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Abstract

When we look at a face, we readily perceive that person’s gender, expression, identity, age, and
attractiveness. Perceivers as well as scientists have hitherto had little success in articulating just what
information we are employing to achieve these subjectively immediate and effortless classifications. We
describe here a method that estimates that information. Observers classified faces in high levels of visual
noise as male or female (in a gender task), happy/unhappy (in an expression task), or Tom Cruise/John
Travolta (in an individuation task). They were unaware that the underlying face (which was midway be-
tween each of the classes) was identical throughout a task, with only the noise rendering it more like one
category value or the other. The difference between the average of noise patterns for each classification
decision provided a linear estimate of the information mediating these classifications. When the noise
was combined with the underlying face, the resultant images appeared to be excellent prototypes of their
respective classes. Other methods of estimating the information employed in complex classification have
relied on judgments of exemplars of a class or tests of experimenter-defined hypotheses about the class
information. Our method allows an estimate, however subtle, of what is in the subject’s (rather than the
experimenter’s) head.
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1. Introduction and background

What is the information mediating face classifications? Although observers can articulate
individual features which often, in fact, correlate with images of such classes, such as the down
turned mouth in an unhappy face, these descriptions are often incomplete and fail to capture
the subtleties. For example, people can readily recognize celebrities but if asked to describe
the difference between Tom Cruise’s and John Travolta’s faces, they typically resort to naming
individual features, such as Travolta’s cleft chin, which fails to capture the rich differences in
their appearance. Although readily perceived, such differences remain ineffable.

We addressed this problem of determining the information used by a perceiver of a face
through an extension of the reverse-correlation, classification-image technique originally pro-
posed for low-level psychophysics by Ahumada (Ahumada & Lovell, 1971). Early implemen-
tations of the technique investigated low-level visual processes, for example, Vernier acuity
(Ahumada, 1996), letter discrimination (Watson, 1998), and Gabor detection (Ahumada &
Beard, 1999; Solomon & Morgan, 1999). As evidenced by this current special issue there has
recently been an increase in exploring what such methods can tell us about higher level visual
processes. For example, Gold and colleagues have used the classification-image method to
investigate illusory contours (Gold, Murray, Bennett, & Sekuler, 2000), and face identification
(Sekuler, Gold, & Bennett, 2000).

In our method, participants classified images of noisy faces (in different blocks of trials) as
male or female, happy or unhappy, or Tom Cruise or John Travolta. In all cases, the underlying
(or base) image never changed and thus provided no information as to the classification. The
addition of the noise (in the form of 4092 truncated sinusoids at five scales and six orientations
whose coefficients varied randomly from trial to trial) sometimes produced a classification of
the face as male on some trials and as female on other trials, in the gender classification task,
for example. (The subject was forced to make a classification.) We averaged the noise on the
trials where the image was classified as female separately from the trials where the image was
classified as male. A “classification image” was computed by taking the difference between the
two average noise composites thus yielding the noise components that served to distinguish the
two classes. When the classification image was added to the base face it produced an image that
appeared female (or happy or Tom Cruise) and when subtracted from the base face produced an
image that appeared male (or unhappy or John Travolta). The major contribution of the method
is that the classification image is produced solely by the way in which the subject classified
the noise+ (the constant) base image and thus provides an estimate of the information in the
subject’sheaddetermining his or her response.

Why did we bother to estimate the information throughout the entire face using this reverse-
correlation technique? Why not simply test specific hypotheses for the different classes by, for
example, showing an upturned mouth on some trials and a down turned mouth on other trials to
assess whether such a cue is relevant for expression? Although such specific tests can, in many
cases, provide information that is, indeed, relevant to a particular classification, they assess only
a tiny subset of the full information available in the face for a particular classification. Worse,
one is limited to a specific hypothesis that the experimenter might have as to the difference (and
the magnitude of the difference) between the two classes. Aside from Travolta’s cleft chin, what
other features should be manipulated when distinguishing him from Cruise? In general, our goal



M.C. Mangini, I. Biederman / Cognitive Science 28 (2004) 209–226 211

is to find out what is in the subjects’ heads, rather than the experimenters’ heads—and we wish
to understand this information in its full complexity, rather than limited to a few local features.

