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A picture is worth thousands of trials: rendering the use of
visual information from spiking neurons to recognition
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Mastery of technique is so important that [. . . ] it may be stated that the greatest discoveries are in
the hands of the finest and most knowledgeable experts on one or more of the analytical methods.

–(Santiago Ramón y Cajal, 1897)

If what Ramón y Cajal (1999)suggested at the end of the 19th century still applies today—
and we certainly believe that it does—researchers in vision science are now facing tremen-
dously exciting times. Techniques to measure the activity of the brain—especially the visual
brain—are now more numerous, accessible and affordable than ever. Brain imaging tech-
niques such as functional magnetic resonance imagery (fMRI), positron emission tomography
(PET), electroencephalography (EEG), event related potential (ERP), optical imagery, mag-
netoencephalography (MEG), tools to induce localized and transient disruptions in the normal
functioning of the brain like transcranial magnetic stimulation (TMS), and accurate video
eye-trackers have now joined methods of single-cell recording, psychophysics, visual cogni-
tion and neuropsychology in the toolbox of the vision scientist.

In contrast to unquestionable progress in measurement techniques, up until recently little
progress had been made to relate brain and behavioral measurements to the properties of the
distal stimuli eliciting these responses. But times are changing: Vision science is undergoing
a small-scale revolution that is the topic of this special issue ofCognitive Science. New tools1

are being developed to relate stimulus properties with behavioral and brain events, and ascribe
a functional role to the latter.
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1. The problem

The articles of this special issue attempt to answer to the following question: What aspect
of a distal visual stimulus is responsible for a measurable response of the observing mecha-
nisms, from brain cells to recognition, in biological systems and machines? While it is obvious
that visual stimuli elicit numerous measurable brain and behavioral responses in observers, it
remains a challenge for cognitive science to determine the stimulus properties that elicit and
modulate the amplitude of these responses, and to provide a common language of information
with which to relate behavioral and brain events.

To illustrate this generic problem, consider the example of single-cell studies concerned
with the mechanisms of visual categorization. Various researchers have established that IT
neurons respond specifically to complex objects such as faces and hands (Desimone, Albright,
Gross, & Bruce, 1984; Gross, Rocha-Miranda, & Bender, 1972; Perrett, Rolls, & Cann, 1982).
However, further investigations revealed that the effective stimulus was represented in a much
lower-dimensional space of abstract features (Desimone et al., 1984; Kobatabe & Tanaka, 1994;
Tanaka, Saito, Fukada, & Moriya, 1991; Tsunoda, Yamame, Nishizaki, & Tanifuji, 2001) or
parameters (Op de Beeck, Wagemans, & Vogels, 2001; Sigala & Logothetis, 2002; see also
Pasupathy & Connor, 2002for V4 neurons). In a related vein, EEG/MEG and neuroimaging
studies have established sensitivity of brain signals to faces (i.e., the N170 in ERP,Bentin,
Allison, Puce, Perez, & McCarthy, 1996; Carmel & Bentin, 2002), or activity in the middle
fusiform gyrus in neuroimaging (Gauthier, Tarr, Moylan, Skudlarski, Gore & Anderson, 2000;
Kanwisher, McDermott, & Chun, 1997), but further studies also revealed sensitivity to other
expert object categories (Gauthier, Skudlarski, Gore, & Anderson, 2000) and novel objects
(Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999), leaving unresolved the question of the
specific stimulus determinants (but seeSchyns, Jentzsch, Johnson, Schweinberger, & Gosselin,
2003; Smith, Gosselin, & Schyns, in press).

2. The contributions

The articles of this special issue describe techniques adapted to the complexity of this generic
problem at different levels of visual integration. They share the characteristic of estimating the
use of visual information with little bias (at the cost of many trials). We and others find useful to
classify these information estimates according to three main types: represented (R), available
(A) and potent (P), articulated as follows (seeGosselin & Schyns, 2002, 2004; Murray & Gold,
2004, for further discussions):2

R ⊗ A ≈ P

Reverse correlation provides estimates of information internally represented (R). It has
been successfully applied to estimate represented information at different levels of visual
organization, ranging from the receptive fields of single cortical cells in neuroscience (Ringach
& Shapley, this issue), textures and faces discrimination in photometric space (Gold, Bennett,
& Sekuler, this issue), photometric features of gender, expression, and identity recognition
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Table 1
The six basic decisions (i.e., what is the stimulus set, the search space, the noise/sample, the observer, the task, and the response?) for each one of the
four techniques measuring represented (top) and the three techniques measuring potent (bottom) visual information

