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Abstract

This article provides a user’s guide to Bubbles, a technique that reveals the information

that drives a measurable response. We illustrate the technique with a complete example:

the Face Inversion Effect and discuss the six basic decisions that must be made to set up a

Bubbles experiment (i.e., the stimulus set, the generation space, the “bubbles”, the task,

the group of observers, and the response).  We describe methods to analyze the data and

provide practical advice for the researcher intending to use the technique.



A User’s Guide to Bubbles

The herring gull chick begs for food by pecking at its mother’s beak. In a seminal

experiment, Nobel-prize-winning ethologist Nikko Tinbergen and co-worker (Tinbergen

& Perdeck, 1950) sought to discover the stimulus that maximized this response.  This

enterprise led to the remarkable discovery of the super-stimulus: An artificial stimulus

that evokes a stronger response than the original, natural stimulus.  For example, a white

stick with three red annuli moving up and down produces a stronger pecking response

than the head of the herring gull mother’s.

At an abstract level, the search for the super-stimulus can be framed as a generic

search problem.  Given a measurable dependent variable (e.g. the pecking rate response),

the problem is to find the specific parameters of the independent variable(s) (e.g. the

characteristics of the mother’s head) that optimize the dependent variable.  Obviously,

this approach is not limited to ethology.  An approach similar in spirit is that of Nobel-

prize-winners Hubel and Wiesel who searched for the stimulus that optimizes the

response of cells in the primary visual cortex (see Hubel, 1988, for a review).  Much to

their surprise, they discovered that small spots of light, which are so effective in the

retina and Lateral Geniculate Nucleus (LGN) were much less effective in visual cortex.

Instead, simple cells in primary visual cortex responded optimally to inputs with linear

properties, such as a line with a specific width and orientation in the plane.  At the next

level of cortical integration, optimal inputs become more complicated.  For example,

complex cells tend to respond better to a stimulus with a critical orientation, but also a

characteristic speed and direction, adding to the width and orientation search space a third

dimension.  Further up the integration ladder, cells in temporal cortex respond to complex



object properties (Kobatabe & Tanaka, 1994) such as orientation in depth (Perrett,

Mistlin & Chitty, 1987), object similarities (Vogels, 1999), and the information

responsible for visual object categorization (Sigala & Logothetis, 2002; Vogels, 1999).

However, even though IT cells are just “a few synaptic connections away” from

primary visual cortex, their optimal stimuli are hidden in a much more complex search

space: the physical world.  With its many faces, objects and scenes, this space does not

comprise just the few degrees of freedom required to represent the little spots of light

positioned within the visual field, or the moving orientated bars.  Instead, IT cells

respond to structured information that varies in 2D retinal position, 2D rotation in the

image plane, 3D rotation in depth, illumination, articulation and so forth. Amongst these

multiple degrees of freedom, different subspaces of parameters represent the effective

stimuli of IT cells.  The challenge is to understand what these subspaces are.

And it is still one of the greatest methodological challenges in Cognitive Science:

when dealing with complex visual stimuli, how can a brain event (an ERP response, or an

fMRI measurement) or a human behavior (e.g. a categorization response) be attributed to

a specific object category (e.g. a beach scene), a specific object (e.g. a deck chair), a

specific feature (e.g., the texture of the deck chair) or a specific function (e.g. a beach,

deck chair, or texture detector)?  In the absence of a principled method, the specificity of

the response (e.g., to the beach) is determined by contrast with responses from carefully

chosen contrast categories (e.g., roads, cities, mountains, fields and so forth), and

informal hypotheses tested.  Unfortunately, a dense correlative structure exists in the low-

level visual properties of category members (e.g., luminance energy, main directions of

orientation, spatial frequency composition and so forth), only a small subset of which can



be controlled with a finite number of carefully chosen contrast categories.  Consequently,

the specificity of the brain or behavioral response might be due to incidental input

statistics and not to the category per se (Schyns, Jentzsch, Johnson, Schweinberger &

Gosselin, 2002).