A number of computer vision scientists have studied the full complexity of faces, determin-
ing, for example, efficient representations of faces as inTurk and Pentland’s (1991)Eigen-
face computation or in various networks trained to distinguish male from female faces (e.g.,
Valentin, Abdi, & O’Toole, 1994) or different expressions (e.g.,Calder, Burton, Miller, Young,
& Akamatsu, 2000; Dailey, Cottrell, Padgett, & Adolphs, 2002). Although such networks can
discover the pixel values distinguishing one class from another, one doesn’t know if this in-
formation corresponds to what people (or primates) actually use. The essential point here is
that the information distinguishing the classes for these techniques is calculated frompictures
rather than from perceptual classifications.

This distinction is also relevant to the difference between our technique andGosselin and
Schyns’ (2001)Bubbles technique (presented in detail in the current issue), which were devel-
oped independently. Bubbles employs reverse correlation to estimate informative areas/scales
used by subjects. A major distinction between the two methodologies is that with Bubbles the
underlying facedoescontain information relevant to the category, as it is a partially revealed
male or female face for a gender classification task, for example. The regions of the face are
only revealed at the loci and scale of Gaussians. The averaging of the Bubbles that lead to
criterion performance reveals the regions and scale for distinguishing among a particular set of
male and femalepictures. Our technique uses not informative instances of the category but, as
noted earlier, a constant image midway between the two classes. There is thus no distinguishing
information in the underlying (or “base” image) so all the distinguishing informations come
from the subjects’ heads, not the images.Gosselin and Schyns (2003)recognized this distinc-
tion terming such an approach “superstitious perceptions” and suggested that such methods
provide a pure measure of internal classifiers.

2. Experiment

2.1. Methods

2.1.1. Participants
For each of the three tasks a group of 36 undergraduate students at the University of Southern

California participated for extra-credit in Psychology courses. All subjects reported normal or
corrected-to-normal vision and were naı̈ve to the purpose of the experiment.

2.1.2. Stimuli and apparatus
All trials in each task consisted of a presentation of thebase imagein high noise. The stimuli

were 8-bit grayscale, 128× 128 pixel images presented on a gamma corrected Sony Trinitron
20 in. monitor at a distance of 1 m. At 640× 480 resolution the stimuli subtended a visual
angle of approximately 4.5◦. To construct the base image for the gender and expression tasks,
20 digital photographs were taken of 10 males and 10 females each posed in a frontal view
with a neutral expression under controlled lighting conditions with a digital camera. Models
wore a bathing cap to conceal their hairlines and no jewelry, facial hair, or obvious makeup was
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Fig. 1. Creating the noise. (a) Six orientations and two phases (cosine upper row; sine lower row) of random
amplitude sinusoids are summed to create the 2 cycles/image noise. The same process is repeated four times for
each “tile” of the 4 cycles/image noise, 16 times for the 8 cycles/image noise, etc. (b) All five octaves are summed to
create the noise pattern. To the right are shown the 2, 4, 8, 16, and 32 cycles/image noise patterns of all orientations.

visible in photographs. Image morphing software (Gryphon Morph 2.5) was used to morph
each model to, two arbitrarily chosen models of the same gender, resulting in a total of 200
images. Taking the mathematical average of these 200 faces resulted in the base image.1 For
the individuation task, a morph of images of John Travolta and Tom Cruise was used as the
base image. The base images are shown in the first column ofFig. 3.

For each trial a random noise stimulus was generated. Although most experiments using the
response classification technique have used Gaussian white pixel noise, our noise was com-
posed of truncated sinusoids that are nominally localized in space, frequency, orientation, and
phase.2 Each sinusoid consisted of two cycles of a sine wave in a square envelope. Sinusoidal
patches at five octave scales (2, 4, 8, 16, and 32 cycles/image), six orientations (0, 30, 60, 90,
120, and 150◦), and two phases (0 andπ/2) were summed to create one noise pattern (Fig. 1).
The resulting noise pattern was described by 4096 parameters that corresponded to the ampli-
tudes of the sinusoids. The amplitude parameters were selected randomly from a zero mean
uniform distribution. The separate scales were multiplied by constant factors that insured that
the range of each scale did not exceed the dynamic range available for the noise. These factors
also contributed to the frequency profile presented inFig. 5. A justification of why this noise
was chosen is presented inSection 3.

