher level was accessed faster (see Table

6f).  Figure 16 also illustrates the taxonomy of Lassaline’s (1990)

Experiment 2.  A conjunction of a feature with a disjunction of features

defined the low level.  A disjunction of two such strategies defined the

high-level.  Low-level categories were faster to verify (see Table 6f).

Table 6f:  Mixtures of disjunctions and conjunctions.

4.4  Comparison of the models with respect to the
published experiments

We have now reviewed the main experiments on the basic-level,

emphasising which factor of SLIP varied in each one of them.  We now

apply the models reviewed earlier (including SLIP) to the task of

predicting the pattern of time to access the categories.  Before turning to

Level
Source Model H - 2 H - 1 Highest (H)

Hoffmann &
Ziessler,

Observation ~700 ms ~1050 ms ~1475 ms

Hier. III Possession 3 0 3
Utility 0.25 0.125 0

Compression 865 bits 2 bits -22 bits
Context .974 .898 .693

SLIP 3.2 attempts 4.727 attempts 6.254 attempts
Lassaline, Observation 2 nd 1 st

Exp. 1 Possession 2.5 3
Utility .127 .238

Compression 1359 bits 1479 bits
Context .878 .924

SLIP 4.574 attempts 3.225 attempts
Lassaline, Observation 1 st 2 nd

Exp. 2 Possession 2 2
Utility .209 .119

Compression 380 bits 106 bits
Context .870 .719

SLIP 3.909 attempts 5.273 attempts
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the results of these simulations, it is important to specify the parameters

we used for each of these models:  In SLIP, parameters were set to S = .5

and to α  = .05.  Having said this SLIP is rather insensitive to changes of S

(as S increases, all the average number of attempts needed to complete a

strategy increase proportionally) and α  only comes into play with

disjunctive strategies (a decrease in α  increases the time to complete

disjunctions relative to conjunctions).  Jones’s category feature-possession

comprises a single free parameter.  Following Jones (1983), we set it to 1,

but changing this parameter does not much affect category feature-

possession.  Medin and Schaffer’s (1978) context model also has a single

dissimilarity parameter which we set to .3, following Estes (1995).

Overall, SLIP predicted 74% of the experimental results, winning the

competition.  Second best was Jones’s category feature-possession with

63%, then came Corter and Gluck’s category utility with 61%, Medin and

Schaffer’s (modified by Estes) context model with 45%, and Pothos and

Chater’s compression measure with 38% (see Table 7).  Monte-Carlo

simulations revealed that neither the compression measure (p < .29, ns.),

nor the context model (p < .06, ns.) perform significantly better than the

chance model (i.e., the chance model randomly selects the ranks of the

levels within each experiment);  all the other basic-levelness measures

significantly outperform the chance model (i.e., in the worst case p < .001).

Table 7:  Percentage of nominal data from 21 published basic-level
experiments explained by feature-possession (Jones, 1983), category utility
(Corter & Gluck, 1992), compression (Pothos & Chater, 1998a), context
model (Medin & Schaffer, 1978;  Estes, 1994), and SLIP.  The internal
practicability, simple conjunction, and mean scores flanked by a star are
significantly above chance levels (p < .02).
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It is instructive to examine the models specifically for their

predictions with respect to variations of feature internal practicability,

strategy length, simple conjunction, and mixture experiments.  Table 7

summarises the breakdown.  For experiments involving only variations of

redundancy, the predictions of each model mirror its overall scores.  SLIP

scores a 74%, followed by category feature-possession with 72%, then by

category utility with 49%, then by context model with 36%, and trailed by

compression with 28%.  Monte Carlo simulations have shown that SLIP (p

< .001), category feature-possession (p < .001), and category utility (p  <

.019) significantly outperform the chance model.  For the only experiment

involving variations of strategy length, SLIP and category utility both

explain 100% of the data, followed by compression and context model

with 67%, and by feature-possession with 33%.  Due to the scarcity of data,

no Monte Carlo simulation was performed here. For the simple

conjunction experiments, category utility is first with a score of 69%, then

SLIP with 54%, feature-possession with 46%, context model with 38%, and

finally compression with 31% of data predicted.  Monte Carlo simulations

have shown that only category utility significantly outperforms the chance

model (p < .011).  For the mixture experiments, all models explained 100%

of the data except category feature-possession which explained 57%.

Again, due to the scarcity of data, no Monte Carlo simulation was

performed here.

In sum, we have compared the predictions of SLIP with those of

other models of speed of access to categories using data drawn from 21

Strategy
length

Internal
practicability

Simple
conjunction

Mixture Mean

Possession 33% 72% * 46% 57% 63% *
Utility 100% 49% * 69% * 100% 61% *

Compression 67% 28% 31% 100% 38%
Context 67% 36% 38% 100% 45%

SLIP 100% 74% * 54% 100% 74% *
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classic basic level experiments.  It appears that SLIP did the best job with

an overall prediction score of 74%.

4.4.1  Further predictions of SLIP

SLIP also makes new predictions which go beyond those possible in

other models of basic-levelness.  For example, it predicts positive linear

relationships between strategy length and RTs and negative linear

relationships between redundancy and RT.  Unfortunately, Hoffmann &

Ziessler (1983, Hierarchy I) used two different strategy lengths, and a line

can always pass perfectly through two points.  For redundancy, however,

using all published three-plus-level taxonomies, the mean correlation is r =

-.851 (r varies between -1.000 and -.666;  3/11 achieved significance at the p

< .05 level).  This is a high fit, considering the difficulty involved in

evaluating the exact number of redundant features subjects used (Schyns,

Goldstone & Thibault, 1997).

4.5  A cautionary note about coding

Even though coding is critical for numerical simulations, it is hardly

ever discussed.  This short section is meant as a coding “case study”.  We

will compare Corter and Gluck’s (1992) widely used coding of Murphy

and Smith’s (1982, Experiment 1) artificial tools with our own.  This

comparison will highlight two coding rules of thumb that we have used

throughout this dissertation.

Murphy and Smith described their category structure as follows:

“[I]f one considers hand tools to consist of a handle, a shaft and a head

then each of the [four] basic tools were designed to be distinct from the

others in each part [....]  [We coded this as three obvious

dimensions–handle, shaft, and head–that can take four values each (or 12

features).]  To form the superordinates, the hammer and the brick were

grouped together to produce [...] pounders, while the knife and pizza
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cutter were grouped together to form [...] cutters.  [We coded this as one

dimension–type of tool–with two values (or two features).]  Each of the four

basic tools was differentiated into two subordinates in the following ways:

(1) the hammer had a wide or narrow head;  (2) the brick had a single or a

two-part handle;  (3) the pizza cutter had a long or a short shaft [...];  and

(4) the knife’s edge was serrated or straight.  [This was coded as one

dimension–part modifier–that can take eight values or, alternatively, as

eight features.]” (p. 3).  We should add that each subordinate category

contained two artificial tools:  a large one and a small one.  Thus, we coded

each of Murphy and Smith’s artificial tools by a set of values on six

dimensions (or by 24 binary features).

Corter and Gluck coded them by a vector of values on four

dimensions:  handle (single brick handle, two-part brick handle, hammer handle,

pizza cutter handle, and knife handle), shaft (long pizza cutter, short pizza cutter,

brick, hammer, or knife shaft), head (wide hammer, narrow hammer, brick, pizza

cutter, serrated knife edge, or straight knife edge head), and size (large or small).

This corresponds to 19 binary features.

Figure 17 illustrates the resulting taxonomies, and Table 8 shows

that Corter and Gluck’s coding makes the predictions of SLIP, the context

model, and compression fit better the observations, but that it makes no

difference for the other models.
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Figure 17.  Taxonomies resulting from Corter & Gluck’s as well as our
coding of Murphy & Smith’s (1982, Experiment 1) artificial tools.
Underneath the category names, we provide the optimal strategies fed to
SLIP.  The feature constitution of all exemplars is given underneath each
taxonomy.  When possible, an index for these abstract features is also
provided.

Table 8:  Numerical simulations for Corter and Gluck’s and our coding of
Murphy and Smith’s (1982, Experiment 1) artificial tools.
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There are two differences between these codings:  (1) we used three

basic part dimensions:  head (e.g., hammer head), shaft, and handle, as well as

one subordinate part dimension:  part modifier (e.g., wide  and narrow

hammer heads), whereas Corter and Gluck integrated the modified parts in

the head (e.g., wide hammer and narrow hammer heads), shaft, and handle

dimensions;  and (2) we used a superordinate type of tool dimension,

whereas Corter and Gluck did not.

Our first rule of thumb is:

Use the intended category feature-structure, within reason.

It happens that we discussed points (1) and (2) with Murphy (1998), and he

assured us that the intended coding was the one we use, not the one used

by Corter and Gluck.

But is (1) reasonable?  We believe that it is the only reasonable

choice.  Let us go back to the hammer example.  For Corter and Gluck,

narrow hammer head is just as dissimilar to wide hammer head as it is to say

pizza cutter head.  Even though hammers can have two heads–a narrow and

a wide one–these hammer heads are much more similar to each other than

Level
Model Coding lower middle Higher

Observation 723 ms 678 ms 879 ms

Possession Our 1 3 3
Corter &
Gluck’s

1 2 2

Utility Our 0.453 0.725 0.688
Corter &
Gluck’s

0.30 0.47 0.31

Compression Our 865 bits 2277 bits 3569 bits
Corter &
Gluck’s

865 bits 2277 bits 1437 bits

Context Our .769 .988 .993
Corter &
Gluck’s

.769 .960 .926

SLIP Our 1.667 attempts 1.25 attempts 1.667 attempts
Corter &
Gluck’s

1.6 attempts 1.333 attempts 2.414 attempts



132

they are to the brick, the pizza cutter, and the knife heads.  We acknowledge

this by having a hammer head value in a head dimension as well as wide and

narrow hammer head values in a part modifier dimension.

As for (2) (i.e., using a superordinate type of tool dimension, unlike

Corter and Gluck), it is less clear that it is the only reasonable choice.  It

could be argued–as we suspect Corter and Gluck as well as many others

would–that cutter and pounder  are not values on a perceptual dimension

but that the superordinate “pounder” and “cutter” categories can only be

accessed through some kind of semantic process after the recognition of

the tools at the entry point of recognition, i.e. “hammer”, “knife”, “brick”,

and “pizza cutter” (see 3.4 Part-based accounts).  After having recognised

an object as a “hammer” (on the basis of its value on the handle, shaft, or

head dimension), for instance, one could come to the semantic realisation

that all hammers are pounders, and, hence, verify that the object is, in fact,

a “pounder”.  This brings us to our second rule of thumb:

Assume that what is available to people is used by them.

Without a doubt, Murphy and Smith’s participants could have extracted a

perceptual type of tool dimension to define “cutter” and “pounder”.  For

example, thickness:  pounders are thick and cutters are thin.  Similarly

Gibson (1986) has argued that affordances (what a thing affords another

thing;  here:  what cutters and pounders afford humans is cutting and

pounding) are picked up directly in the world.  We thus stick with (2).
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Chapter 5.  Empirical tests of SLIP

The following sections further examine the empirical validity of the

two constraints of SLIP.  So far, experiments on the basic level have been

mainly motivated by empirical considerations instead of a rigorous model.

