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Abstract

Murray and Gold discuss two ‘‘shortcomings’’ of the Bubbles method [Vision Research 41 (2001) 2261]. The first one is theo-

retical: Bubbles would not fully characterize the LAM (Linear Amplifier Model) observer, whereas reverse correlation would. The

second ‘‘shortcoming’’ is practical: the apertures that partly reveal information in a typical Bubbles experiment would induce

atypical strategies in human observers, whereas the additive Gaussian white noise used by Murray and Gold (and others) in

conjunction with reverse correlation would not. Here, we show that these claims are unfounded.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

In the first part of their article, Murray and Gold

formalize Gosselin and Schyns’ (2002a) analysis of the

relationship between the three main types of informa-

tion involved in visual tasks, the R� A � P framework.

We suggested that Potent information (P , rendered by

Bubbles) is the result of an interaction (denoted by �) of
Represented information (R, measured by reverse cor-

relation) with Available input information (A). Murray

and Gold essentially confirmed that this analysis is valid

in the context of the LAM observer and for a particular

version of the Bubbles method.

We subscribe to the idea that without an analysis

based on a precise observer model (such as LAM), it is

difficult to know exactly what Bubbles and reverse cor-
relation measure. Although we welcome Murray and

Gold’s formal effort, we do not believe that ‘‘Tout est

pour le mieux dans le meilleur des mondes.’’, 1 as Vol-

taire’s Candide famously pointed out. Therefore, before

describing the LAM formalization and evaluating its

real implications for Bubbles, we will first discuss its

general limitations.
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2. Beyond photometric space: general problems with the

LAM observer

Experiments with reverse correlation and Bubbles

estimate the visual information used in a task by testing

how information from an image generation space

modulates response. This space should be chosen with

great care, because its structure will constrain the
information-use estimates. Factors such as the nature of

the task to be resolved and the nature of the stimuli

should guide the choice. To appreciate the range and

diversity of possible search spaces, consider the problem

of estimating the features of face recognition when the

stimuli are a few static 2D images. If the faces are nor-

malized for the positions of their main features (e.g.,

eyes, nose, mouth, and silhouette) then the 2D photo-
metric image space can be fruitfully searched, but the

information estimates will be restricted in scope––

essentially revealing attention to features in the 2D

image. Suppose now that stimuli are 3D-rendered, laser-

scanned faces. A linear parametric space might be used

(e.g., morphing), with loss of linearity in the 2D image

projections (e.g., Leopold, O’Toole, Vetter, & Blanz,

2001), but with greater scope for the information-use
estimates––essentially transformations of the 3D shape

of faces.

Image generation spaces constitute a pressing re-

search issue because the structure of visual information

will tend to change with tasks (e.g., identification, gender,
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expression, age, and so forth) and object classes (e.g.,

static 2D pictures, static 3D-rendered objects, dynamic

objects and so forth, see Schyns, 1998). In our view (and

that of others, e.g., Mangini & Biederman, in press;

Ollman & Kersten, in press; Sadr & Sinha, 2003),

recognition researchers should not restrict the scope of

their research to the linear photometric space of the

LAM observer, for a number of straightforward reasons
discussed below.

Reverse correlation of the observer’s responses onto

Gaussian white noise of the type advocated by Mur-

ray and Gold does not provide a truthful representa-

tion of the information that the observer could use in

the task. Instead, this version of reverse correlation

projects the used information onto a linear space, as a

weighted sum of Gaussian white noise pixel intensi-
ties. Such linear estimates have paid off particularly

well in neurophysiological and psychophysical studies

of lower level vision, where intensity-based receptive

fields are responsive to noise induced modulations of

input contrast (Ringach & Shapley, in press; for a

review). The correlation between added input noise

and response magnitude guarantees a good linear

regression.
The success of models of low-level vision does not

necessarily entail success of the same models at higher

levels of vision. The neural systems of face and object

categorization do not respond with the same magnitude

to simple modulations of contrast like low-level ones do

(Avidan, Harel, Ben-Bashat, Zohary, & Malach, 2001),

but rather they respond to scale, higher level features

and shape information (Gauthier, Tarr, Anderson,
Skudlarski, & Gore, 1999; Haxby, Hoffman, & Gobbini,

2000; Kanwisher, McDermott, & Chun, 1997; Op de

Beeck, Wagemans, & Vogels, 2001; Sigala & Logothetis,

2002).