In this article, we present Bubbles (Gosselin & Schyns, 2001), a method designed

to solve the problem of finding the effective stimulus in the complex search spaces that

are characteristic of visual categorization.  From the outset, it is important to stress that

the method can be scaled down and applied to simpler search spaces.  However,

originality of Bubbles is that it can handle search spaces that have so far proven to be

elusive (e.g., the information responsible for face recognition, Gosselin & Schyns 2001,

Schyns, Bonnar & Gosselin, 2002; scene recognition, Nielsen, Rainer, Brucklacher &

Logothetis, 2002 ; or the perception of complex figures, Bonnar, Gosselin & Schyns,

2002).  The article is organized as a user’s guide.  First, we introduce a typical research

problem never before addressed with Bubbles: the Face Inversion Effect.  We then

discuss the six main decisions that must be made to set up a Bubbles experiment,

discussing critical issues with examples from our own research.

The problem:  The Face Inversion Effect

In a seminal article, Yin (1969) reported that the recognition of face pictures was

disproportionately affected by a 180 deg rotation in the image plane from the normal,

upright viewing condition.  This phenomenon is now commonly called the Face

Inversion Effect (FIE). Since then, the FIE has been replicated in multiple experimental

situations (e.g. Carey, Diamond & Woods, 1980; Philips & Rawles, 1979; Scapinello &

Yarmey, 1970 ; Carey & Diamond, 1977; Diamond & Carey, 1986; Freire et al., 2000;



Leder & Bruce, 2000; Scapinello & Yarmey, 1970; Tanaka & Farah, 1993; Valentine &

Bruce, 1986; Yarmey, 1971).

There is now agreement amongst most face recognition researchers that the FIE

does not arise from long-term memory interferences, but instead from a greater difficulty

to perceptually encode inverted face information (e.g. Farah et al., 1998; Moscovitch,

Berhmann & Winocur,1997; Phelps & Roberts, 1994; Searcy & Bartlett, 1996, Freire et

al., 2000). Therefore, recent studies have examined more closely the encoding differences

that occur when experiencing an upright or an inverted face. However, the specification

of these differences has so far remained largely unknown (Rossion & Gauthier, in press).

To address the FIE with Bubbles, we need to make six basic decisions (1) what is

the stimulus set, (2) in which space will stimuli be generated, (3) what is the “bubble,”

(4) what is the observer’s task, (5) what are the observer’s possible responses (6) is the

analysis per observer, or per group of observers.  In resolving all of these, we will set up

a search space and vary the parameters of the independent variables (upright and inverted

face information) that determine the measurable dependent variable (the observer’s

response).  The Bubbles solution should specify the difference between the information

subspaces driving the processing of upright and inverted faces.

(1) Stimulus set. In a Bubbles experiment, the stimulus set is crucial because it

critically bounds what will be tested.  Here, we used a total of 10 greyscale faces (5

males, 5 females), each one of which displaying 3 different expressions (neutral, angry

and happy).  Hairstyle was normalized, and so were global orientation, and the location

of the light source.  Stimuli could be upright or inverted, but when inverted, we flipped

the image so as to keep the light source to the right of the face.



Generally speaking, the larger the stimuli set, the better the Bubbles solution should

be.  A large stimulus set will tend to prevent observers from adopting strategies atypical

of natural processing.  In the FIE example, the stimulus set restricts the search space for

differences in upright and inverted face encodings to a few males and females with a

limited set of expressions, in highly restricted conditions of presentation (only one light

source, two poses, and static images).  Although this also applies in most face recognition

experiments, it is important to point out that the Bubbles solution will be tied to these

limitations.  In our research we have already used faces in other experiments with human

participants (Gosselin & Schyns, 2001; Schyns, Gosselin & Bonnar, 2002; Schyns,

Jentzsch, Schweinberger, Johnson & Gosselin, 2002), but also in animals experiments

(Gibson, Wasserman, Gosselin & Schyns, 2002).  Other stimuli used ranged from 3D

models of Gouraud shaded animals (Schyns & Gosselin, 2002) to a painting of Dali

(Bonnar, Gosselin & Schyns, 2002).  Other researchers have also applied Bubbles to

natural scenes (Nielsen, Rainer, Brucklacher, & Logothetis, 2002).  Although these

applications only involved visual stimuli, the technique should straightforwardly

generalize to auditory and tactile stimulus sets, or to cross-modal combinations of these.