As pointed out earlier, strategy length has never been tested as such.  In

Hoffmann and Ziessler (1983, Hierarchy I), strategy length is confounded

with level of abstraction:  the most inclusive level has the shortest

strategy, and the least inclusive level has the longest strategy.  A similar

problem affects feature redundancy.  Even though we showed earlier that

many basic level experiments changed feature redundancy, no systematic

study of this factor has been carried out.  The-second-first-third-and-

fourth model (i.e., a model that predicts that the highest level will have the

second greatest basic-levelness, the second highest, the greatest, the third

highest, the third greatest, and the fourth highest, the fourth greatest)

accounts for 53% of all published data (cf. 38% for compression).  A Monte

Carlo simulation revealed that this model outperforms the chance model

(p < .008).  This shows that the published data set is biased.   This is

particularly important in differentiating between the models’ behaviour

because, as we have mentioned earlier, most basic-levelness measures

have a bias for higher levels of categorisation (see Chapter 4).

Another problem of the reviewed experiments concerns their

stimuli.  One must achieve balance between control and ecological validity

(e.g., Humphrey & Bruce, 1989;  Bruce & Green, 1990).  We have seen

examples of the worst of both worlds here:  On the one hand, the basic-

level experiments that used artificial objects had excellent control but very

poor ecological validity (e.g., Hoffmann & Ziessler’s, 1982, PacMan ghosts;

and Murphy’s, 1991, stamps);  on the other hand, the experiments that
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used natural objets had good ecological validity but very poor control

(e.g., Rosch et al., 1976;  Tanaka and Taylor, 1991).

The following experiments have been designed to overcome these

shortcomings.  All of them excepting one used computer-synthesised

artificial 3D objects or artificial scenes to tightly control feature

composition and preserve ecological validity.  The first five experiments

examine the two constraints of SLIP in verification.  Experiment 1 isolates

the effect of strategy length on basic-levelness, Experiments 2A and 2B test

the effect of feature redundancy (or internal practicability), and

Experiment 3 examines the interactions between the two factors.

Experiment 4 examines more precisely the predictions of SLIP concerning

strategy length.  The last four experiments study the two computational

constraints in naming.  Experiment 5A isolates the effect of strategy

length, and Experiment 5B that of internal practicability.  Experiment 6

takes a look at the time course of length 1 and 2 strategy completion.

Finally, Experiment 7 examines the effect of robustness (i.e., the idea that

an approximate categorisation is better than none) on the order of feature

test in length 2 strategies.

5.1  Introduction to Experiments 1-417

The following four experiments were largely influenced by Murphy

& Smith’s (1982, Experiment 1).  You will remember that their participants

were initially taught the top artificial taxonomy of Figure 7.  In a later

testing phase, participants were shown a category name followed by an

artificial tool similar to the ones in Figure 8.  Subjects’ task was to verify as

quickly as possible whether the name and stimulus matched.

                                    
17  Experiments 1, 2A, and 3 will appear in Gosselin and Schyns (in press), and

Experiment 4 has appeared in Gosselin and Schyns (1998a).
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5.2  Experiment 1

In SLIP, strategy length is the minimum number of required tests

on features to access a category.  Experiment 1 isolates this factor and

examines how a variation of strategy length at different levels of a

hierarchy influences their basic-levelness.  As pointed out earlier, strategy

length was shown to influence basic-levelness in Hoffmann and Ziessler

(1983, Hierarchy I).  However, this experiment did not dissociate strategy

length from level of abstraction.  That is, the highest level categories had

the shortest strategy and the lowest level the longest.  To overcome this

problem, we designed an experiment which dissociates level of

categorisation and speed of access.  In the HIGH_FAST taxonomy, shorter

strategies access the high-level categories faster.  In LOW_FAST, the

opposite applies:  shorter strategies access the low-level categories faster.

In both conditions, the longer strategies arose from overlap between the

attributes (geons, Biederman, 1987) of categories.  SLIP predicts that

shorter strategies are completed faster, irrespective of categorisation

levels.  That is, a faster access to the high-level of HIGH_FAST, and to the

low-level of LOW_FAST.

5.2.1  Method

5.2.1.1  Participants

Twenty University of Glasgow students with normal or corrected

to normal vision were paid to participate in the experiment.

5.2.1.2  Stimuli

Stimuli were computer-synthesised chains of four geons similar to

those of Tarr, Bülthoff, Zabinski and Blaz (1997).  We designed the stimuli

with the Form Z three-dimensional modelling software on a Macintosh

computer. Five geons (i.e., Biederman’s geometric elements) defined the



136

categories of the HIGH_FAST taxonomy.  One different geon defined each

one of three high-level categories.  Each one of six possible low-level

categories was further specified by one of the two remaining geons.  The

top taxonomy of Figure 18 illustrates this.

Figure 18.  Taxonomies of Experiments 1, HIGH_FAST and LOW_FAST.
Only strategy length was manipulated here.  Underneath the category
names, we provide the optimal strategies fed to SLIP.  The feature
constitution of all exemplars is given underneath each taxonomy.  An
index for these abstract features is also provided.

In this taxonomy, strategy length equals 1 for the higher-level

categories.  This means that only one feature needs to be tested to access

categories at this level.  Strategy length equals 2 at the lower-levels,
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because these categorisations require two feature tests18.  The overlap of

features across lower-level categories produced the longer conjunctive

strategies.

To create the experimental stimuli, we substituted the letters in

Figure 18 with their corresponding geometric elements.  To these two

geons, we added two supplementary geons that served as fillers.  Fillers

were identical across objects and so could not be used to distinguish them.

We created two exemplars per low-level category by changing the

location of the diagnostic geons in the chain (see Figure 19 for examples).

Figure 19.  Sample computer-synthesised objects used in Experiment 1,
HIGH_FAST (one exemplar per low-level category).

                                    
18  Note that participants could have used two-term disjunctions instead of two-term

conjunctions for high-level categories in the bottom taxonomy of Figure 18.  For example,

Strat’(X, hob) = d|h is extensively equivalent to Strat(X, hob) = a&f.  To avoid this, we

instructed participants to use solely the learned strategies during the experiment.
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Nine geons defined the LOW_FAST taxonomy. A unique

combination of two geons (sampled from a set of three) defined each one

of three top-level categories (see Figure 18, bottom taxonomy).  High-

level strategies had length 2 because a combination of two geons defined

categories at this level.  A unique diagnostic geon further specified the

categories at the low level.  However low-level categories had length 1

strategies because a single feature test on a diagnostic geon determined

membership.  Figure 8 shows the LOW_FAST taxonomy.  We added one

filler to generate six four-geon chains. From these, we created two

exemplars per category (see Figure 18, bottom taxonomy).

5.2.1.2.1  A note on these two taxonomies

There is one important difference between the two taxonomies of

Figure 18:  in the bottom one, the high- and low-level strategies are

independent (e.g., Strat(X, rel) = [{“does X possess d?”}] is independent of

Strat(X, hob) = [{“does X possess a?”} & {does X possess f?”}]) but in the

top one they are not (e.g., Strat(X, rel) = [{“does X possess a?”}] is included

in Strat(X, hob) = [{“does X possess a?”} & {does X possess d?”}]).  It is

impossible by the definition of a hierarchy for low-level strategies to be

included in high-level ones.  However, we can easily make high-level

strategies independent of low-level ones (see Figure 20).  We chose not to

here because we believe that overlap is a crucial property of real-world

strategies.  For example, to identify your blue Porsche 911 in a parking lot

also comprising a blue Toyota Tercel and a lime Porsche 911, you must

examine both the colour and the shape of the cars;  whereas to identify any

Porsche 911 in this same parking lot, only the shape of the cars has to be

examined.
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Figure 20.  An alternative to the Experiments 1, HIGH_FAST, taxonomy.
Here the high- and low-level strategies are independent.

5.2.1.3  Procedure

The procedure closely followed that of Murphy and Smith (1982).

In a learning phase, participants were evenly split between the learning of

the HIGH_FAST and LOW_FAST taxonomies.  We were not interested in

strategy learning;  we were interested in how people use known

strategies.  We thus instructed participants to learn the names and the

defining geon(s) of nine categories (see the specific names and

corresponding geon combinations in Figure 18).  Participants saw their

taxonomy on a sheet of paper; this learning phase was not constrained in

time.

We tested participants knowledge of the taxonomy by asking them

to list the features associated with each category name.  Criterion was

reached when participants could list twice in a row, without any mistake,

the attributes defining each category.  Corrective feedback was provided.

When subjects knew the taxonomy, a category verification task

measured categorisation time at each level.  The experiment was ran with

the SuperLab software on a Macintosh PowerPC 7200.  Each trial began

with the presentation of a category name.  Subjects pressed one keyboard

key to see the list of all learned definitions on the screen (each definition

corresponded to a set of geons per category).  Participants had to identify

the list corresponding to the previously shown category name.  This
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ensured that subjects had accessed the category representations.  SLIP is a

theory about how strategies are matched to distal objects, not about

strategy remembrance.  After a 200 ms delay, an object appeared on the

screen.  Subjects had to decide as fast as they possibly could whether or

not the named category and object matched by pressing the “yes” or “no”

computer keyboard keys.  We recorded response latencies.  Note that

low-level categories are more numerous than high-level categories.  We

normalised the number of positive and negative trials with the constraint

of equating the number of trials per level.

5.2.2  Results and discussion

We performed the analysis of RTs on the correct positive trials

(error rate = 6.5%) that were within two standard deviations from the

means (an additional 4.9% of the responses were discarded).  Table 9

reports the mean RTs at the low- and high-levels for the two taxonomies

tested (see Observation in Table 9).

Table 9:  Mean RTs and standard deviations (between brackets) for the
positive trials of Experiment 1 as well as predictions for feature-possession
(Jones, 1983), category utility (Corter & Gluck, 1992), compression (Pothos
& Chater, 1998a), context model (Medin & Schaffer, 1978;  Estes, 1994), and
SLIP.  For each taxonomy, the greyshade indicates the order of predicted
or of observed basic-levelness, with the lightest being the greatest.

Level
Model Lowest Highest

Exp. 1, Observation 1,256 ms [405] 896 ms [323]
HIGH_FAST Possession 2 3

Utility .195 .222
Compression 0 bit 30 bits

Context .769 .625
SLIP 6.4 attempts 3.2 attempts

Exp. 1, Observation 948 ms [258] 1,240 ms [305]
LOW_FAST Possession 1 3

Utility .25 .333
Compression 0 bit 30 bits

Context .769 .783
SLIP 3.2 attempts 6.4 attempts
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A two-way (GROUP x STRATEGY LENGTH) ANOVA of the RTs

with repeated measures on one factor (STRATEGY LENGTH) revealed a

main effect of STRATEGY LENGTH, F(1, 18) = 77.08, p  < .0001, (mean

length 1 strategies = 922 ms verification time [standard deviation = 291

ms]; mean length 2 strategies = 1248 ms verification time [standard

deviation = 355 ms]), meaning that participants systematically verified

length 1 strategies faster than length 2 strategies, irrespective of the

considered level (low vs. high) (e.g., Keppel, 1991).  All participants

verified the categories associated with length 1 strategies faster.  Neither

the interaction between GROUP and STRATEGY LENGTH, F(1, 18) = .84,

ns, nor the main GROUP effect, F(1, 18) = .02, ns, were significant.  The

error rate was low overall and not correlated with RT (r = -.17, ns), ruling

out a speed-accuracy trade-off.

Remember that SLIP predicts that length 1 strategies should be

completed faster than length 2 strategies, irrespective of categorisation

level (see SLIP in Table 9 for numerical predictions).  The data reported

here confirms that strategy length, rather than categorisation level,

determines the basic-levelness of a category.