Image creation and presentation was performed on a Macintosh G4 computer using Matlab
with the Psychophysics and VideoToolbox extensions (Brainard, 1997; Pelli, 1997).

2.1.3. Procedure
Subjects were assigned to one of three discrimination tasks: gender, expression (happy versus

unhappy), or identity (John Travolta versus Tom Cruise). At the beginning of the experiment
the subjects were told that they would be making a simple discrimination but that it would
be difficult to perform. For the Gender and Expression tasks subjects were told that a set of
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faces were created that changed in subtle ways, and that the noise would make it difficult to
discriminate between the categories. The subjects in the identity tasks were shown images of
Steve Martin and Jay Leno that were warped to the same geometry (i.e., the eyes, nose, mouth,
hairline, chin, etc. were in identical pixel coordinates and occupied identical areas). They were
then instructed that they would be performing a task to discriminate between John Travolta
and Tom Cruise, and that the images of these celebrities had been treated in a similar fashion.
The subjects were not shown any images of Cruise or Travolta. The subjects were told that this
warping manipulation in combination with the visual noise would make the task very difficult.
In both cases these instructions were deceptive for, in fact there was no information in the base
image that could inform the subject’s decision.

The subjects were instructed to provide one of four responses on the computer keyboard
for each trial: probably Travolta, possibly Travolta, possibly Cruise, or probably Cruise (and
likewise for male/female and happy/unhappy for subjects in the gender and expression tasks).
Reaction times were not collected.

After the brief instruction, noisy images were presented one at a time in the center of the
screen for 1 s after which the screen cleared until the subject made his response.Fig. 2provides
a sample of noisy images that could have been presented during the gender and expression
tasks. Each subject categorized 390 noisy face images. No feedback was provided, as there were
nocorrector incorrectresponses. The subject could avail himself of two breaks, one after the
130th trial and the other after 260th trial. The entire experiment lasted approximately 35 min.

2.2. Results and discussion

Because the base image was identical in every presentation for a given subject, any sys-
tematic changes in subjects’ classifications from trial to trial could be directly attributed to
the noise. On each of the 390 trials the 4092 parameters that defined a noise stimulus for the
trial was assigned to one of four categories based on the subject’s response. The classification
image was calculated by subtracting the mean of the parameters that elicited high confidence
responses for one category from the mean of the parameters that elicited high confidence
responses for the opposite category. High confidence patterns were those images to which
subjects responded were “probably” in the category as opposed to just “possibly” in the cate-
gory.Murray, Bennett, and Sekuler (2002)have shown that collecting confidence ratings and
appropriately weighting the confidence intervals can increase the signal-to-noise ratio (SNR)
of the resultant classification image. The maximum SNRs achieved were at points where the
subject was highly confident about a false alarm response. Low confidence responses in their
study had very low SNRs. We chose to perform all of the presented analyses utilizing only the
high confidence responses.3 Subjects responded with high confidence on 38, 41, and 39% of
the trials in the expression, gender, and identity tasks, respectively.

The resultant classification images calculated on all the subjects’ data are presented in
Column 2 ofFig. 3. Adding or subtracting the classification image to or from the base image
resulted in faces that appear to be good prototypes of their classes as shown in Columns 3 and
4. This appears to be true not only of the group data but the data for individual subjects as well,
as shown in the rightmost two columns ofFig. 3which shows the results for a median subject
in terms of Euclidean pixel distance from the mean.
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Fig. 2. Four noisy face images produced by superimposing sinusoidal noise over the identical base image. Different
patterns of the noise can render the resultant image as looking male or female and happy or unhappy. A sample of
observers judged panel a as an unhappy male, panels b and c as happy females, and panel d as a happy male. (In
the actual experiment, an individual subject made only a single classification judgment, e.g., happy or unhappy.)