In sum, LAM is not sufficiently general in scope to

impose any prescriptive standards on the conduct of

research in visual categorization (see Gosselin & Schyns,

in press). Thus, Murray and Gold’s critique of Bubbles
should be taken with a grain of salt. Not only is it

limited because it assumes that humans are LAM

observers––which they are not, but also because it as-

sumes a particular version of Bubbles. This last point is

the object of the next section.
2 A list of generation spaces explored with Bubbles: the standard 2D

image plane (Gibson, Gosselin, Wasserman, & Schyns, submitted;

Gosselin & Schyns, 2001a; Schyns, Jentzsch, Johnson, Schweinberger,

& Gosselin, 2003; O’Donnell, Schyns, & Gosselin, 2002), spatial

frequency (Schyns & Gosselin, 2002), spatial frequency· 2D image

(Bonnar, Gosselin, & Schyns, 2002; Gosselin & Schyns, 2001a; Schyns,

Bonnar, & Gosselin, 2002), and 2D image plane· time (Vinette,

Gosselin, & Schyns, in press).
3. Within photometric space: limitations in scope of the

Murray and Gold analysis

Bubbles is an information sampling technique in

which a ‘‘bubble’’ carves out an information sample
from the generation space. With the exception of Schyns

and Gosselin (2002), we have so far restricted the

application of Bubbles to photometric spaces, not all of
which have a 2D structure. 2 However, Bubbles is a

generic method that can be applied to more complex

parametric spaces than the photometric space (see

Gosselin & Schyns (in press) for discussion), although

the same also applies to reverse correlation (see Ollman

& Kersten, in press). Murray and Gold’s analysis applies

only to the low-passed white noise version of Bubbles in

photometric space. We will now show that this analysis
with limited scope does not demonstrate the superiority

of reverse correlation over Bubbles for the practice of

everyday research.
4. Still RAPing

The key formal development that Murray and Gold

provide is reproduced below (their Eq. (5)):

B � b � b � ðT � ðIX � IY ÞÞ:
For a LAM observer, T (or R, in our RAP framework) is
an internal template, (IX � IY ) (or A) is the ideal tem-

plate, B (or P ) the Bubbles information estimate, b the

Gaussian bubble used to low-pass the white noise win-

dow, � a pointwise product, and � a convolution. This

formulation implements R� A � P in the context of a

LAM observer: (1) the fuzzy � operator becomes �, and
(2) (b � b), is introduced. The latter is a ‘‘double-blur-

ring’’ term that quantifies the limit of the spatial reso-
lution that can be achieved with a particular Gaussian b,
given r. It is easy to show that bðr ¼ sÞ � bðr ¼ sÞ re-

duces to b0ðr ¼ p
2sÞ, a larger single Gaussian bubble.

In Bubbles, r is the only parameter that must be ad-

justed to sample information in a 2D image space. We

have already shown that standard deviations of different

sizes can be simultaneously used to search the image

(e.g. Gosselin & Schyns, 2001a, 2001b; Schyns et al.,
2002). The choice of an appropriate r is subject to a

number of parameters (not all independent) ranging

from the expected scale of visual information, the re-

quired smoothness of the solution, the number of

parameters to estimate, and the required rate of con-

vergence. Bubbles solutions can range from coarse (i.e.,

with a large Gaussian bubble, few parameters to esti-

mate, and typically fast convergence) to fine (i.e. with
many parameters to estimate and typically slow con-

vergence). At the limit, sigma becomes a dot in discrete

space, and b � b vanishes from Murray and Gold’s

equation, which then reduces to R � A � P , and the
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spatial resolution of Bubbles is equivalent to that which

is typical of white noise reverse correlation.
5. No troubles in theory: LAMe attack

The Murray and Gold formalization led them to

conclude: ‘‘[. . .] if the LAM is a valid model of the

system under study, then [. . .] Eq. (5) shows that from a

classification image [that is R] we can easily determine

the result of any bubbles experiment. [. . .] Thus in cases

where the LAM is correct, the bubbles method is

superfluous [. . .]’’ (p. 9, italic added). Later on (on p. 19),

they modulate this statement with: ‘‘[. . .] if one is
interested only in what stimulus locations help an ob-

server give a correct response [that is P ], then the bub-

bles method is perfectly adequate [. . .]’’.
We have shown that Murray and Gold’s equation (5)

reduces to R � A � P when r is so small that the Gaussian

bubble reduces to a dot. Whenever R � A � P and

R � P=A (a pointwise division) are defined, a complete

RAP characterization of the observer can be obtained
either from A and R (estimated from reverse correlation)

or from A and P (estimated from Bubbles). The theoret-

ical superiority of reverse correlation over Bubbles rests

solely on the domain of definition: R � A is defined over

all real numbers, whereas P=A is undefined whenever

Aðx; yÞ ¼ 0, for any x and y. To make it absolutely clear,

reverse correlation is superior to Bubbles whenever there

is no information available at a given image location to
resolve a task––whenever Aðx; yÞ ¼ 0.