5.2.2.1  About generalisation

Experiments with complex computer-synthesised objects rather

than, say, ASCII characters, often use a fixed set of objects (although see

Cutzu & Edelman, 1998).  In our case, this means that all participants

learned the exact same strategies and that these strategies were applied to

the exact same objects.  Is our data nonetheless generalisable to other sets

of features and objects?
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To minimise any prima facie bias, we have selected 15 geons about

equally distant on Biederman’s four geon dimensions19 (i.e., the mean

number of different dimension values is 2.21 with a standard deviation of

0.39).  These dimensions have been shown to be rather independent and

equally salient in a large number of experiments (see Biederman, 1987,

1990;  Biederman & Gerhardstein, 1993).

Moreover, Experiment 1, LOW_FAST has been replicated in

Experiment 3, SL_DOWN, with a different set of geons;  and Experiment 1,

HIGH_FAST by part of Experiment 4 with objects defined by colour,

texture, and shape.  This does suggests that our results are not stimuli-set

effects.

5.3  Experiment 2A

Practicability refers to the ease with which features identify a

category at any level of a taxonomy.  A category has high practicability

whenever many of its defining features are uniquely diagnostic of this

category, and it has low practicability when a single feature defines the

category.  If this factor influences the basic-levelness of a category, then it

should apply equally to all levels of a taxonomy.

In Experiment 2A, all strategies had length 1 but the high and low

levels differed in practicability.  In the HIGH_FAST condition, high-level

strategies had greater practicability than low-level strategies.  The

opposite applied to the LOW_FAST condition, with low-level strategies

having higher practicability. SLIP predicts that categories with higher

                                    
19  These four geon dimensions are:  straight vs. curved axis;  straight vs. curved cross-

section;  sides:  parallel (constant cross-section), diverging, expanding, contracting (as a

lemon or an American football), and converging and diverging (as a bow-tie);  ends (for

non-parallel-sided geons):  truncated (straight), pointed (‘L’ vertex at end), and convex

rounded (Biederman, 1998).
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practicability will be verified faster, irrespective of their level in the

taxonomy.

5.3.1  Method

5.3.1.1  Participants

Twenty students from University of Glasgow with normal or

corrected vision were paid to participate in the experiment.

5.3.1.2  Stimuli

Stimuli were similar to those of Experiment 1:  four-geon chains

synthesised with the Form Z three-dimensional modelling software on a

Macintosh computer.  The HIGH_FAST condition used 10 diagnostic

geons.  Three different geons defined each one of two high-level

categories;  one different geon further defined each low-level category

(see Figure 21, top taxonomy).  We generated two exemplars per category

by changing the location (either rightmost or leftmost of the chain) of the

three geons defining the high-level categories.
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Figure 21.  Taxonomies of Experiments 2, HIGH_FAST and LOW_FAST.
Only internal practicability (redundancy) was manipulated here.
Underneath the category names, we provide the optimal strategies fed to
SLIP.  The feature constitution of all exemplars is given underneath each
taxonomy.  An index for these abstract features is also provided.

The LOW_FAST taxonomy comprised fourteen diagnostic geons.  A

single diagnostic geon defined each one of two high-level categories, and

three different geons further defined each one of four low-level

categories.  As before, we created two category exemplars by changing

the location (either far right or far left of the object) of the triplets defining

the low-level categories.  Practicability is greater for high-level categories
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in HIGH_FAST and for the low-level categories in LOW_FAST.  These

levels have more unique features associated with them.

5.3.1.3  Procedure

The procedure followed in all respects that of Experiment 1:

Participants were randomly assigned to the HIGH_FAST and LOW_FAST

conditions.  They were taught their respective taxonomy before entering a

verification task where we measured speed of access to the two levels of

categorisation.  The experiment was ran with the SuperLab software on a

Macintosh PowerPC 7200.  Each one of 280 trials consisted in the initial

presentation of a category name followed by an object.  Participants had

to decide as fast as they possibly could whether the two matched, and we

recorded response latencies.

5.3.2  Results and discussion

We analysed only the correct positive trials RTs (error rate = 5.4%)

within two standard deviations from the means (an additional 2.4% of the

responses were discarded).  Table 10 shows the mean RTs at the low and

high-levels for HIGH_FAST and LOW_FAST.

A two-way (GROUP x PRACTICABILITY) ANOVA on the RTs with

repeated measures on one factor (PRACTICABILITY) revealed a

significant GROUP x PRACTICABILITY interaction, F(1, 18) = 5.53, p < .05,

as well as two significant simple effects:  GROUP(HIGH_FAST) by LEVEL,

F(1, 18) = 61.50, p < .001 (only one subject responded faster for the high-

level categories, p < .011–e.g., Siegel, 1956), and GROUP(LOW_FAST) by

LEVEL, F(1, 18) = 67.20, p < .001 (two subjects responded faster for the

high-level categories, p < .055).  The error rate was low overall and not

correlated with RTs (r = .05, ns), ruling out a speed-accuracy trade-off

explanation.
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Table 10:  Mean RTs and standard deviations (between brackets) for the
positive trials of experiment 2 as well as predictions for feature-possession
(Jones, 1983), category utility (Corter & Gluck, 1992), compression (Pothos
& Chater, 1998a), context model (Medin & Schaffer, 1978;  Estes, 1994), and
SLIP.  For each taxonomy, the greyshade indicates the order of predicted
or of observed basic-levelness, with the lightest being the greatest.

In sum, SLIP predicted that strategies with greater practicability

should yield faster categorisation decisions, irrespective of categorisation

level (see SLIP in Table 10 for numerical predictions).  The results of

Experiment 2 confirmed the prediction.

5.4  Experiment 2B

Experiment 2A suffers from the same generalisation limitation as

Experiment 1.  Experiment 2B was designed to overcome this.  It replicates

Experiment 2A using randomly generated letter strings instead of 3D

computer-synthesised objects.  In other words, ecological validity is

sacrificed for control.  Just to refresh your memory:  All strategies had

length 1 but the high and low levels differed in practicability.  In the

HIGH_FAST condition, high-level strategies had greater practicability than

low-level strategies;  the opposite applied to the LOW_FAST condition,

with low-level strategies having higher practicability.  SLIP predicts that

Level
Model Lowest Highest

Exp. 2, Observation 788 ms [265] 660 ms [284]
HIGH_FAST Possession 1 3

Utility .375 .500
Compression 0 bit 5 bits

Context .769 .988
SLIP 3.2 attempts 2.286 attempts

Exp. 2, Observation 740 ms [227] 774 ms [292]
LOW_FAST Possession 3 1

Utility .624 .500
Compression 0 bit 5 bits

Context .974 .984
SLIP 2.286 attempts 3.2 attempts
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categories with higher practicability will be verified faster, irrespective of

their  level in the taxonomy.

5.4.1  Method

5.4.1.1  Participants

Twenty four students from University of Glasgow with normal or

corrected vision were paid to participate in the experiment.

5.4.1.2  Stimuli

Stimuli were 10-letter strings.  The HIGH_FAST condition used 10

diagnostic letters.  A three-letter sub-string defined each one of two high-

level categories;  and a one-letter sub-string further defined each low-level

category.  This is illustrated in the top taxonomy of Figure 21 (see 5.3

Experiment 2A).  However, here “what you see is what you get”:  each

letter represents itself or, at least, another letter.  For each subject, the

diagnostic letters were randomly selected.  Each one of eight 10-letter

templates was created by putting this three-letter sub-string randomly at

one of the eight possible positions inside the 10-letter string and then by

putting the one-letter sub-string at any remaining position except at the

extremities (this ensured that the number of configurations was the same

for three-letter and one-letter sub-strings).  The other positions in the 10-

letter strings were filled with nondiagnostic letters (there are 16 of those

here) randomly selected.  For example, kamnopqdfg and sxmdfgqayk are

two possible rels–and hobs–in the top taxonomy of Figure 21.

The LOW_FAST condition involved fourteen diagnostic letters.  A

one-letter sub-string defined each one of two high-level categories, and

three-letter sub-strings further defined each one of four low-level

categories (see bottom taxonomy of Figure 21).  As in the HIGH_FAST

condition, each exemplar was generated by placing a three-letter sub-
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string randomly at one of the eight possible locations inside the 10-letter

string and then by randomly putting an appropriate one-letter sub-string

at any remaining position except at the endings.  Randomly selected

nondiagnostic letter fillers (there are 12 of those) occupied the 10-letter

string template’s empty slots.

Practicability is greater for high-level categories in the HIGH_FAST

condition and for the low-level categories in the LOW_FAST condition

because more unique features are associated with the top- and bottom-

level categories, respectively. SLIP predicts a faster verification

performance for categories with higher practicability (high in HIGH_FAST

and low in LOW_FAST) irrespective of the level of the taxonomy

considered.

5.4.1.3  Procedure

This experiment was controlled by a Silicon Graphics Computer

running a home-made C program.  The procedure followed that of

Experiments 1 and 2A closely:  Participants were randomly assigned to the

HIGH_FAST and LOW_FAST conditions.  They were taught their

respective taxonomy before being measured on the categorisation speeds

of its levels.  Each one of 280 trials consisted of the initial presentation of a

category name followed by an 10-letter string.  Participants had to decide

as fast as they possibly could whether the two matched and we recorded

response latencies.

5.4.2  Results and discussion

We analysed only the correct positive trials RTs (error rate = 8.5%)

within two standard deviations from the means (an additional 4.2% of the

responses were discarded).  Table 11 shows the mean RTs at the low and

high-levels for the HIGH_FAST and for the LOW_FAST taxonomies.
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Table 11:  Mean RTs and standard deviations (between brackets) for the
positive trials of Experiment 2B as well as predictions for feature-
possession (Jones, 1983), category utility (Corter & Gluck, 1992),
compression (Pothos & Chater, 1998a), context model (Medin & Schaffer,
1978;  Estes, 1994), and SLIP.  For each taxonomy, the greyshade indicates
the order of Predicted or of observed basic-levelness, with the lightest
being the greatest.

A two-way (GROUP x PRACTICABILITY) ANOVA on the RTs with

repeated measures on one factor (PRACTICABILITY) revealed a main

effect of practicability, F(1, 22) = 21.21, p < .001 (mean verification time =

950 ms for high practicability strategies [standard deviation = 234 ms];

1031 ms for low practicability strategies [standard deviation = 253 ms]).

Out of 24 participants, only 6 did not respond faster to the greater

practicability categories;  a sign test showed that this is significant, p  <

.0114.  Neither the GROUP x PRACTICABILITY interaction, F(1, 22) = .01,

ns, nor the main GROUP effect, F(1, 22) = 2.51, ns, was significant.  The

error rate was low overall and was positively correlated with RT (r = .53, p

< .001), ruling out a speed-accuracy trade-off.

In sum, Experiment 2B replicated Experiment 2A.  This lends further

support to our conclusion that internal practicability (and not accidental

characteristics of a stimuli set) drives verification time.

Level
Model Lowest Highest

Exp. 2, Observation 1113 ms [341] 1034  ms [324]
HIGH_FAST Possession 1 9

Utility .375 .500
Compression 0 bit 5 bits

Context .769 .988
SLIP 14.225 11.641

Exp. 2, Observation 867 ms [144] 949 ms [164]
LOW_FAST Possession 3 7

Utility .624 .500
Compression 0 bit 5 bits

Context .974 .984
SLIP 11.641 14.225
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5.5  Experiment 3

Experiments 1, 2A, and 2B revealed that the two determinants of

SLIP (strategy length and internal practicability) can independently

determine the basic-levelness of any level of a taxonomy.  Experiment 3

explores how these two factors interact to determine performance.  There

are many possible interactions to investigate and we will not investigate

them all.  Instead, we will examine three scenarios that change the fastest

level by modifying either strategy length or internal practicability.