(2) Stimulus Generation Space. The choice of a proper stimulus generation space is

one of the most important decisions when setting up a Bubbles experiment.  Remember

that we are searching for the parameters of the independent variables (upright and

inverted face information) that determine the FIE.  Each independent variable considered

constitutes one independent dimension whose parametric values will be searched.  To

illustrate, our face stimuli are 2D pictures.  The axes of the 2D plane could be searched to

find the (x,y) coordinates of face information that determine upright, vs. inverted



performance.  The stimulus generation space would then be two-dimensional, and the

solution would be a subset of the plane.

However, there is evidence that early vision does analyze the input at multiple

spatial scales (or spatial frequencies, see de Valois & de Valois, 1990, for a review), and

that mechanisms of face recognition rely on this input (see Morrison & Schyns, 2001, for

a review).  Thus, a better space to search for the determinants of FIE could include a third

dimension of spatial scales. Specifically, we segmented the third dimension into 5

independent bands of fine to coarse spatial frequencies of one octave each—with cutoffs

at 90, 45, 22.5, 11.25, 5.62, and 2.81 cycles per face.  The solution subspace becomes an

interaction between the 2 dimensions of face feature location, and the third dimension of

spatial scale.

In setting up this search space, we are making a number of assumptions that are

worth pointing out.  We are assuming that the face pictures are normalized for the

position of their main features (i.e., the x,y locations of the eyes, nose, mouth, chin,

cheeks and forehead are roughly similar across face pictures).  This is necessary because

the selected search space is not invariant to translation in the image plane.  Similarly, we

are assuming that the faces in the pictures will have the same size, because the search

space is not invariant to scale changes.  Note that these constraints on the search space

are not constraints on the technique itself.  It is possible to set up translation invariant

search spaces (see Schyns & Gosselin, 2002, for a Fourier implementation), and it is also

possible to set up scale invariant search spaces.  However, the experimental question (the

nature of face features that determine FIE) suggested a search space where the location of

face features would be known.



In our research, we have used a variety of stimulus generation space, ranging from

the 2D image plane (Gosselin & Schyns, 2001; Gibson, Gosselin, Wasserman & Schyns,

2002; Schyns, Jentzsch, Schweinberger, Johnson and Gosselin, 2002; O’Donnell,

Gosselin & Schyns, 2002), a 3D plane identical to the one used here (2D image x spatial

scales, Bonnar, Gosselin & Schyns, 2002; Gosselin & Schyns, 2001; Schyns, Bonnar &

Gosselin, 2002), a translation invariant 1D scale space (Schyns & Gosselin, 2002), and a

3D space comprising the standard 2D image plane and time (Vinette & Gosselin, 2002).

From the discussion above, it should be clear that the number of dimensions

making up the stimulus generation space is critical to the number of trials required to

reach a stable Bubbles solution.  Generally speaking, to visit each point of a search space,

there is a combinatorial explosion of steps with the increasing number of dimensions.

Note, however, that if the dimensions of the search can be collapsed for the analyses, then

the search space itself can be large.  For example, one could decide that spatial scales are,

after all, not that important for FIE, collapse the data along this dimension and analyze

feature use in the 2D image plane.

(3) The bubbles.  At this stage, two important decisions have been made and the

search can almost begin.  In the search, information is sampled from the set up space, and

the next decision to make concerns the unit of sampling.  This unit depends on a number

of factors, including the stimuli, the nature of the search space and the task to be

performed.

To bring the observer away from ceiling, relevant information must sometimes be

sampled, but sometimes not sampled.  The parameters of the sampling unit must be

adjusted to ensure this modulation of performance.  A first parameter is the geometry of



the sampling unit.  An information sample is effectively a cut in the search space.