As noted previously, theSchyns, Bonnar, and Gosselin (2002)method localizes the regions
that observers employ to discriminate one picture from another. We can compare our results to
theirs by noting the regions of our classification images that are of high contrast. The results for
the two methods are in good agreement on a coarse level for the expression and gender tasks
in assigning high value to the regions around the eyes and mouth, respectively. For identity,
a more distributed region over the face is employed. The classification-image technique need
not be limited to simply localizing the areas utilized. We can also view the direction of changes
that influence observer decisions. For example, by examining the reconstruction images for
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Fig. 3. The results from the three tasks based on the high confidence “probably” trials (a) Happy/unhappy, (b)
male/female, (c) Tom Cruise/John Travolta. The base images were identical for the expression and gender tasks.
The darkest and lightest areas of the classification images, which are from the data of all 36 subjects, indicate the
areas that most influenced the subjects’ classifications. The addition of the classification image to the base face
results in Class Image 1, which appears happy. The subtraction of the classification image results in Class Image
2, which appears unhappy. The same addition and subtraction operations produce the class images for (b) female
and male and (c) Cruise and Travolta, respectively. The rightmost two columns show the classification images for
the median subject calculated in terms of Euclidean pixel distance for a given subject’s classification image and the
average classification image.

Gender in Columns 3 and 4, it becomes clear that while the eyes and mouth play a large role,
the diffuse energy in the center of the face creates distinctive gender changes of the nose. This
illustrates how this technique can discover the diffuse, subtle information employed by face
perceivers.

A classification image can be constructed from only those sinusoidal components that dif-
fered significantly between the two categories on each task. Significance was tested with
repeated independentt tests for each of the 4092 components with adjustment for multiple
comparisons (Rom, 1990). For the Expression task, 187 components reached significance
(p < .0005), for Gender, 85 components (p < .001), and for the celebrity identity task, 52
components (p < .001). The images inFig. 4 reveal that, indeed, relatively few components,
in the order of 100, are adequate to recreate the class differences.

Valentin et al. (1994)andSergent (1989)have speculated, on the basis of statistical analysis
of sets of faces, that whereas gender and expression can be conveyed by low frequency infor-
mation, individuation is carried in higher frequency channels.Fig. 5 shows the class images
for all sinusoids separately for each of the five scales. For all tasks, including individuation, a
large portion of the information distinguishing the classes appears to be at 4 and 8 cycles/image.
This shows that human observers categorizing faces by identity do chose to make use of low
frequency information in performing their categorizations. Furthermore, this low frequency in-
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Fig. 4. (Upper row) The significant (p < .001) components of the classification image. The sinusoidal nature of
the classification images is now clearly visible. (Lower row) Class differences: (a) expression, (b) gender, and (c)
celebrity identity are adequately recreated by their (a) 187, (b) 85, and (c) 52 statistically significant components,
respectively.

formation can lead to perceptually distinct categories. In agreement with these studies it appears
from Fig. 5 that identity categorization utilizes the 16-cycle/image octave to a greater extent
than does gender categorization. Because we were interested in including the hair line and hair
for the identity task, the size of the internal face was 68.6% smaller (so that 16 cycles/image is
approximately 8.75 cycles/face width for the identity condition and 12.5 cycles/face width in
the gender and face conditions) and thus the apparent greater utilization of the 16 cycles/image
scale in the identity task could simply reflect the appeal of lower frequency information over
the face itself. In none of the tasks does the 32-cycle/image band appear to have captured
a noticeable category difference. The reduced reliance on high frequency information is not
simply a function of the greater energy in the low frequency sinusoids becauseSchyns et al.
(2002)showed that with equal energy across scales subjects still preferentially employed low
(3 cycles/face) frequencies when classifying the expression of a face. Our own inferences about
the relative weight given to different scales have to be tempered by considerations of statistical
power: Both the number of subjects that we could run and the length of the sessions were the
known limiting factors.

These results appear consistent with noise masking and image filtering experiments, which
have shown that discrimination of emotion is most efficient at information centered at 8 cycles/
image (Schwartz, Bayer, & Pelli, 1998) and that face identification is supported by the infor-
mation carried by frequencies between 8 and 16 cycles/image (Costen, Parker, & Craw, 1994).
What is also apparent fromFig. 5 is the humans chose to utilize information across two or
more octaves and that this choice appears to be task dependant.