EQUAL will be our neutral scenario. Strategies at the high and low-

levels have an equal length of 1 and the same constant practicability.  SLIP

predicts that categorisation speeds should be equal across levels.  In the

SL_DOWN scenario, we will produce faster categorisations at the lower

level by augmenting the length of the strategies that access the high-level

categories.  This scenario uses Experiment 1, LOW_FAST, taxonomy with

a different set of geons.  In the IP_UP scenario, we will keep the difference

of strategy length just discussed, but the high-level will now be fastest

because the practicability of the low level will be decreased.  In sum

starting from an EQUAL access to two levels of a taxonomy, a change of

strategy length in SL_DOWN produces faster categorisations at the low

level.  From this SL_DOWN taxonomy, a decrease in the internal

practicability of the low level in IP_UP produces faster categorisation at

the high level.

5.5.1  Method

5.5.1.1  Participants

Thirty students from University of Glasgow with normal or

corrected vision were paid to participate in the experiment.
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5.5.1.2  Stimuli

 Stimuli were similar to those of experiments 1 and 2A: geon chains

designed with the Form Z 3D-object modelling software.  Nine diagnostic

geons entered the composition of categories in the EQUAL, SL_DOWN,

and IP_UP conditions.  In EQUAL, one geon defined each one of the nine

categories of the taxonomy (see the top taxonomy of Figure 22).
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Figure 22.  Taxonomies of Experiment 3, EQUAL, SL_DOWN, and IP_UP
(from top to bottom).  Strategy length and internal practicability interacts
here.  Underneath the category names, we provide the optimal strategies
fed to SLIP.  The feature constitution of all exemplars is given underneath
each taxonomy.  An index for these abstract features is also provided.

To this defining geon, we added four fillers to form six six-geon chains

(see Figure 23).  We placed the geons defining the high-level categories at

the far left of the chains, and those defining the low-level categories at the

far right (see the top taxonomy of Figure 22).

Figure 23.  Computer-synthesised objects used in Experiment 3, EQUAL.

In SL_DOWN, a unique combination of two geons defined each

top-level category. The addition of one different geon further specified

each lower-level category.  We produced six six-geon chains by adding

three fillers.  We placed the geon pairs defining the high-level categories at

the far left of the chains, and those defining the low-level categories at the

far right (see the middle taxonomy of Figure 22).  These chains also served

to construct the exemplars of IP_UP.  Here, we generated four exemplars

per category by changing only the location in the chain of the single geon

defining the low-level categories (one of the four rightmost positions in

the six-geon chains–see the bottom taxonomy of Figure 22).
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5.5.1.3  Procedure

The procedure was identical to that of Experiments 1 and 2A.

Participants were randomly assigned to one of three conditions (EQUAL,

SL_DOWN, and IP_UP).  Following a learning of their taxonomy,

participants performed 240 verification trials.  The experiment was run

with the SuperLab software on a Macintosh PowerPC 7200.  Each trial

consisted in the presentation of a category name followed by an object.

Participants had to decide whether these matched and we measured

response latencies.

5.5.2  Results and discussion

We performed the analysis of RTs on the positive, correct trials

(error rate = 2.3%) that were within two standard deviations from the

means (4.6% of the trials were discarded).  Table 12 shows the mean RTs.

A two-way (GROUP x LEVEL) ANOVA with repeated measures on

LEVEL revealed a significant interaction between GROUP and LEVEL, F(2,

27) = 11.85, p  < .001, and two significant simple effects of

GROUP(SL_DOWN) by LEVEL, F(1, 27) = 10.58, p < .003 (only one subject

responded faster for the high-level categories, p < .011), GROUP(IP_UP)

by LEVEL, F(1, 27) = 13.09, p < .001 (two subjects verified the low-level

categories faster, p  < .066).  The last main effect is not significant:

GROUP(EQUAL) by LEVEL, F(1, 27) = .04, ns.  The error rate was low

overall and was positively correlated with RT (r = .31, p < .05), ruling out a

speed-accuracy trade-off.

SLIP predicted all the results observed in Experiment 3 (see SLIP in

Table 12 for numerical predictions).  Participants categorised equally fast at

both levels in EQUAL.  Increasing the strategy length of the higher level in

SL_DOWN induced faster categorisations of the lower level.  Note that

Experiment 3, SL_DOWN, replicated Experiment 1, LOW_FAST, with a
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different set of geons.  Diminishing practicability at the lower level in

IP_UP then made the high level faster.  The two computational factors of

SLIP predicted speed of categorisation in these taxonomies.

Table 12:  Mean RTs and standard deviations (between brackets) for the
positive trials of Experiment 3 as well as predictions for feature-possession
(Jones, 1983), category utility (Corter & Gluck, 1992), compression (Pothos
& Chater, 1998a), context model (Medin & Schaffer, 1978;  Estes, 1994), and
SLIP.  For each taxonomy, the greyshade indicates the order of predicted
or of observed basic-levelness, with the lightest being the greatest.

5.6  Experiment 420

You will remember that when internal practicability is constant SLIP

reduces to a Pascal density function with a mean equal to strategy length

divided by this constant internal practicability (see section 2.3.2 The Pascal

density function).  Put otherwise:  SLIP predicts a positive linear

relationship between strategy length and RTs.  Unfortunately all basic-

                                    
20  Experiment 4 was published in Gosselin and Schyns (1998a).

Level
Model Lowest Highest

Exp. 3, Observation 672 ms [212] 680 ms [225]
EQUAL Possession 1 5

Utility .176 .260
Compression 0 bit 30 bits

Context .769 .783
SLIP 1.714 attempts 1.714 attempts

Exp. 3, Observation 920 ms [295] 1,058 ms [374]
SL_DOWN Possession 1 5

Utility .250 .333
Compression 0 bit 30 bits

Context .769 .783
SLIP 1.714 attempts 3.429 attempts

Exp. 3, Observation 928 ms [576] 775 ms [506]
IP_UP Possession 1 5

Utility .250 .333
Compression 0 bit 30 bits

Context .769 .783
SLIP 6.857 attempts 3.429 attempts
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level experiments examining the effect of strategy length on basic-

levelness have used only two strategy length values (Hoffmann &

Ziessler, 1983;  our Experiment 1), and a line can always pass perfectly

through two points.  Experiment 4 was designed primarily to test this

prediction.  Participants learned the category structure of Figure 24.  In

this category hierarchy, membership to different levels requires optimal

strategies of different lengths:  length 1 for high-level categories,  length 2

for mid-level categories, and length 3 for low-level categories.  Note also

that the cardinality of the sets of redundant tests of these strategies is

equal to 1 at all level.  SLIP predicts that no matter what type of feature

(i.e., geon, colour, or texture) is used the diagnostic structure of the

categories will determine the basic level.

Another goal of Experiment 4 was to replicate Experiment 1,

HIGH_FAST, with a three-level taxonomy (rather than two) and objects

varying on three dimensions (rather than objects composed of features).

5.6.1  Method

5.6.1.1  Participants

Thirty students from University of Glasgow with normal or

corrected vision were paid to participate in this experiment.

5.6.1.2  Stimuli

 Our eight stimuli (see Figure 25) filled the whole space defined by

three binary dimensions:  geon (G) (either cylinder or pyramid), colour

(C) (either red or green), and texture (T) (either smooth or rough).  One

binary dimension was added at every categorisation level of the category

hierarchy of Figure 24.  Objects were constructed with the Form Z three-

dimensional modelling software on a Macintosh computer.
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Forty-eight items were constructed.  An item consisted of the

presentation of a category name followed by an object.  They were

generated with the constraints that their number across levels of

categorisation had to be equal, and that their number across categories at

a given level of categorisation had to be equal.  Moreover, the number of

positive items (i.e., items for which  participants had to respond  “yes”)

was equal to the number of negative items (i.e., items for which

participants had to respond  “no”) for any given category.

5.6.1.3  Design

The addition of binary dimensions at levels of categorisation was

counterbalanced across participants using a Latin square to ensure that

each binary dimension was added to the higher, middle, and lower levels

of categorisation equally often.  Thus, our three experimental conditions

were:  CTG, GCT, and TGC (the first, second, and third binary dimensions

correspond to the higher, middle, and lower levels of categorisation,

respectively).

5.6.1.4  Procedure

The procedure of this experiment followed closely that of Murphy

(1991).  The experiment was controlled by a Silicon Graphics computer

running a home-made computer program written in C.

The experiment was divided into three phases:  a learning phase, a

test of learning phase, and a critical phase.

During the learning phase, participants had to learn the nonsense

names of 14 categories, as well as their defining feature(s).  For example, a

participant from the CTG condition might have had to learn–among other

things–that a “hob” was green, rough, and cylindrical,  that a “zim” was

green and rough, and that a “tis” was green.  The nonsense names were

randomly assigned to categories for each participant.
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Participants were given their categories’ defining feature hierarchy

on a sheet of paper (see Figure 24).  (Most participants took about one

hour to finish the learning phase.)

Figure 24.  Taxonomies of Experiment 4, CTG, TGC, and GCT.  Only
strategy length varies here.  Underneath the category names, we provide
the optimal strategies fed to SLIP.  The feature constitution of all
exemplars is given underneath each taxonomy.  An index for these
abstract features is also provided.

Figure 25.  All computer-synthesised objects used in Experiment 4 with
their three dimensions:  C (colour), G (geon), and T (texture).
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After participants reported having learned the categories, they

were given a learning test.  The experimenter asked them to give the

defining features associated with every category name.  The order in

which the category names were given to every participant was randomly

generated.  Participants had to recall–without a single mistake–all the

defining features of all the categories twice in a row.  Corrective feedback

was given.   (Most participants took about ten minutes to complete the

test of learning phase.)

During the critical phase of the experiment, 48 items were

presented 5 times to participants.  The order of the 48 items were

randomly generated within each block. An item began with the

presentation of a category name.  Participants had to recall the defining

feature(s) of the associated category.  As soon as they had remembered

the appropriate defining feature(s), they pressed one of two response

keys, and, 200 ms later, an object was presented to them.  They had to

decide–as fast as they could without making too many mistakes–whether

or not it was a member of the shown category by pressing on the “yes”

key or the “no” key.  Participants responded with their right and left

indexes.  Half of the participants pressed on the “yes” key with the left

index.  The time it took them to respond was recorded.  No corrective

feedback was provided.  (Participants took approximately 25 minutes to

complete the critical phase.)

5.6.2  Results and discussion

We only analysed positive items (50% of the items) correctly

answered (5.7% of the responses were discarded) and within two standard

deviations of the mean (an additional 0.05% of the responses were

rejected).  The means of the remaining RTs are shown in Table 13 by

group and level of abtraction.
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Table 13:  Mean RTs and standard deviations (between brackets) for the
positive trials of Experiment 4, CTG, GCT, and TGC.  For each taxonomy,
the greyshade indicates the order of predicted or of observed basic-
levelness, with the lightest being the greatest.