Sampling unit with different “punch-hole” geometries will change the information

sampled and displayed to the observer.  Our research has mostly used a Gaussian shaped

geometries, either in 2D (Gibson, Gosselin, Wasserman & Schyns, 2002; Gosselin &

Schyns, 2001; O’Donnell, Gosselin & Schyns, 2002; Nielsen, Rainer, Brucklacher &

Logothetis, 2002 ; Schyns, Jentzsch, Schweinberger, Johnson & Gosselin, 2002) or in 3D

(Bonnar, Gosselin & Schyns, 2002; Gosselin & Schyns, 2001; Schyns, Bonnar &

Gosselin, 2002). This choice was motivated by two main factors: Gaussians functions

produce a smooth cut (producing a sample that does not introduce hard edge artifacts),

without orientation biases of the sampled information (i.e. a Gaussian is circularly

symmetric).

A different search space could require geometries other than Gaussians.  For

example, if orientation information was searched as an independent dimension, the

sampling unit would need to introduce orientation biases.  For example, a Gabor function

could be designed to sample information at several orientations (e.g., 0, 45, 90 and 135

deg).  More abstract geometries can also be used, when the search space is itself abstract.

For example, in Schyns and Gosselin (2002), the bubble was a dot sampling Fourier

coefficients in a Fourier Transform search space.

Another important parameter of the sampling unit is its resolution.  The resolution

is largely determined by considering the scale of the stimulus and the expected resolution

of the relevant information for the task at hand.  To illustrate, we know that the eyes, the

mouth and the nose are the most useful features to make face decisions.  It would

therefore be advisable that the resolution of the sampling unit in a FIE task be lower (i.e.



smaller) than the resolution of the important features.  A very low-resolution sampling

unit (e.g. the pixel of an image) provides a precise sample of the search space, but many

trials are required to converge on a solution of the search.  Clearly, the resolution of the

sampling unit must be chosen with a priori considerations of the expected scale of the

solution.

For the reasons just discussed, the bubble of our FIE example has a Gaussian

geometry.  The scale of the bubble was chosen to sample three cycles per face (i.e. stds of

.13, .27, .54, 1.08, and 2.15 deg of visual angle, from fine to coarse scales, see Figure 1).

On any given trial, information is sampled from the search space by a number of bubbles.

The sampling is typically performed randomly and is thus non-biased.  Figure 1 a-e

illustrates the sampling procedure.  In (b) the face shown in (a) is decomposed into five

independent scales. In (c) bubbles with a Gaussian geometry sample the information

space at random locations (overlap is permitted). In (d) the bubbles (c) are applied to the

appropriate scales in (b). Finally, in (e) the pictures of (d) are added together to produce a

sub-sample of the face information in (a).

---------------------------------

Insert Figure 1 about here

---------------------------------

One important point about bubbles: their number. It can either be adjusted on-line

to maintain performance at a given level (e.g., Gosselin & Schyns, 2001; Schyns, Bonnar

& Gosselin, 2002), or be kept constant throughout the experiment (i.e., Gibson, Gosselin,

Wasserman & Schyns, 2002; Jentzsch, Gosselin, Schweinberger & Schyns, 2002). The

technique will work so long as performance is between floor and ceiling.  The advantage



of adjusting bubble numbers to equate performance is that Bubbles solutions are

comparable. In the FIE example, we maintained categorization of sampled face

information at about 75% correct by adjusting the number of bubbles using a gradient

descent algorithm on a trial per trial basis. The initial bubble number resulted from an

informed guess (i.e., between 50 and 60 bubbles for a first session), and we let the

gradient descent algorithm take over and adjust the bubble number to maintain

performance at 75%.

 (4) The task. At this stage, the sampling procedure has been fully specified.  The

final decision is that of the task. We have explored a variety of face categorizations in

humans and animals (Gibson, Gosselin, Wasserman & Schyns, 2002; Gosselin & Schyns,

2001; Jentzsch, Gosselin, Schweinberger and Schyns, 2002; O’Donnell, Gosselin &

Schyns, 2002; Schyns, Bonnar & Gosselin, 2002; Vinette & Gosselin, 2002), basic and

subordinate categorizations of models of animals (Schyns & Gosselin, 2002), and

disciminations of an ambiguous painting by Dali (Bonnar, Gosselin & Schyns, 2002).  In

the FIE example, observers will identify the faces in the upright and inverted conditions.