The response classification technique, as described here, provides a useful method for deriv-
ing linear approximations to the information subjects used to classify faces. (We will discuss
the limitations of linear approximations inSection 3.) As such, the results of this task have
made explicit what would otherwise have remained ineffable. From the classification images
obtained inFig. 2we see that human observers are flexible, in that they make use of information
at different facial locations and spatial scales dependent on their task.
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Fig. 5. Class images (the base image (+) or the classification image (−)) with the noise shown separately for each of
the five scales. For example, the female at 4 cycles/image is the combination of the base image with the classification
image recreated with only the 4 cycles/image sinusoids. The noise at 32 cycles/image appears to add little to the
differentiation of the classes.

3. General discussion

We will first discuss how the addition of noise can be considered a method for sampling
stimuli from a local region of feature space. We then discuss our choice to use truncated
sinusoids rather than pixels (standard white noise) as features. Last, because a classification
image is a linear approximation, we provide a general discussion of linear models in the context
of face classification.

3.1. Comparison of our method with the standard response classification technique

The response classification technique used in the present experiment is based on that origi-
nally described byAhumada (1996). Ahumada’s approach follows from signal detection theory
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(SDT) which emphasizes explicit parametric modeling of the relationship between the physical
properties of a stimulus and the observer’s decisions, where all decisions of an observer are
considered to emanate from a probabilistic process that has some level of intrinsic uncertainty
(Green & Swets, 1966). The response classification method was developed to approximate the
linear template observers used in performing a two alternative forced choice test (Ahumada,
2002).

The current experiment, while it used the response classification technique, diverged sub-
stantially from the SDT approach. This was necessary because our goal was not to model the
discrimination of a particular known signal with a linear template, as is done by many users
of the response classification technique (Ahumada, 1996; Ahumada & Beard, 1999; Solomon
& Morgan, 1999; Watson, 1998). For example, to determine why the efficiency of human ob-
servers is almost always markedly lower than that of ideal observers, these investigators would
be interested in how an observer’s classification image differs from the ideal template. Alter-
natively, some investigators have studied how a particular variable, for example, attentional
cueing (Eckstein, Shimozaki, & Abbey, 2002), or perceptual learning (Gold et al., 2004), alters
the observer’s template.

If we had adopted the SDT approach in performing a response classification experiment for
gender, for example, we might have used a male and a female face (or several male and several
female faces). However, we would not have known the extent to which our particular selection
of faces could have determined the resultant classification image. Such an experiment would
have likely produced a classification image that closely approximated the differences between
the stimuli for the two categories, so we would have run an experiment just to acquire a noisy
version of the differences between the particular faces we happened to select.

Instead, we sought to estimate the information subjects would normally utilize when clas-
sifying faces along some dimension, for example, male versus female. Our solution was to
present a single stimulus that was uninformative for the task but which placed subjects near
the category boundary for the classification they were to perform.

This single stimulus can be viewed as a single point in a high dimensional feature space.
For example, a 64× 64 pixel image would be located in pixel feature space at location (x1, x2,
. . . , x4096) where each coordinate is the brightness of one pixel in the image. The addition of
noise in this view is equivalent to displacing this point randomly in the feature space. Over
many trials the various noisy stimuli constitute a cloud of points distributed about the central
point.

This view of the task allows one to consider the addition of noise not as a means of increasing
uncertainty between two responses, but as an unbiased method for sampling from a local area
of feature space. The behavioral (or even electrophysiological, or neuroimaging) responses can
then be used to compute a regression function that maps from stimulus features to behavior.
We discuss the feature space we chose, sinusoids, and the limitations of linear regression for
face classification in the next two sections.

3.2. Sinusoidal versus white noise

Although information estimation by reverse correlation has typically been done with white
pixel noise, we chose to use truncated sinusoids because (a) sinusoids more closely approx-
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Fig. 6. The average amplitude spectra of 100 sinusoidal noise patterns, 100 white noise patterns, and 40 faces.

imate the preferred stimulus for early cortical visual areas (De Valois & De Valois, 1990),
(b) some theorists have posited that the representation of a face retains essential aspects of the
initial cortical spatial representation, albeit with scale and translation invariance (Biederman &
Kalocsai, 1997; Lades et al., 1993; Wiskott, Fellous, Krüger, & von der Malsburg, 1997),4 and
(c) our sinusoidal noise patterns produced a power spectrum which is similar to that measured
in faces (Fig. 6). With the noise spectrum similar to the signal distribution, an observer is more
likely to interpret the noise as a stimulus change. While such a power spectrum could have been
achieved by filtering white noise, the sinusoidal noise requires four times fewer parameters
than the white noise.