Authors Stimulus set Search space Noise/sample Observer Task Response

Gold, Bennet,
and Sekuler

Two faces and
two textures

Photometric
space

White Gaussian Individual results of
two humans

2AFCa Key-press: 2 choices

Mangini and
Biederman

One ambiguous
face per task

Photometric
space

Colored “Sinusoidal” Average of 36
humans per task

Discrimination
of identity,
gender and
expression

Key-press: 2
choices and 2
confidence
levels

Olman and Kersten Stick-figure
animals

3D
stick-figure
animal space

Positional Gaussian One human Typicality
judgments

Key-press: 2 choices

Ringach and Shapley None Space–time “Subspaces”:
grating space
and others

Monkey cells Passive viewing Spiking frequency

Sadr and Sinha Five objects Photometric
space

Phase alignment Average of four to
eight humans

Object naming Key-press: 2 choices

Tse Array of
two-color
elements

Space–time One element
changing color at
different times

Average and
individual results of
three humans

Color
change
detection

Key-press: 2 choices

Vinette, Gosselin,
and Schyns

30 faces Space–time Space–time bubbles Average and
individual results of
10 humans

Identification Key-press: 10 choices

a In a 2-alternative-force-choice (2AFC) trial, an observer must discriminate between two two-stimuli intervals: stimulus A–stimulus B and stimulus
B–stimulus A; the order of the stimuli represents either an arrangement in space or in time. Researchers use 2AFC tasks to minimize response bias.
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(Mangini & Biederman, this issue), and other important dimensions of object recognition
(Olman & Kersten, this issue).

Other techniques discussed here have instead focused on clarifying the potent components
(P) of a distal stimulus that modulate measurable responses. These techniques attempt to
reduce real-world stimuli to their response-triggering information.Bubbles(Vinette, Gosselin,
& Schyns, this issue) and RISE (Sadr & Sinha, this issue) are techniques that prune the stimulus
to reveal its effective information for behavior in face and object recognition tasks. Similarly,
Tse (this issue) samples the visual field with a change detection task to estimate the dynamics
of the deployment of attention.

Finally, several contributors (Gold, Bennett, & Sekuler, this issue; Olman & Kersten, this is-
sue; Vinette, Gosselin, & Schyns, this issue) also discuss the information that is available
(A) to resolve a task. In relation to P (or R), estimates of A provide the formal bench-
marks of available information against which to rank usage by organisms (seeKersten,
Mamassian, & Yuille, in press, for a more thorough discussion of the ideal observer approach;
seeGeisler & Diehl, 2003, for an interpretation of available information as adaptive infor-
mation).

When applying the techniques just described to new experiments researchers typically ad-
dress six basic questions (Gosselin & Schyns, in press): (1) what is the external visual informa-
tion, (2) in which space will stimuli be searched, (3) what is the noise that will probe the search
space, (4) who are the observers, (5) what is the task and (6) what are the responses.Table 1
summarizes how the contributions of this special issue related to R (the first four entries) and
those related to P (the last three entries) address these questions.

3. Conclusion

Reverse correlation,Bubbles, RISE, and change detection techniques offer the potential to
visualize and measure the information used at different levels of visual integration. No book,
special issue, or even review article describe all the techniques covered in this special issue for a
broad readership. Instead, their presentation has been so far confined to specialist journals (e.g.,
Eckstein & Ahumada’s, 2002,Journal of Visionspecial issue on reverse correlation), limiting
their impact. We hope that the specialist reader will benefit from the multi-disciplinary aspect
of the collection of articles, and that the honour undergraduate or graduate student will learn
about possible applications of these techniques to his/her own research and that all will live
true to Ramón y Cajal’s words.

Notes

1. Even though these tools have been mostly developed in vision, their application is not
restricted to this field (e.g.,Eckstein & Ahumada, 2002; Gosselin & Schyns, 2002;
Simoncelli, 2002). Historically, Wiener (1958)initiated the approach in engineering
(with reverse correlation) and suggested to extend it to study the brain.de Boer and
Kuyper (1968)carried out the initial application in neuroscience, andAhumada and
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Lovell (1971)later examined the psychophysics of auditory processes. In principle, it
should be possible to adapt this approach to haptic, taste and olfactory signals.

2. Murray and Gold (2004)have demonstrated that, for a Linear Amplifier Model (LAM)
observer, a pixel by pixel product replaces the ‘⊗’ operator in this generic equation.
RAP, however, extends beyond the LAM (e.g., to nonlinear information).
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