(5) Observers. Depending on the objectives of the research, different types of

observers can interact with the Bubbles algorithm.  For example, we have applied the

technique to groups of human observers (Gosselin & Schyns, 2001; Schyns, Bonnar &

Gosselin, 2002; Bonnar, Gosselin & Schyns, 2002), individual observers to track down

effects of expertise acquisition (Jentzsch, Gosselin, Schweinberger and Schyns, 2002;

Gosselin & Vinette, 2002; O’Donnell, Gosselin & Schyns, 2002), infants to tackle issues

in development (Humphreys, Gosselin, Schyns, Kaufman & Johnson, 2002), pigeons

(Gibson, Gosselin, Wasserman & Schyns, 2002), and ideal observers which are models



providing a benchmark of the information available in a task (Gosselin & Schyns, 2001).

We have several on-going research projects involving brain-damaged patients (patients

suffering from prosopagnosia and hemi-neglect).

(6) Response. The response is an interesting parameter of a Bubbles experiment

because the technique is in principle sensitive to any measurable dependent variable.

Here, observers pressed labeled keys corresponding to the names of 10 individuals.  We

have used such key-press responses to derive correct and incorrect responses (Gibson et

al., 2002; Gosselin & Schyns, 2001; Gosselin & Vinette, 2002; O’Donnell, Gosselin &

Schyns, 2002; Schyns et al., 2002; Bonnar, Gosselin & Schyns, 2002) and response

latencies (Schyns et al., 2002).  In addition, we also used preferential looking

(Humphreys, Gosselin, Schyns, Kaufman & Johnson, 2002) and N170 amplitudes

(Schyns et al., 2002).  Other responses could be the firing rate of single cells, fMRI,

galvanic skin response, pleismograph, eye movements, and so forth. To the extent that

Bubbles is essentially an empirical tool, it is useful to record as many different responses

as possible (e.g., correct/incorrect, latencies and N170 in a face recognition experiment).

It is difficult to predict before the experiment how responses will correlate with the

parameters of the search space.

Analyses

Now that the search has been run, the data are collected, and the analyses can be

performed.  Remember that the goal of the search is to isolate a subspace of information

that determines the measured response(s).  Technically, a multiple linear regression on

the samples (explanatory variable) and the responses (predictive variable) provides this

solution. This reduces to summing all the bubble masks in different response bins, where



the number of responses is a function of the nature of the response itself1.  For example,

two bins are sufficient to tease apart correct and correct responses, but more bins are

necessary to cover the range of electric activity (or cell firing rate) of a brain response.

To reveal the most important information, we can perform a linear operation on the bins

(e.g. subtracting the wrong response from the correct response bin; divide the correct

response bin by the sum of the correct and incorrect response bins).  The result of this

operation is usually transformed into Z-scores, and thresholded (e.g., at 1.65, p < .05, or

2.33, p < .01).  The outcome of this analysis is the product of Bubbles, revealing the

effective subspace of input information.  In the visual domain, this outcome is a filtering

function that can be applied on the original stimulus to reveal the information that drives

the task.

In the FIE example, three observers learned to criterion (perfect identification of all

faces twice in a row) the name attached to each of the 10 faces from printed pictures with

corresponding name at the bottom.  During the experiment, observers had to determine

the identity of each sparse face (from 10 possibilities).  The experiment comprised six

sessions of 780 trials (i.e., 13 presentations of the 30 faces upright and inverted), but we

only used the data of the last five sessions (for a total of 3900 trials per subject), when

observers were really familiar with the faces and experimental procedure. In a trial, one

sparse face computed as described earlier appeared on the screen either upright or

inverted.  To respond, observers pressed labeled computer-keyboard keys (self-paced,

and with correct vs. incorrect feedback). A chin-rest maintained subjects at a 100 cm

                                                  
1 However, it is also useful to keep all the sampled information of each trial, to be able to do more detailed
analysis such as the conjunctive use of information (see Schyns et al., 2002).



constant viewing distance. Stimuli subtended 5.72 x 5.72 deg of visual angle on the

screen.