Importantly, in simulations with a theoretical observer performing a modest numbers of
trials, for example, less than 1000, sinusoidal noise converged to a more accurate estimate
than did white noise. The theoretical observer analysis was performed utilizing templates that
were the least squares linear approximations of the pixel differences between (a) a set of male
versus female faces, (b) a set of happy versus unhappy faces, and (c) between two androgynous
morphed faces (an identity classification). For each of the tasks, on each trial, the observers
correlated one random sinusoidal noise pattern and one white noise pattern with the template to
make a category judgment. Classification images were computed as they were in the subjects’
tasks. The correlation between the pixels in the classification image and the pixels of the stored
templates was used as a measure of convergence.Fig. 7shows the results of the simulations. For
all three tasks, sinusoidal noise produced better estimates of the template (higher correlations)
within the first 1000 trials. Although the pixel noise produced an estimate that was equivalent to
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Fig. 7. Degree of convergence of two noise types the sinusoidal (thick black line) and the white noise (gray dashed
line) to the linear templates of three theoretical observers performing the expression, gender, and identity tasks. In
all three cases the sinusoidal noise provides a better estimate early in testing (less than 1000 trials). However, after
10,000, 4000, and 1000 trials the white noise condition yields higher correlations than the sinusoidal condition for
expression, gender, and identity tasks, respectively.

the sinusoidal noise by 1000 trials for the individuation task, the pixel noise did not produce an
equivalent estimate until 4000 trials for the gender tasks, and 100,000 trials for the expression
task. As can be seen inFig. 6, these differences among the tasks in the relative goodness of
the estimates derived from pixel versus sinusoidal noise was almost completely a function
of the sinusoidal noise insofar as the growth in the correlation value for the pixel noise was
consistent between tasks. Because the advantage of the sinusoidal noise would primarily be
in the low frequency range, most likely the advantage for the sinusoids in the expression task
is because there is relatively less energy in the high frequencies of the theoretical observer’s
identity template compared with the individuation template.

3.3. Linearity in face classification

Modeling a classification as alinear process implies several strong constraints that may not
be obvious to those not familiar with the concept. To elucidate linear classification, we will
consider three ways in which a linear model may fail to capture the psychological reality of
human performance in face categorization tasks. Linear classification (1) may over generalize;
(2) may provide a poor metric for the underlying mental process; and (3) is insensitive to
interactions that may be important in face recognition.

Points 1 and 2 arise because many data sets are not well fit by a line. In real world applications
with high dimensional data the fit would be for a hyperplane. It is obvious that a U-shaped
relationship between variables would not correspond well to a linear fit. To help illustrate more
subtle problems, an imaginary data set is plotted as a set of points inFig. 8. In this imaginary
plot, squares represent male faces and circles represent female faces. Thex-dimension in
the plot represents the age of the individual. They-axis is an imaginary feature that allows
separation of the genders. Inspection of the points allows us to see a general trend in which at
the youngest ages both male and female faces are closer to the mean of the female faces and
are less distinguishable in thisy-dimension. At the oldest ages both male and female faces are
closer to the mean of the male faces.



M.C. Mangini, I. Biederman / Cognitive Science 28 (2004) 209–226 221

Fig. 8. Hypothetical scatter plot of age and a feature correlated with gender illustrating potential problems with
linear boundaries. Circles= females. Squares= males. If only the middle third of the age range was used, the
linear boundary (solid black line) between genders would not capture the phenomenon that young males resemble
females but that older females resemble males.

Using a linear boundary to separate these classes is not disastrous; the dashed line would
be 77% correct in separating males from females. However, if only the middle third of the age
range had been used to determine the classification boundary, the category boundary would
have been perfectly horizontal. In this hypothetical instance our limited data set would miss the
interaction between our gender feature and age resulting in systematic misclassification of the
youngest and oldest thirds of our population. Likewise, we could consider other dimensions, for
example, race, that may also interact with gender classification. Using more inclusive data sets
should improve generalization, but because the solution is global (a single linear/hyperplanar
boundary) the overall accuracy will decrease as the same simple linear boundary is used to
approximate more and more complex category boundaries.