In our own research, we used ‘‘superstitious’’ to refer

to situations in which Aðx; yÞ ¼ 0 and Rðx; yÞ 6¼ 0. For

example, we induced three observers to ‘‘superstitiously’’

see an �S’ letter (Rðx; yÞ¼ �S’) in pure bit noise

(Aðx; yÞ ¼ 0) by artificially restricting (via instructions)

the number of candidate representations to be matched

against the input noise. We then applied reverse corre-
lation to depict the observer’s share, i.e. Rðx; yÞ. We are

thus well aware that reverse correlation can––and that

Bubbles cannot––be applied in such ‘‘superstitious’’ sit-

uations. We made this point explicit a number of times

(Gosselin, Bacon, & Mamassian, submitted; Gosselin &

Schyns, 2002a, 2002b; Gosselin & Schyns, 2003a, 2003b).

Unless artificially created, 3 however, Aðx; yÞ ¼ 0 is

the exception. In most of the work by Murray and Gold
3 Murray and Gold (p. 17) ‘‘[. . .] chose the fat–thin task [. . .] in
order to show how the bubbles method would affect strategies in a task

that had actually been discussed in the literature, rather than a task

that was designed to maximize the disruptive effect of showing only

small fragments of a signal.’’ Unfortunately, in this fat–thin task, A has

many more zero information pixels than non-zero ones––non-zero

information pixels of A are concentrated in two sectors of 3.5� at the
palates of each ‘‘pacman’’. As this is a most unfortunate choice of

experiment to compare Bubbles with reverse correlation we will not

discuss Murray and Gold’s experiment any further.
and colleagues, two-image experiments are designed. To

derive A in such conditions, we computed the differences

between all possible pairs of the 32 face images (gray-

scale 8-bits) used in Gosselin and Schyns (2001a,

Experiment 1). Aðx; yÞ ¼ 0 occurs with a probability of

0.022, always within the forehead region. 4 In most

recognition experiments (and real life), observers com-

pare pairs of categories of images, not pairs of individ-
ual images. In LAM, the information available between

pairs of categories is the sum of the images in one cat-

egory minus the sum of the images in the other category.

To set the stage for the experiment to come, columns

‘‘A’’ in Figs. 1 and 2, respectively, present the infor-

mation available in the GENDER (male face

1þ � � � þmale face 10)female face 1� � � � � female face

10) and expressive or not (EXNEX) categorizations
(smiling face 1þ � � � þ smiling face 10)neutral face

1� � � � � neutral face 10) computed from the 20 8-bit

grayscale images of Schyns et al. (2002). The likelihood

of Aðx; yÞ ¼ 0 is .00034 in GENDER and .000057 in

EXNEX. As human observers tend to maximize within-

category similarity and between-category dissimilarity

(Gosselin & Schyns, 2001b; Rosch, 1978), the closer

experimental stimuli get to real-world conditions of
stimulation, the smaller these probabilities will be.

If Aðx; yÞ ¼ 0, and an estimate of Rðx; yÞ is required
from P ðx; yÞ=Aðx; yÞ, then 0 can be assigned to Rðx; yÞ. If
there is no information available for this pixel, it is

reasonable to assume that the observer’s representation

will not comprise information for this pixel either.

To summarize, the fact that P ðx; yÞ=Aðx; yÞ is not

defined when Aðx; yÞ ¼ 0 gives little support to the claim
that the Bubbles method is ‘‘superfluous’’ (Murray and

Gold, p. 9, 19). We have argued that Aðx; yÞ ¼ 0 is an

outlier event in the real-world, that it only occurs in

artificial laboratory situations. For most practical pur-

poses, then Bubbles and reverse correlation are com-

plementary techniques (see Gosselin & Schyns, 2002a).
6. No troubles in practice: a fair comparison of bubbles

and reverse correlation

To compare the outcomes of reverse correlation and

Bubbles, we applied reverse correlation in two cate-
gorization tasks (GENDER, and expressive or not,

EXNEX) in experimental conditions identical to the

Bubbles experiment of Schyns et al. (2002). Fifteen

University of Glasgow paid observers were assigned to

each categorization task (a total of 30 observers). A trial

consisted in the presentation of a randomly chosen

stimulus to which Gaussian white noise was added. The
4 We did the same for the 10 face images (grayscale 8-bits) of Gold,

Bennett, and Sekuler (1999a, 1999b). Aðx; yÞ ¼ 0 never occurs.



Fig. 1. This figure depicts the outcomes of the EXNEX task in the R� A � P framework (Gosselin & Schyns, 2002a). P and R, respectively, depicts
the Bubbles and the reverse correlation estimates of visual information at different scales (R is ‘‘double-blurred’’). A depicts the linear information

available to resolve the EXNEX categorization task. Lastly, the figure depicts R0 that is, the predicted R (R0 is the best linear fit of P=A to R). The
Pearson correlations give the similarity between R and R0.