On average, observers required an average of 46 and 126 bubbles to reach the 75%

performance criterion in upright and inverted conditions, respectively. The number of

bubbles (between 197 and 30 bubbles, depending on observers and condition) and

average performance (between 86% and 75%) did vary across the six experimental

sessions, to stabilize in the last session.  In this session, observers in upright and inverted

respectively required an average of 30 and 65 bubbles for performance levels 75% and

76%. The comparatively higher number of bubbles in the inverted condition suggests a

higher requirement of visual information, suggesting a more difficult inverted condition,

diagnosing a FIE.

We can now turn to a comparison of the required information in each condition to

attain the same level of performance.  To this end, we first perform a linear multiple

regression.  Practically, for each spatial scale, we computed two independent sums: we

added together all the information samples leading to correct responses in one sum, and

all the information samples leading to incorrect responses in another sum. At each spatial

scale, we then subtracted these two sums to construct an image that discriminates the

information leading to correct and incorrect responses (see the first row of Figure 2 for

the discrimination images at each scale).  If all regions of the search space were equally

effective at determining the response, the image would be a uniform gray. To pull out the

most effective region, we computed Z-scores for each discrimination image, and

indicated in red the regions that are 1.65 std away from their mean (corresponding to a p

< .05). These regions circumscribe the subspace driving upright and inverted face



classification responses.  If we project the original face in Figure 1 a into this diagnostic

subspace, we obtain the effective stimuli displayed the extreme right of the rows in

Figure 2. Technically, each effective stimulus is obtained by multiplying the face

information at each scale in Figure 1b with the corresponding thresholded coefficients in

the rows of Figure 2.

---------------------------------

Insert Figure 2 about here

---------------------------------

For upright faces, the eyes are the most important local features. The only scales

with diagnostic information are the second and the third. This is consistent with the

results of Gosselin and Schyns (2001) and Schyns, Bonnar and Gosselin (2002).

However, these experiments did not include an inverted condition. Observers saw two,

not three expressions, and they were less familiar with the faces (i.e., 1,000 rather than

3,900 trials).

For inverted faces, observers do not seem to rely on any specific features to

perform the task.  They all seem equally good, or bad.  This is reflected in the second row

of Figure 2.  As the number of bubbles was unequal in upright and inverted, we computed

the discrimination image on the normalized Z-score images.  Here, the first three scales

contain diagnostic information. The eyes, the nose and the right part of the mouth are the

most important local features that explain the difference between inverted and upright

information use in face processing.

Discussion



We started this problem with a generic methodological question:  Given a

dependent measurable response (behavioral, electrophysiological, or other) of an

organism, how can we determine the optimal subset of parameters from the independent

variables that determine the response?  With simple stimuli (e.g. Gabor functions, or

sinewaves), this is not much of a challenge, because they can only vary along a few

degrees of freedom, limiting the complexity of the task. With the stimuli that are typical

of realistic face, object and scene categorizations the task had proven so far intractable.

Bubbles is a technique that can resolve the credit assignment problem of

attributing the determinants of a response to the parametric subspace of a carefully

specified information search space.  Using the Face Inversion Effect as an example, we

reviewed the six basic decisions to be made to set up a Bubbles experiment.  In order,

deciding the stimulus set, the dimensions within which to search for information, the

geometry of the unit to sample information, the task and the response(s) to measure.

Applying these to the FIE, we revealed that differences in local face information use (the

eyes, nose, and mouth) represented at the scales between 90 and 22.5 cycles per face,

determined the effect. This subspace, at least in the visual realm, takes the shape of a

diagnostic filtering function that can be applied to render the effective stimulus of the

task.