We performed a two-factor (GROUP x LEVEL) ANOVA with repeated

measurements on one factor (LEVEL):  Neither the interaction between

GROUP and LEVEL, F(4, 54) = 0.89, ns., nor the main effect GROUP, F(2,

27) = 1.07, ns., was significant.  However, the main effect LEVEL was

significant, F(2, 54) = 12.93, p < .0001.  A regression test (e.g., Hays, 1988)

on the main effect LEVEL revealed a significant linear component, r = .999,

F(1, 87) = 10.31, p < .01, and no significant curvilinear component, F(1, 87)

= 0.02, ns..  As predicted by SLIP, irrespective of the type of information,

there was a positive linear relationship between response latencies and

strategy length (see Table 14 for numerical predictions).  The error rate

was low overall and was positively correlated with RT (r = .28, p < .001),

ruling out a speed accuracy trade-off explanation.

Table 14:  Mean RTs for the positive trials of Experiment 4, overall, as well
as predictions for feature-possession (Jones, 1983), category utility (Corter
& Gluck, 1992), compression (Pothos & Chater, 1998a), context model
(Medin & Schaffer, 1978;  Estes, 1994), and SLIP.  For each taxonomy, the
greyshade indicates the order of predicted or of observed basic-levelness,
with the lightest being the greatest.

Group Level
Lowest Middle Highest

CTG 1396 ms [421] 1169 ms [369] 861 ms [223]
GCT 1123 ms [526] 919 ms [262] 778 ms [242]
TGC 1034 ms [798] 948 ms [658] 818 ms [384]
Mean 1184 ms [582] 1012 ms [430] 819 ms [283]



161

5.7  Comparison of models of basic-levelness with
respect to Experiments 1 to 4

This completes the presentation of all the verification experiments

of this dissertation.  We will now compare the performance of the various

basic-level models at predicting the results of these experiments.

SLIP predicts all the qualitative results of these experiments.

Category feature-possession is second best with 63% of the data

explained, followed by utility and compression with 58%, and trailed by

the context model with 37% (see Table 15).  Monte Carlo simulations

showed that only SLIP significantly outperforms the chance model (p <

.001).

Table 15:  Percentage of nominal data from Experiments 1 to 4 explained
by feature-possession (Jones, 1983), category utility (Corter & Gluck,
1992), compression (Pothos & Chater, 1998a), context model (Medin &
Schaffer, 1978;  Estes, 1994), and SLIP.  Only the scores flanked by a star
are significantly above chance level (p < .001).

The decomposition of these global scores into strategy length and

internal practicability scores is:  For the conditions testing only strategy

length (Experiment 1, HIGH_FAST and LOW_FAST, as well as Experiment

Level
Source Model H - 2 H - 1 Highest (H)
Exp. 4, Observation 1,184 ms 1,012 ms 819 ms

Overall Possession 1 1 3
Utility 0.188 0.25 0.25

Compression 0 bits 73 bits 149 bits
Context .769 .769 .769

SLIP 4.5 attempts 3 attempts 1.5 attempts

Strategy
length

Internal
practicability

Mean

Possession 45% 88% 63%
Utility 36% 88% 58%

Compression 55% 63% 58%
Context 18% 63% 37%

SLIP 100% * 100% * 100% *
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3, EQUAL and SL_DOWN, and Experiment 4, Overall), the compression

measure predicts 55% of the data, category feature-possession, 45%,

category utility, 36%, and the context model, 18%.  Again Monte Carlo

simulations revealed that only SLIP significantly outperforms the chance

model (p < .001).  This confirms the argument made earlier that all models

have so far neglected strategy length as a specific factor of basic level

performance.  This is a serious problem because attributes do overlap

between categories in the real-world, and so strategy length is an

important factor of recognition outside the laboratory.

For the conditions testing only practicability (Experiment 2,

HIGH_FAST and LOW_FAST, and Experiment 3, EQUAL and IP_UP),

category feature-possession and category utility predicts 88% of the data,

compression measure and context model, 63% (see Table 15).  (Note that

we have included Experiment 3, EQUAL, in the break down into strategy

length and internal practicability;  it is an extreme case of both.)  Monte

Carlo simulations demonstrated that SLIP, category feature-possession

and category utility significantly outperform the chance model (p < .001).

This corroborates our earlier claim regarding category feature-possession

and category utility taking the internal practicability into account.

5.8  Implications for part-based basic-level accounts

You will remember that in most recognition theories objects are

first identified at the basic level from their parts and then they are

identified at other levels (e.g., Biederman’s, 1987, recognition-by-

component theory;  see Chapter 3).  We will say here that these theories

postulate a strong Hardwired Bias for parts.  However, the observed

correlation between proliferation of parts and basic-levelness (Tversky &

Hemenway, 1984) could result from a Contingent Diagnosticity of parts for

the task.  This is what most formal theories of basic-levelness predict,

including SLIP.
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Murphy (1991a, b) tested these two rival hypotheses with artificial

category hierarchies.  He found that basic-levelness was a function of the

structure of information in these taxonomies rather than their

content–corroborating Contingent Diagnosticity and falsifying Hardwired

Bias.  More specifically, Murphy tried to show that parts were neither

necessary (parts are necessary if, when a taxonomy does not have parts

collected at one level, it will not display basic-level phenomenon), nor

sufficient (parts are sufficient if, when a taxonomy has parts collected at

one level, that level will tend to display basic-level phenomena) for basic-

level performance.  He has been criticised for having used unnatural

objects (Tversky & Hemenway, 1991).  Our Experiments 1, 2A, 3, and 4

used realistic objects and also gave support to the Contingent

Diagnosticity hypothesis.  Experiments 1, 2A, and 3 showed that parts

were not sufficient:  their taxonomies all had parts collected at all levels and

these did not display equal basic-levelness (except for Experiment, 3,

EQUAL).  Experiment 4 showed that parts are not necessary:  both in the

TGC and the CTG taxonomies, levels defined by non-part information had

the greatest basic-levelness.

5.9  Is basic-levelness really influenced by taxonomies?

An intriguing observation is that we could rewrite this dissertation

disregarding completely the notion of taxonomy, only considering the

computational factors of SLIP (this will, in fact, be exploited in Experiments

5A and 5B).  Features can be redundant within a category and overlapping

between categories without the need of a hierarchy to be explicitly

represented in the memory of the categoriser.  The categoriser would

only need to explicitly represent its categories in memory, without an

explicit representation of the hierarchical dependencies.  SLIP would make

exactly the same predictions, whether or not hierarchical dependencies are

explicitly represented.  This is because the relationship between the
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computational principles of SLIP and taxonomic knowledge is

asymmetrical:  realistic taxonomies could hardly exist without feature

overlap and redundancy, whereas the principles of SLIP do not imply an

explicit representation of taxonomic knowledge.  Does the taxonomy itself

influence performance in real world categorisations?  At this stage, we do

not have the elements of an answer, but it is clear that this issue deserves

further considerations.  It is brought into sharp focus when principles of

knowledge organisation that subsume hierarchies can explain data that

are supposed to arise from a hierarchical organisation of knowledge.

5.10  Introduction to Experiments 5A, 5B, and 6

So far we have shown that, in a verification tasks, strategy and

internal practicability could–alone and together–determine basic-levelness.

But we have stressed in the Preamble and Chapter 1 the importance of

using multiple empirical basic-level indexes of performance;  basic-

levelness is a global measure of performance.  The main objective of

Experiment 5A, 5B, and 6 is to demonstrate that SLIP’s predictive power

extends beyond verification to naming.  After verification, naming is the

most commonly used index of performance.  Experiment 5A and 5B

isolates the effect of strategy length and internal practicability,

respectively, whereas Experiment 6 examines the effect of strategy length

on the time course of categorisation.

5.11  Experiment 5A

You will remember that strategy length is the minimum number of

required tests on features to access a category.  Experiment 5A was

designed to isolates its effect in a two-alternative-forced-choice naming

task.  Unlike in Experiment 1, we did not use two two-level taxonomies to

dissociate level of abstraction and strategy length;  instead we used the

simplified category structure illustrated in Figure 26.  It has no taxonomic



165

organisation:  it is made of two partly overlapping categories with

different strategy lengths.  But as we have pointed out above (see section

5.9 Is basic-levelness really influenced by taxonomies?), taxonomies do not

play any particular role in our SLIP framework.  Only strategy length and

internal practicability matter.

Very few basic-level experiments have studied naming

performance with artificial taxonomies.  The only exceptions are Murphy

and Smith (1982) and Hoffmann and Ziessler (1982);  both used naming

speed as their basic-levelness measure.  Naming speed is arguably very

similar to verification time.  A more natural naming basic-levelness

measure is frequency of use (this is Brown’s original proposal).

Experiment 5A estimates both these naming indexes of performance, and

SLIP predicts both of them (see section 5.11.1.4 Predictions).

5.11.1  Method

5.11.1.1  Subjects

Ten paid University of Glasgow students with normal or corrected

vision participated in this experiment.

5.11.1.2  Stimuli

Objects were designed with the Form Z three-dimensional object

modelling software on a Macintosh computer.  We used a total of five

four-geon sets.  The JON  (or BOB) category was defined by the

conjunction of features c and d, and the BOB (or JON) category by the

unique feature a.  One filler was added to all geon sets (i.e., feature b).

Another filler (i.e., e for half the UNMAMB_SL1 and UNMAMB_SL2

conditions, and f for the remaining) was added to each UNAMB geon set.

Furthermore, half the UNAMB_SL1 sets possessed feature c, and the other

half feature d (see Figure 26).  From each four-geon set, two exemplars
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similar to those used in Experiments 1, 2A, and 3 (see Figures 19 and 23)

were extracted.  It is important to realise that AMB objects satisfy both the

JON and BOB definitions.

Figure 26.  Only strategy length (SL) varies in Experiment 5A.  In the dark
boxes, underneath the category names, we provide the optimal strategies
fed to SLIP.  In the light boxes, we give the feature structures of the
exemplars of the different experimental conditions (UNAMBiguous and
AMBiguous).  An index for these abstract features is also provided.

5.11.1.3  Procedure

During a learning session, participants were shown the defining

features of BOBs and of JONs.  Half the participants learned to associate

the length 1 strategy with the name “BOB” and the length 2 strategy with

“JON”;  half learned the other associations.  We verified that subjects had

correctly learned the categories by asking them to give the defining

features of JONs and BOBs.
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The experiment ran on a Macintosh 7500 PowerPC and used the

SuperLab experiment software.

Participants were instructed that during the testing phase, they

would sometimes be presented unambiguous JONs (either UNAMB_SL2,

or UNAMB_SL1) and BOBs (either UNAMB_SL1, or UNAMB_SL2) and

sometimes ambiguous objects (AMB).  For the unambiguous objects, their

task was to name them as quickly as possible without making too many

mistakes.  For the critical ambiguous objects, their task was to give the

first name that poped to their mind (note that mistakes are impossible in

this case).  Subjects responded by pressing one of two keys on the

computer.

Subjects were submitted to a total of 120 UNAMB items (each

individual exemplar was presented 15 times), half of which were BOBs;

they were also submitted to just as many AMB items.  The whole

experiment lasted less than 30 minutes.

5.11.1.4  Predictions

In the last chapters we have given several examples of how to

compute speed of access predictions in our framework (the only

difference between verification and naming being the value of S ;  see

section 2.3.4 Naming).  All items confounded, SLIP predicts that length 1

names should be associated with shorter response times than length 2

strategies.  Exact predictions are shown in Table 16.