For the same reasons that a linear category boundary may over-generalize the separa-
tion between categories, it may also be a poor metric for the differences within the cat-
egory. For example, inFig. 9 below, we are using a linear template to create two sets of
stimuli. Row A displays four Gabor patches; each Gabor patch contains four times the con-
trast energy of the previous patch. A number of psychophysical experiments (Pelli, 1990)
have shown that a linear template appears successful at predicting threshold detection for
the Gabor stimuli such that the same increment in external noise energy must be added
to each successive patch to keep the observer at threshold performance. The faces in Row
B were calculated by performing a linear regression on the pixels of a set of images of
male and female faces. Starting with a face only slightly more feminine than the mean of
male and female faces, each face to the right contains four times the energy of thefemale
signal as the face to the left. Although Face 2 appears more female than Face 1, Face 4
does not appear to be a “super female.” Rather it appears to be grotesque. A linear met-
ric thus appears to fail at extrapolating beyond small steps when it comes to qualitative
femininity.
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Fig. 9. Threshold detection of a Gabor patch in external noise has been successfully modeled utilizing a linear
template. Every step in Row A from 1 to 2, from 2 to 3, and from 3 to 4 will require the same increase in external
noise energy to remain at the same level of accuracy. Row B: Face 1 is only slightly more feminine than the mean
of male and female faces; each face to the right contains four times the energy of thefemalesignal as the face
to the left. The linear metric appears to fail at extrapolating beyond small steps when it comes to the “signal” of
femininity. Face 4 does not appear to be a “super female”; rather it appears to be a grotesque.

A third limitation of linear template models is that they do not allow for some aspects of
the interaction between features. A trivial example of this would be the inability of a linear
template to determine whether an individual was winking. This is a face recognition version
of the XOR problem as described byMinsky and Papert (1969). In attempting to use the
response classification technique to derive a classification image for a winking face, averaging
across left and right eye winks, would yield a face in which both left and right eyes are “half
closed.” Because the average of all trials perceived as non-winks, either both eyes open or
both eyes closed, is also a face with both eyes “half closed,” the difference of the two classes
yields nothing. While this is certainly a special case in which the linear model fails completely,
it is not unreasonable to expect that interactions do play a role in face processing and such
interactions will not be captured by the linear model.

There is experimental evidence that suggests face recognition by humans may rely on such
interactions.Tanaka and Farah (1993)showed that recognition of individual features were
more accurate in the context of faces. A linear template model would show no difference in the
amount of information available in the feature alone versus the feature in its context conditions.
The interactive effects between features can be demonstrated perceptually as discovered by
Pelli and his colleagues (Schwartz et al., 1998). In the interests of control, the investigators
used a photograph of a face and inserted either a mouth that was smiling or one that was
frowning. As can be seen inFig. 10altering the mouth alone changes the perception of the
entire face including the upper part of the face so that the eyes appear to “light up” with the
smile.
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Fig. 10. An illustration ofSchwartz et al.’s (1998)demonstration that the insertion of a mouth that is either smiling
or frowning exerts effects at other locations in the face so that the eyes appear to “light up” with the smiling face.