There are obvious shortcomings to Bubbles.  The first main shortcoming is the

combinatorial explosion in number of trials that are required to exhaustively explore the

search space.  Practically, Bubbles is tractable within low-dimensional search spaces, and

users are advised to restrict the dimensionality of the search space to be as low as

possible. High-dimensional problems are made tractable with heuristics that guide the



search towards regions of more promising solutions, leaving aside less promising regions

of the space.  Heuristic search can be performed with adaptive statistical sampling, or

their implementations. However, any heuristic search introduces biases, resulting in a

trade-off between speed and suboptimal solutions—i.e. local minima. In any case, the

number of trials in Bubbles will need to be reduced to apply the techniques to brain

damaged patients, children, or when learning is itself a factor of the experiment.  To

illustrate, with a Gaussian of sigma = 10 pixels and a 256 x 256 pixels image, the search

space comprises minimally 25 x 25 different locations to visit, and the solution should

converge within less than 500 trials.  If 5 scales are added as a third dimension, the

solution converges within about 5000 trials.  There is little doubt that significant learning

occurs during these 5000 trials.  We are currently developing several heuristic searches to

minimize these numbers (e.g., Leclerc & Gosselin, 2002).

A second shortcoming of Bubbles the relationship between the scale and

geometry of the sample, and the scale of the solution.  The scale and geometry of the

sample impose biases on the search space.  If the scale is too small with respect to that of

the solution, important information will not be revealed within one sample, and the same

situation occurs when the geometry of the punch-hole sampling unit does not fit that of

the solution.  Remember that the Bubbles algorithm adaptively adjusts the number of

bubbles to maintain the observer at a given performance criterion (e.g. 75% correct).

Thus, a higher sampling density, leading to sample overlap, can partially overcome the

problems just discussed.  However, there is always the possibility that observers will

adopt strategies that enable performance to criterion, but are nevertheless atypical of

natural human categorization.



At a more theoretical level, one could ask the question of:  “What is the

information revealed by the Bubbles algorithm?”  The safe response is “the information

required to drive a response at a given performance level.”  However, to the extent that

this information is processed somewhere between the input and the response, it has

interesting implications for psychological processing.  To illustrate, consider the high-

level task of face categorization, and its underlying face features.  One interesting

property of Bubbles is that the researcher can set up a search space that subsumes that of

the assumed categorization features (e.g., the eyes, the nose and the mouth).  For

example, the 3D search space discussed earlier (2D image x spatial scales) formally

represents any face feature as a linear combination of information from the scales.

Consequently, task-specific face features can emerge in the Bubbles solution from the use

of information at one, or several of these scales (see Gosselin & Schyns, 2001; Schyns et

al., 2002, for examples).  Thus, while not applying the search directly to the features, but

in a space that represents these features, Bubbles can reveal the subspace in which

important features are actually represented.  It is in such spaces that Bubbles solutions

tend to be most interesting.

To illustrate, some would argue that the subspace in which important features are

represented is in fact the information subspace to which attention is allocated.  Earlier, we

argued that this diagnostic subspace could be used as a diagnostic filtering function to

reveal the effective stimulus.  Future research will need to characterize this filtering

function, enable bridges to be erected between cognition, attention and perception.
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Figure captions

Figure 1. Pictures in (b) decomposes (a) in five scales; (c) illustrate the “bubbles” applied

to each scale; (d) are the revealed information of (b) by the bubbles of (c). Note that on

this particular trial there is no revealed information at the fifth scale. By integrating the

pictures in (d) we obtain (e), a sample stimulus (Gosselin & Schyns, 2001; Schyns,

Bonnar & Gosselin, 2002). Picture (f) is (a) sampled in the image plane (Gosselin &

Schyns, 2001; Gibson, Gosselin, Wasserman & Schyns, 2002; Jentzsch, Gosselin,

Schweinberger & Schyns, 2002; O'Donnell, Schyns & Gosselin, 2002). Picture (g) is a

3D shape model of a dog sampled in phase space (Schyns & Gosselin, 2002). Finally,

picture (h) is the ambiguous area of a Dali painting sampled in the same generation space

as (e) (Bonnar, Gosselin & Schyns, 2002).

Figure 2. The first row of this figure applies to the upright condition. It gives the five

classification images at each scale, from finest to coarsest. The red areas revealing a face

are significantly above chance (p < .05). The rightmost picture is the effective face. The

second and third rows are the same the first one, except that they apply to the inverted

condition and the difference between the upright and inverted conditions, respectively.
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