SLIP also predicts that the names associated with length 1 strategies

will be used 75% of the time for the AMB objects.  This expected

percentage was derived by first computing the internal practicability of
the sets of redundant features:  ψ  = .375 (i.e., Cj(1-S+SRj) = .5*(1-1+1*.75)

= .375).  Then by applying the scheme described in section 2.3.4 Naming:

i.e., .375 / [.375 + .375] + {.375 / [.375 + .375]}*{.375 / [.375 + .375]} = .75.
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5.11.2  Results and discussion

Subjects chose the length 1 names 72.5% of the time in AMB items

(see Table 16).  The difference between the subjects’ preference for length

1 and length 2 categories is significantly different from zero, Z = 8.091, p <

.001 (Hogg & Tanis, 1988).  So it appears that length 1 names are chosen

more often than length 2 ones in naming.  Furthermore, the difference

between this observed preference for length 1 strategies (i.e., 72.5%) and

SLIP’s prediction (i.e., 75%) is not significantly different from zero, Z  =

0.632, ns.  This supports SLIP’s predictions concerning percentage of use.

The mean RTs for length 1 and length 2 names–AMB and UNAMB

conditions confounded–are 814 ms and 1056 ms, respectively (see Table

16).  The difference between these two mean latencies is significant, t(10) =

1.90, p < .029.  In fact, nine subjects out of 10 responded faster in SL1 than

SL2 cases, p < .011.  As predicted by SLIP, it thus takes less time to name a

category associated with a length 1 strategy than one associated with a

length 2 strategy.

Table 16:  Percentage of times the name associated with the smallest
strategy length was chosen in the ambiguous cases with standard
deviations (between brackets) and speed of access of all correct cases
confounded with standard deviations (between brackets) as well as
predictions for feature-possession (Jones, 1983), category utility (Corter &
Gluck, 1992), and SLIP.  The greyshade indicates the order of predicted or
of observed basic-levelness, with the lightest being the greatest.
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Model Measure Strategy Length
1 2

Observation Preference 73% [32%] 27% [32%]
RT 814  ms [426] 1055 ms [550]

Possession Preference 2 3
RT idem Idem

Utility Preference .053 .717
RT Idem idem

Compression Preference ? ?
RT idem Idem

Context Preference ? ?
RT idem idem

SLIP Preference 75% 25%
RT 2.667 attempts 5.333 attempts
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In the UNAMB cases, subjects made significantly more errors for

length 2 categories (26.6%) than for length 1 categories (2.8%), Z = 3.542, p

< .00121.  This is consistent with the results of Experiments 1 and 4 that

both revealed positive correlations between strategy length and errors.

The data reported here confirms again that strategy length

determines the basic-levelness of a category.

5.12  Experiment 5B

You will remember that internal practicability, the second

determinant of SLIP, refers to the ease with which feature sets identify a

category.  A category has high practicability whenever many of its

defining features are uniquely diagnostic of this category.  Experiment 5B

was designed to isolate internal practicability in a two-alternative-forced-

choice naming task.  Instead of a full-blown taxonomy, we used two

partly overlapping categories with different practicabilities (see Figure 27).

5.12.1  Method

5.12.1.1  Subjects

Ten paid University of Glasgow students with normal or corrected

vision participated in this experiment.

5.12.1.2  Stimuli

The objects were designed with the Form Z three-dimensional

object modelling software on a Macintosh computer.  We used a total of

three four-geon sets.  The JON (or BOB) category was defined by the

redundant set of features b, c, and d, and the BOB (or JON) category by
                                    
21  The experiment-wise error level can be computed using the following formula:

1 − 1 − α i( )∏ , where i spans all individual error levels.  Thus the overall error is equal

to 1 - [(1 - .001) * (1 - .029) * (1 - .001) * (1 - .001)] = .042 in Experiment 5A.
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feature a.  One filler was added to the UNAMB sets (i.e., feature e).  The

UNAMB_IP1 exemplars possessed two more fillers (i.e., f  and g ) (see

Figure 27).  Note that the AMB objects satisfy both the JON and BOB

strategies.  From these geon sets two examplars similar to those used in

Experiments 1, 2A, 3, and 5A were extracted.

Figure 27.  Only internal practicability (IP) varies in Experiment 5B.  In the
dark boxes, underneath the category names, we provide the optimal
strategies fed to SLIP.  In the light boxes, we give the feature structures of
the exemplars of the different experimental conditions (UNAMBiguous
and AMBiguous).  An index for these abstract features is also provided.

5.12.1.3  Procedure

The procedure was identical to that of Experiment 5a.  During a

learning session, participants were shown the defining features of BOBs

and of JONs.  This is illustrated in Figure 27.  We made sure that the

subjects knew the definitions.

The experiment ran on a Macintosh 7500 PowerPC and used the

SuperLab experiment software.

Participants were instructed that during the testing phase, they

would sometimes be presented unambiguous JONs (either UNAMB_IP3,
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or UNAMB_IP1) and BOBs (either UNAMB_IP1, or UNAMB_IP3) as well

as ambiguous objects (AMB).  For the UNAMB objects, they would have

to name them as quickly as possible without making too many mistakes;

for the critical AMB objects, they would have to give the first name that

comes to their mind.

Subjects were presented 80 UNAMB object items (each individual

exemplar was presented 20 times), half of which were BOBs;  they were

also submitted to just as many AMB items.  The whole experiment lasted

less than 25 minutes.

5.12.1.4  Predictions

SLIP predicts that length 1 names should be associated with shorter

response times than length 2 strategies all items confounded (see Figure

17 for exact predictions).

It also predicts that the names associated with high practicability

will be used 75% of the time in the AMB items.  To derive this percentage

the categories’ internal practicabilities have to be computed:  the high
practicability categories have a ψ  = .375 (i.e., Cj(1-S+SRj) = .5*(1-1+1*.75) =

.375) and the low practicability ones a ψ  = .125 (i.e., Cj(1-S+SRj) = .5*(1-

1+1*.25) = .125).  Then Equation 5 is applied (see 2.3.4  Naming), that is
ψ X

ψ i
i

∑  = [.375 / (.125 + .375)] = .75.

5.12.2  Results and discussion

For the AMB items, participants chose the most redundant category

76.6% of the time (see Table 17).  The difference between their preference

for the most redundant and least redundant names is significantly

different from zero, Z  = 9.525, p  < .001.  Thus it seems that highly

practicable names are used more often than less practicable ones in

naming.  The difference between this observed preference for highly
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practicable strategies (i.e., 76.6%) and SLIP’s prediction (i.e., 75%) is not

significantly different from zero, Z = 0.330, ns..  This confirms SLIP’s

frequency of use prediction.

The mean RT for more practicable and less practicable names, AMB

and UNAMB conditions confounded, are, respectively, 619 ms and 695 ms

(see Table 17).  The difference between these two mean latencies goes in

the expected direction but is not significant, t(10) = 1.44, ns..  This is

probably due to a large variance in the denomination data, and more

subjects would probably reveal a significant difference.  In fact, nine

subjects out of 10 responded faster in IP3 cases than in the IP1 cases, p <

.011.  Based on our sign test and the direction of the means’ difference, we

conclude with some confidence that it takes less time to name a category

associated with high practicability than one associated with low

practicability.



174

Table 17:  Percentages of times the name associated with the largest
internal practicability was chosen in the ambiguous cases with standard
deviations (between brackets) and speed of access of all correct cases
confounded with standard deviations (between brackets) as well as
predictions for feature-possession (Jones, 1983), category utility (Corter &
Gluck, 1992), and SLIP.  The greyshade indicates the order of predicted or
of observed basic-levelness, with the lightest being the greatest.

Model Measure Internal Practicability
3 1

Observation Preference 77% [16 %] 23% [16 %]
RT 620 ms [285] 695 ms [302]

Possession Preference 4 4
RT idem Idem

Utility Preference .703 .039
RT Idem idem

Compression Preference ? ?
RT idem Idem

Context Preference ? ?
RT idem idem

SLIP Preference 75% 25%
RT 2.667 attempts 8 attempts
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In the unambiguous cases, subjects made few errors (error for most

redundant items was 2.75% and for least redundant items 1.51%).  The

difference between theses values is not significant, Z = 0.710, ns..

The data reported here confirms once more that internal

practicability can determine the basic-levelness of a category.

5.13  Experiment 6

We have shown repeatedly now that strategy length determines

basic-levelness.  We have done so in verification tasks (Experiments 1, 3,

SL_DOWN, and 4) as well as in naming (Experiment 5A).  However, all

these experiments looked at final products of categorisation, i.e.  category

speed of access or frequency of use.  SLIP authorises a more precise study

of the time course of categorisation.  Experiment 6 was designed to

investigate this.  We looked at what happens when the visual input is

available for processing for various durations in a two/four-alternative-

forced-choice naming task.  A cue appearing before the scene to be named

indicated which level of categorisation to use:  when it was “low”

participants had to choose between two names, when it was “high” they

had to choose between four.

We constructed four stimuli by combining two different luminance

patterns (that we call flat and hilly) with two different chromatic patterns

(labelled grassy and sandy).  Subjects learned to categorise these scenes in a

two-level taxonomy (see Figure 28).  At the general level, they learned to

separate the four scenes into “flat” and “hilly”, on the basis of luminance

cues.  At a specific level, they learned to categorise the stimuli as either

“field” (the combination of flat and grassy), “desert” (flat and sandy),

“mountain” (hilly and grassy), or “dune” (hilly and sandy).
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Figure 28.  The four scenes used in this experiment and the corresponding
general (“flat” and “hilly”) and specific-level category names (“field”,
“mountain”, “desert”, and “dune”) learned by all participants.

Suppose that the field picture is briefly presented on the screen,

immediately followed by a mask.  Subjects can make two types of

responses at the general level:  correctly respond “flat” (0 error, high) and

respond “hilly” rather than “flat” (1 error, high), implying a misperception

of the luminance information (see top of Figure 29).  At the specific-level

participants can make three types of response:  (1) correctly respond

“field” (0 error, low), respond “dune”, implying a misperception of both

the flat luminance and the green chromaticity of the field (2 errors, low),

and (3) respond “mountain” (or “desert”), implying a misperception of

only the flat luminance (or the colour information) (1 error, low) (see

bottom of Figure 29).
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Figure 29.  An illustration of the analysis of categorisation responses when
a field is required to be named either at the high or low-level of
abstraction.

5.13.1  Time-course predictions

SLIP makes explicit predictions concerning how often each type of

these responses just reviewed should occur throughout time.  For the

general-level identifications there is a single way to make an error (1

error, high):  no feature test has been successfully completed and the

category has been guessed incorrectly.  The probability of the latter is .5

because there are two high-level categories;  and the probability that no

feature has not been completed is one minus the probability that it has.

Now, the probability that one feature test has been successfully completed

at attempt t or before is given by the cumulative form of Equation 4 (see

Chapter 2), i.e. λ 1− ψ( )
i = n

t

∑
i− n

ψ n  with n  = 1. Let us call this Cumulative

distribution for Strategies of Length 1, csl1 (by extension:  csl2, csl3, …, and
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csln).  It follows that the predicted distribution of 1 error, high, is .5 * (1 -

csl1).

A no mistake verdict at the general-level (0 error, high) can result

from two independent events:  (1) the relevant feature test is completed

and (2) the relevant feature test is not completed but a correct guess is

made.  The probability of (1) is given by csl1 as we have seen.  As for the

probability of (2), it is equal to that of 1 error, high because the probability

of making a correct guess is the same as the probability of making a

wrong guess.  Thus, distribution of 0 error, high, is csl1 + .5 * (1 - csl1) = 1.5

* csl1 + .5.