Appeal has often been made to configural information as a signature of face processing.
Because it is unclear what “configural” information in a face image means, it is difficult to
determine whether our method captures the configural changes in faces. What is clear is that
under subjective inspection, the Class Images in the third and fourth columns ofFig. 3do not
appear to lack any essential information characteristic of their classes. Inasmuch as some may
argue that we have not captured configural information, then it could be said that configural
differences are not necessary to produce clear categorical differences for gender, expression,
or identity. Perhaps we should consider what “configural” information of a face could possibly
mean. The only neurocomputational account of configural face information is that proposed
by Biederman and Kalocsai (1997). They argued that many of the phenomena associated
with face recognition could be derived by assuming that faces are represented by the original
spatial (Gabor) filter activation values, with allowance for translation and scale invariance, in
a manner proposed by von der Malsburg and his associates (Lades et al., 1993; Wiskott et al.,
1997). Medium and low spatial filters would cover broad regions of a face so local variation
in an image would have effects on filters whose receptive fields were centered at considerable
distances from that variation. Rather than a (highly implausible) process that would make
explicit measurements between, for example, different face parts, the configural effects as
well as all the shape informations are implicit in the activation of the Gabor filters. While
an investigator can use clearly defined operations to produce “featural” versus “configural
changes,” a Gabor representation does not distinguish between these kinds of face information.
Either class of changes will produce variation in the thousands of Gabor coefficients (in the
model; likely many millions in the brain). This may be a major reason why people find it so
difficult to describe the differences between two similar faces and why the eyes might appear
to light up from the presence of an upturned mouth.

Why then would one use a linear model for human face categorization? One benefit that
Eckstein and Ahumada (2002)noted is that linear representations can be inspected visually in
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the same dimensions as the stimulus, an especially appealing characteristic to vision scientists.
Most important, linear models are simple and can be estimated with moderate amounts of data
collection. Acquiring enough data to characterize interactions with high confidence is normally
prohibitively expensive. For example, a 64×64 pixel image has 4096 pixels. Computing just the
linear template in this pixelspacerequires estimating 4096 parameters in a regression function.
A measure of the two-way interactions in this space would require the estimation of 4096×4096,
more than 16 million parameters. Last, linear estimates are often good approximations under
small steps. So, while our linear template fails in extrapolating out tosuper femalefaces inFig. 9,
it does provides a useful local metric for the attribute of femininity under sufficiently small steps.

3.4. The classification image is not necessarily a representation

Some might be tempted to regard the significant sinusoids shown inFig. 4asrepresentations
of (the differences between) the various categories. We advise caution on this point. Our initial
choice of feature space, truncated sinusoids, and our choice of regression function, linear, com-
pletely determined the form of what normally constitutes arepresentation. These experimental
variables were chosen before any data were collected. For this reason the experimental data
have only been discussed in terms of the information subjects have utilized. This said, in fact
the sinusoids (or Gabors) are not only well matched to early cortical stage tuning, they are well
matched to the representations assumed by a number of theorists. The von der Malsburg face
Recognition System (Lades et al., 1993; Wiskott et al., 1997) posits an array of columns of
sinusoidal-like (actually Gabor) filters, with each column termed aGabor jet. This system won
a U.S. national competition for face recognition performance (Okada et al., 1998). Biederman
and Kalocsai (1997)have argued that many of the distinctive phenomena of face recognition
can be derived from a representation defined by the activation values of Gabor jets such as that
embodied in the von der Malsburg system.

4. Summary

Classification images, when obtained in the manner described in this report, provide an
efficient and effective method for deriving linear estimates of the information employed by
human observers when making face classifications. Other methods of estimating the informa-
tion employed in complex classification have relied on judgments of exemplars of a class or
tests of experimenter-defined hypotheses about the class information. Our method allows an
estimate, however subtle, of what is in the subject’s (rather than the experimenter’s) head.
The method also allows reconstruction of an image based on that estimate. The classification
image technique thus provides a method for making explicit otherwise ineffable perceptual
representations.

Notes

1. This base image was created for use in a previous experiment in which the morphing
step provided added benefits. For the purposes of this experiment the authors place no
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importance on the morphing process. The average of the original 20 images would have
produced a very similar image.

2. We saynominallylocalized because within the square window of any particular sinusoid
the frequencies, orientations, and phases are localized. However, if a Fourier decompo-
sition was performed over the space of the entire image the envelope of the higher
frequencies would create Gibbs effects which may overlap in lower frequencies. The
tiling process also induces high frequency artifacts visible at the boarders of the tiles.

3. This weighting is not optimal but as there are no hits or false alarms we could not enforce
a payoff matrix so there is no available method for calculating an optimal weighting.

4. To be precise, these authors have argued for a Gabor (a Gaussian damped sinusoid) repre-
sentation, which closely resembles a truncated sinusoid. Unfortunately, reconstructions
are difficult with Gabors as they are not orthogonal, a problem not encountered with
truncated sinusoids.
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