Let us now turn to low-level categorisation time course.  Two

errors, low, can only be due to having completed no relevant feature test

and having guessed them all incorrectly.  The probability of this last event

is .25 because there are four low-level categories.  And the distribution of

no successful feature test for length 2 strategies is one minus the

distribution of two completed feature tests minus the distribution of

one–but not two–completed feature test, i.e., [1 - csl2 - (csl1 - csl2)] = (1 -

csl1).  So the distribution of 2 errors, low, is .25 * (1 - csl1).  There are two

ways a 1 error, low, can occur:  either no feature test is completed (1 - csl1)

and one dimension is correctly guessed (.5), or one feature test is

completed but not two (csl1 - csl2) and the other feature is wrongly

guessed (.5).  Thus the distribution of 1 error, low, is given by .5 * (1 - csl1)

+ .5 * (csl1 - csl2) = .5 * (1 - csl2).  Finally, three routes can lead one to make

a correct low-level categorisation:  (1) one could have completed the two

diagnostic feature tests (csl2), (2) one could have completed one feature

test, but not two, (csl1 - csl2) and have guessed the other one correctly (.5),

and (3) one could have completed no relevant feature test (1 - csl1) and

have guessed both features correctly (.25).  So SLIP predicts the following
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distribution of 0 error, low:  csl2 + .5 * (csl1 - csl2) + .25 * (1 - csl1) = .5 * csl2

+ .25 * csl1 + .25.

5.13.2  Method

5.13.2.1  Participants

Twenty University of Glasgow students with normal or corrected

vision were paid to participate in the experiment.

5.13.2.2  Stimuli

We synthesised four distinct 450 x 350 pixels (spanning 7 per 5.4 deg)

stimuli–a field, a desert, a mountain, and a dune–with the Photoshop

image processing software by combining two luminance patterns with

two chromatic patterns.  The luminance patterns were extracted from a

field (called flat here) and a dune (hilly here) photographs from the Corel

Draw Photo Database;  they were normalised for size and horizon level.

The chrominance patterns were composed of two coloured rectangles

corresponding roughly to the ground and the sky.  The sky was the same

blue, and the ground either green (called grassy) or yellow (called sandy).

To eliminate the sharp boundary edge between the two coloured

rectangles, we low-passed the patterns.  A mask was created by randomly

assigning to each square of a 18 x 14 grid the content of the corresponding

region of one of the four scenes (e.g., Breitmeyer, 1989).

5.13.2.3  Procedure

The experiment ran on a Macintosh Power PC 7200 using a home-

made program written with the Psychophysics Toolbox for MatLab

(Brainard & Pelli, 1998).  The subjects learned the name of the four stimuli

at the specific level of a taxonomy:  “field,” “mountain,” “desert” and

“dune”;  and also learned to categorise the stimuli at a general taxonomic

level into “flat” vs. “hilly,” on the basis of luminance cues (see Figure 28).
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A learning block was completed when participants had named

consecutively–and without mistake–all scenes at the high and at the low

levels of categorisation (4 scenes x 2 levels of abstraction = 8 trials

minimum).  Within one learning block, trials followed each other in

random order.  A trial began with the display of the word “high” or

“low,” instructing subjects of the level at which the subsequent scene had

to be named. Subjects then pressed a key to display the scene to categorise

(presented on the screen for 1 s) immediately followed by a 450 ms mask.

Subjects indicated their categorisation using one of six response keys (two

for the general level, four for the specific level) before moving on to the

next trial.  Corrective feedback was provided.

When participants reached criterion (all subjects reached criterion

after having been exposed to the minimum number of items), they were

transferred to a testing phase including trials differing in two ways from

those described above:  First, presentation time varied being either 15, 30,

45, 60, or 75 ms.  Half of the 600 test trials (4 scenes x 2 levels x 5

presentation times x 15 repetitions presented in a random order) started

with the “low” cue and the other half with the “high” cue.  Second, no

corrective feedback was given.

5.13.3  Results and discussion

Figure 30 shows the effect of presentation time on the average

proportion of responses with standard deviations.  At 15 ms exposure,

performance is near chance.  We bestfitted linearly the predictions derived

from the section 5.13.1 Time-course predictions equations with S = 1 (see

solid lines in Figure 30).  Overall R2 = .98.  A chi-square goodness of fit test

did not reveal any significant difference between the observed and
predicted proportions (χ obs

2 (24) = 7.02, ns.) (e.g., Hogg & Tanis, 1988).
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Figure 30.  Average percentages of 0 error, and 1 error, high, and 0 error,
1 error, and 2 errors, low, with standard deviations and SLIP bestfits (solid
lines).

The other models of basic-levelness cannot make such time course

predictions, at least in their current state.  However they can predict

whether or not the overall speed of access for high-level categories (i.e.,

average speed of access for 0 error, high) will be faster than that for the

low-level categories (i.e., average speed of access for 0 error, low).  We do

not have these speeds of access here, but it can be argued that they are

inversely related to our average percentages of 0 error, high and low:  The

faster the strategy associated with a category can be completed, the more

often it will be completed in a masked situation.  On average participants

made no error 80% of the time for high-level categories and 59% for low-

level ones.  The difference between these averages is significantly different
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from zero, Z = 37.23, p < .001.  Table 18 shows the predictions of the

various models.  (For SLIP’s predictions, we averaged the points of the

bestfitted curves.)

Table 18:  Average percentage of correct responses in function of strategy
length as well as predictions by feature-possession (Jones, 1983), category
utility (Corter & Gluck, 1992), compression (Pothos & Chater, 1998a),
context model (Medin & Schaffer, 1978;  Estes, 1994), and SLIP.

Average 0 Error
Model High Low

Observation 80% 59%
Possession 1 3

Utility .25 .25
Compression 1.678 3.192

Context .769 .769
SLIP 80% 59%
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It is unclear what information exactly is masked in our experiment

(see Breitmeyer, 1989).  Is it the availability of all the visual information

which is terminated by the appearance of the mask?  Or is it only the low-

level visual attributes which are affected, leaving the higher-level visual

information relatively unaltered?  It would be worth replicating this

experiment with a categorisation under-pressure task (e.g., Lamberts,

1995;  McElree, Dolan, and Jacoby, 1999).  Here, participants learn to

respond within 200-300 ms of the onset of an auditory cue.  Both the

duration availability of visual input and that of processing is controlled.

SLIP predicts the same pattern of errors.

5.14  Comparison of models of basic-levelness with
respect to Experiments 5A, 5B, and 6

We have presented the three basic-level naming experiments of this

dissertation which can be used to compare the performance of the various

basic-level models.  We will now proceed with this comparison.

SLIP predicts all the nominal data.  Category utility follows with

83% (i.e., 5 out of 6) of the data explained, then comes category feature-

possession with 17% (i.e., 1 out of 6).  The context model and the

compression measure cannot make any prediction for Experiments 5A

and 5B.  In Experiment 6, they explain respectively, 50% (i.e., 1 out of 2)

and 0% of the data.  Due to the scarcity of data, no Monte Carlo simulation

was performed here.  This pretty much corroborates our previous

assessments of the models:  SLIP leads the pack, followed by the category

feature-possession and category utility pair, and trailed by the context

model and compression measure pair.

The inability of the context model and the compression measure to

model Experiments 5A and 5B illustrates a fundamental difference

between these two models and the others.  The context model requires at

least two embedded categories–a minimum taxonomy–to be applied.  You
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will remember that the most inclusive serves as a “standard” for the

other.  And at least two such embedded categories are needed for a score

comparison.  Experiments 5A and 5B each used two partly overlapping

categories which is insufficient.  The compression measure requires at least

one partitioning of objects into two independent categories to be applied

at all.  We do not have this in Experiments 5A and 5B.  And two such

partitionings are needed for a minimum score comparison.  In other

words, these two models require taxonomies whereas the other models

do not.  We have discussed the implications of this in section 5.9 Is basic-

levelness really influenced by taxonomies?.

5.15  Experiment 722

A perceptual prediction of SLIP is that strategies specify an order of

feature testing (see Chapter 2, especially section 2.4 SLIP:  a special

diagnostic recognition model).  If this order is respected, then the perceptual

appearance of the stimulus could change.  To illustrate, a rel in the top

taxonomy of Figure 18 (see Experiment 1) is optimally represented either by

Strat(X, rel) = [{wedge} & {cube}], or by Strat(X, rel) = [{cube} & {wedge}].

These two strategies have equal speed of access, but the order in which

the two features are tested differs.  Why would one adopt the first or the

second strategy?  In the top taxonomy of Figure 18, one strategy (i.e.,

Strat(X, rel) = [{cube} & {wedge}]) is more robust in categorisation under

time pressure.  It is more robust because it is more likely to lead to a valid,

if approximate, categorisation of the input.  We know that the input is at

least a hob if it has a cube.  Robustness is critical in everyday categorisation:

unseen features can be inferred on the basis of a categorisation (e.g.,

Anderson, 1991;  Rosch, 1978).  Experiment 7 was designed to investigate

                                    
22  Experiment 7 was submitted as Gosselin and Schyns (2000).
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this.  It stands alone among the other experiments presented in this

dissertation.

We used the four stimuli synthesised for Experiment 6.  A learning

procedure was devised to induce a different, two-level taxonomic

knowledge of these four stimuli in two subject groups (labelled LUMI and

CHRO, see Figure 31).  At the high level, LUMI subjects learned to

separate the four scenes into “flat” and “hilly”, on the basis of luminance

cues, whereas CHRO subjects learned to separate the same scenes into

“grassy” and “sandy” on the basis of chromatic cues.  At the low level,

LUMI and CHRO subjects all learned to categorise the stimuli as either

“field” (the combination of flat and grassy), “desert” (flat and sandy),

“mountain” (hilly and grassy) or “dune” (hilly and sandy).  Note that the

specific categorisations are strictly identical in the two groups.  The

conjunctive nature of the stimuli warrants that the input scene can only be

recognised as, e.g. “field,” when its flat luminance and its grassy

chrominance are perceived and integrated.
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Figure 31.  At the top, are the four scenes used in this experiment and the
corresponding specific-level category names learned by all participants
(“field”, “mountain”, “desert”, and “dune”), surrounded by the two
general-level categorisations (“flat” and “hilly”) LUMI subjects learned,
and those (“grassy” and “sandy”) CHRO subjects learned.  At the bottom,
is an illustration of the analysis of categorisation errors and their
implications.  When a field is presented, the four possible categorisation
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responses have a different implication for the perception of luminance and
chromatic information.

This property can be used to ascertain whether subjects are more

sensitive to the dimension defining the high, than the low level of their

taxonomy, and therefore perceive the scenes according to their

organisation of knowledge.  Suppose that the field picture is briefly

presented on the screen, immediately followed by a mask.  Subjects can

make four types of errors at the specific level, depending on which

information they misperceive:  “dune” implies a misperception of both the

flat luminance and the green chrominance of the field (henceforth, 2

errors); “mountain” implies a misperception of only the flat luminance

(henceforth, 1 error, luminance), whereas “desert” implies a

misperception of only the green chrominance (henceforth, 1 error,

chrominance).  (Unfortunately, in Experiment 6, we did not distinguish the

two types of 1 error responses separately.)

We predicted that the organisation of luminance and chromatic

information in the LUMI and CHRO taxonomies would determine

different perceptions of identical stimuli.  That is, subjects placed in an

identical condition of stimulation (e.g. seeing a field) and response

(choosing between “field,” “mountain,” “desert” or “dune”) would

produce opposite patterns of categorisation errors (i.e. respond more

often “desert” than “mountain” in LUMI, but “mountain” than “desert” in

CHRO), revealing a differential sensitivity to luminance and chrominance

in the groups (see Figure 31).  (A similar analysis applies to all four stimuli

of the experiment.)
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5.15.1  Method

5.15.1.1  Participants

Twenty-four University of Glasgow students with normal or

corrected vision were paid to participate in the experiment.

5.15.1.2  Stimuli

We used the quadruplet of artificial scenes of Experiment 6.  That is,

four 450 x 350 pixels (spanning 7 per 5.4 deg) stimuli–a field, a desert, a

mountain, and a dune–synthesized with the Photoshop image processing

software by combining two luminance patterns with two chromatic

patterns (see top half of Figure 31).  Our mask was created by randomly

assigning to each square of a 18 x 14 grid the content of the corresponding

region of one of the four scenes.

5.15.1.3  Procedure

The procedure was quite similar to the one of Experiment 6.  We

will nonetheless describe it and emphasize the major differences.  The

experiment ran on a Macintosh Power PC using a program written with

the Psychophysics Toolbox for MatLab.  Two subject groups (called LUMI

and CHRO) learned the names of the four stimuli at the specific level of a

taxonomy:  “field,” “mountain,” “desert” and “dune.”  LUMI subjects also

learned to categorise the stimuli at a general taxonomic level into “flat” vs.

“hilly,” on the basis of luminance cues, whereas CHRO subjects learn to

categorise the stimuli at a general level into “grassy” vs. “sandy,” using

chromatic cues (see top half of Figure 31). (You will remember that

Experiment 6 only had a LUMI subject group.)

A learning block was completed when participants had named

consecutively–and without mistake–all scenes at the high and at the low

levels of categorisation (4 scenes * 2 level of abstraction = 8 trials
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minimum), with LUMI and CHRO differing only in their high level

categorisations.  Within one learning block, trials followed each other in

random order.  A trial began with the display of the word “high” or

“low,” instructing subjects of the level at which the subsequent scene had

to be named.  Subjects then pressed a key to display the scene which they

had to categorise (presented on the screen for 1 s) immediately followed

by a 450 ms mask.  Subjects indicated their categorisation using one of six

response-keys (two for the high level, four for the low level) before

moving on to the next trial.  Corrective feedback was provided.

When participants reached criterion (all subjects reached criterion

after exposition to only four general- as well as four specific- levels trials,

the minimum number), they were transferred to a testing phase including

trials differing in three ways from those described above:  First, in order

to get the full spectrum of responses, presentation time varied, being

either 15, 45, 75, 105, 135, 165, or 195 ms.  Second, we only tested the low-

level categorisations.  That is, each one of the 700 test trials (4 scenes x 7

presentation times x 25 repetitions presented in a random order) started

with the word “low” (Experiment 6 had “high” as well as “low” trials).

This ensured that all participants were required to perform the exact same

categorisations after the brief learning phase.  Third, no corrective

feedback was given.

5.15.2  Results and discussion

Figure 32 shows the evolution of 0 error, 1 error (luminance and

chrominance, confounded), and 2 error responses for the two groups

combined.  At 15 ms exposure, performance is near chance;  it quickly

rises above chance for longer exposures. We bestfitted linearly the

predictions derived from the section 5.13.1 Time-course predictions

equations with S = 1 (see solid lines in Figure 32).  Overall R2 = .99.  A chi-

square goodness of fit test did not reveal any significant difference
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between the observed and expected proportions (χ obs
2 (20) = 17.03, ns.).

This replicates the low-level results of Experiment 6.

Figure 32.  Average percent 0 error, 1 error (chromaticity and luminance
errors confounded), and 2 errors, with standard deviations and SLIP
bestfits (solid lines).

We predicted–on the basis of the robustness hypothesis–that

subjects would produce opposite patterns of one-dimension errors (i.e.,

respond more often “desert” than “mountain” in LUMI, but “mountain”

than “desert” in CHRO), revealing a differential sensitivity to luminance

and chrominance.  This is exactly what we observed:  On average, CHRO

subjects made more 1 error responses on luminance (58%) than on

chrominance (42%), whereas LUMI subjects made more 1 error responses

on chrominance (59%) than on luminance (41%).  Significance tests on the
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difference score between 1 error responses on luminance and

chrominance were different from zero in both groups (CHRO: mean

difference = 16%; standard deviation = 13%, Z = 4.423, p  < .001; LUMI

mean difference = 19%; standard deviation = 21%, Z = 5.848, p < .001).

It is well established that luminance and colour are two of the main

dimensions of visual processing (e.g., Livingstone & Hubel, 1988).  If

different categorisation strategies applied to strictly identical scenes, in

strictly identical conditions of response and stimulus presentation, can

produce a different order of integration of luminance and chromatic cues,

then this would constitute strong evidence that categorisation strategies

can determine perception.  In the early days of vision research it was

commonly thought that knowledge about the external world influenced

its perception (Bruner & Goodman, 1947;  Helmholtz, 1856);  nowadays

discoveries in the study of human knowledge rarely inform vision

research, with the two fields drifting apart (e.g., Gordon, 1997).  Our

results could thus have potentially far reaching implications.
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 Chapter 6.  General discussion

This dissertation presented SLIP, a measure of basic-level

performance that implements two computational constraints on the

organisation of information in taxonomies:  strategy length, the number of

feature tests necessary to place the input in one category, and internal

practicability, the ease with which these tests can be performed.  We

designed SLIP to model category verification.  We extended its reach to

naming, and we discussed how SLIP relates to the other basic-levelness

correlates (i.e., more features are listed at the basic level than at the

superordinate level, with only a slight increase at the subordinate level;

throughout development, basic level names are learned before those of

other categorisation levels;  and basic-levelness seems quite universal

across domains as well as cultures).  We reviewed 21 published

experiments and examined how the two constraints varied in each one of

them.  We further examined strategy length and internal practicability in

nine experiments.  We used computer-synthesised artificial 3D objects or

artificial scenes to tightly control feature composition and preserve

ecological validity.  The first five experiments examined the two

constraints of SLIP in verification.  Experiment 1 isolated the effect of

strategy length on basic-levelness, Experiments 2A and 2B tested the effect

of internal practicability, and Experiment 3 examined the interactions

between the two factors.  Experiment 4 verified whether strategy length is

linearly related to basic-levelness, as predicted by SLIP.  The last four

experiments studied the two computational constraints in naming.

Experiment 5A isolated the effect of strategy length, and Experiment 5B

that of internal practicability.  Experiment 6 looked at the time course of

length 1 and 2 strategy completion.  Finally, Experiment 7 examined the
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effect of robustness (i.e., the idea that an approximate categorisation is

better than none) on the order of feature test in length 2 strategies.

Throughout, we compared the performance of SLIP at predicting

basic-level data and that of other models.  The comparisons were made on

individual taxonomies or on meaningful collections of them that is, all the

published taxonomies, the ones from our verification experiments, and

the ones from our naming experiments.  In the final section of this

dissertation, we will proceed to an overall assessment of the reviewed

basic-level models.

6.1  Overall assessment of the basic-level models

To our knowledge, we have examined all the formal models of

basic-level performance.  You will remember that these models are:

Rosch et al.’s (1976) cue validity model, Tversky’s (1977) contrast model,

Jones’s (1983) category feature-possession model, Corter and Gluck’s

(1992) category utility model, Fisher’s (1986) COBWEB model, Anderson’s

(1989, 1990) rational analysis model, Medin and Schaffer’s (1978;  modified

by Estes, 1994) context model, and Pothos and Chater’s (1998, 1999)

compression model (see Chapter 3).

We have rejected from further comparisons Rosch et al.’s (1976) cue

validity model and Tversky’s contrast model because they cannot predict

the classic advantage for an intermediate level;  Fisher’s (1986) COBWEB

measure because it is based on Corter and Gluck’s category utility, and

makes roughly the same predictions;  and, finally, Anderson’s (1989, 1990)

rational analysis model because it does not provide a metric of basic-

levelness.  Combining the 21 published experiments (see Table 7) with the

11 taxonomies from our Experiments 1 to 6 (see Tables 15 to 18), the

performance of the four remaining models (i.e., Jones’s category feature

possession, Corter & Gluck’s category utility, Medin & Schaffer’s context

model, and Pothos & Chater’s compression) at predicting basic-levelness is
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as follows:  It appears that SLIP predicts 84% of the data, category utility,

63%, category feature-possession, 59%, compression, 57%, and context

model, 41% (see Table 19 for a summary).  Monte-Carlo simulations show

that the context model (p < .31, ns.) does not perform significantly better

than a chance model (i.e., a model that randomly selects the ranks of the

levels within each experiment);  and that all the other basic-levelness

measures significantly outperform the chance model (i.e., in the worst case

p < .01).

Table 19:  Percentage of nominal data from 21 published basic-level
experiments and of Experiments 1 to 6 explained by feature-possession
(Jones, 1983), category utility (Corter & Gluck, 1992), compression (Pothos
& Chater, 1998a), context model (Medin & Schaffer, 1978;  Estes, 1994), and
SLIP.  The strategy length, internal practicability, simple conjunction,
mixture, and mean scores flanked by a star are significantly above chance
(p < .01).

Once more, it is instructive to examine the models specifically for

their predictions of variations of feature redundancy and strategy length.

Table 19 summarises the breakdown (the percentages presented here for

simple conjunction and mixture experiments are the same as those

presented in Table 7 in Chapter 4).  For all experiments involving only

variations of internal practicability, SLIP scores 81%, followed by category

utility with 74%, then by category feature-possession with 61%, then by

the compression measure with 58%, and trailed by the context model with

36%.  All these scores are significant (i.e., in the worst case p < .01) except

that of the context model (p < .44, ns.).  The strategy length results are

Strategy
length

Internal
practicability

Simple
conjunction

Mixture Mean

Possession 32% 74% * 46% 57% 59% *
Utility 54% 61% * 69% * 100% 63% *

Compression 49% 58% * 31% 100% 57% *
Context 30% 36% 38% 100% 41%

SLIP 100% * 81% * 54% 100% 84% *
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more interesting:  For all experiments involving solely variations of

strategy length, SLIP accounted for 100% of the data, category utility for

54%, compression for 49%, category feature-possession for 32%, and the

context model for 30%.  Of all these percentages, only SLIP’s is

significantly above chance (p < .001;  for the next best model, p < .3, ns.).

This confirms the argument made earlier that all models have so far

neglected strategy length as a specific factor of basic level performance.

This is a serious problem because attributes do overlap between

categories in the real-world:  what distinguishes your cellular phone, your

fountain pen, your computer, your house, and other everyday objects of

yours from those of your neighbours is often a conjunction of features

(e.g., colour and shape).

To the extent that any model of categorisation implements

computational constraints (even if these are not well specified), the

conclusion is that those of SLIP are closest to those underlying the speed

of access to the categories of a taxonomy.  Therefore, if, for example,

some animal categories are more equal than others (e.g., in verification

tasks, “dog” is superior to “mammal” as well as to “Doberman”), we

would say that this is because these superior animal categories have

shorter strategies than the others, or strategies with greater internal

practicability.
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