Fig. 2. This figure depicts the outcomes of the GENDER task in the R� A � P framework (Gosselin & Schyns, 2002a). P and R, respectively, depicts
the Bubbles and the reverse correlation estimates of visual information at different scales (R is ‘‘double-blurred’’). A depicts the linear information

available to resolve the GENDER categorization task. Lastly, the figure depicts R0 that is, the predicted R (R0 is the best linear fit of P=A to R). The
Pearson correlations give the similarity between R and R0.
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sigma of the noise distribution was adjusted to maintain

observers’ performance at 75% correct. The stimuli were

presented on a calibrated high-resolution Sony monitor,

with a refresh rate of 85 Hz. The Bubbles version of the

experiment differed only in how the facial information

was sampled. For the reverse correlation experiment,

results were derived from the pooled data of 15 ob-

servers each resolving 1000 trials, separately for the
GENDER and EXNEX conditions. For the Bubbles

experiment, we reanalyzed the data of Schyns et al.

(2002), pooling this time 1000 trials per observer, sepa-

rately for GENDER and EXNEX (the analyses re-

ported in Schyns et al., 2002 only concerned the last 500

trials of each observer).

The raw Bubbles estimates, at different scales, in the

GENDER and EXNEX tasks are shown in columns
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‘‘P ’’ of Figs. 1 and 2 (see Schyns et al. (2002), for de-

tails). We computed the raw classification images by

linearly combining the Gaussian noise fields according

to the categorization response they elicited (i.e.

hits + false alarms)misses)correct rejections).
To compare the reverse correlation solution to the

Bubbles solution we convolved the former with Gaus-

sians of standard deviations 8.48, 16.97, 33.94 and 67.88
pixels, from fine to coarse (this takes into account the

‘‘double-blurring’’ discussed by Murray and Gold). The

outcome is shown in columns ‘‘R’’ of Figs. 1 and 2. To

facilitate comparisons between Bubbles and reverse

correlation, we computed P=A ¼ R0 (see columns ‘‘R0’’ in

Figs. 1 and 2). R and R0 are directly comparable. At most

scales, R and R0 are positively correlated. While the

Bubbles outcome (and this also applies to R0) remains
consistent at coarser scales, the corresponding reverse

correlation solutions become noisier and more difficult

to interpret.

In sum, it does not appear that ‘‘. . . the Bubbles

method drastically changes human observers’ strate-

gies,’’ (Murray and Gold, p. 4) at least compared with

Gaussian noise reverse correlation. Furthermore, there

is no evidence that the value of the information ex-
tracted from the Bubbles experiment is reduced com-

pared to that extracted from the reverse correlation

experiment.
7. No troubles whatsoever in practice

Even though we did not find empirical evidence for
this, we are still left with Murray and Gold’s firm belief

that the type of windowing used in Bubbles ‘‘drastically’’

disrupts the observers’ strategy, whereas additive

Gaussian white noise does not (Murray and Gold, Ab-

stract, p. 4, 12, 17, 19, and 20). 5 They develop three

arguments to support their belief. None of them survives

closer scrutiny.

Murray and Gold wrote (p. 16):

First, it is intuitively clear why windowing stimuli

through bubbles might change observers’ strategies:

when only small parts of a stimulus are shown on

any given trial, observers may be forced to use stim-

ulus features that they would not use if the whole

stimulus was presented.
5 As demonstrated by Murray and Gold, a LAM observer uses the

same strategy when presented with bubbled stimuli than when

presented with stimuli plus Gaussian white noise. Therefore any

difference between the strategies induced by windowing with Gaussian

bubbles and additive noise on human observers refutes LAM as an

adequate model. The success of Murray and Gold’s practical argument

entails the demise of their theoretical argument, and vice-versa.
To the extent that added Gaussian white noise will

mask certain diagnostic regions more than others,

observers that would have used the former will have to

resort to using the latter. The probability that a diag-

nostic region will be entirely destroyed by additive noise

might appear small in comparison to the probability

that it is not revealed through Gaussian bubbles.

However, this will happen only if the sigma of the
Gaussian bubbles is too large for the task at hand (see

discussion in Section 4). This does not demonstrate the

superiority of additive noise over windowing.

[Second,] a great deal of psychophysical and physi-

ological evidence shows that even under noiseless

viewing conditions, observers’ performance in

threshold tasks is limited by internal noise, so by
adding external noise we are probably not present-

ing observers with a task that is qualitatively differ-

ent from a noiseless threshold task [. . .]. (Murray

and Gold, p. 16–17)

This could be the case, but the critical part of this

argument (i.e., that observers are not performing a task
qualitatively different from an everyday visual task)

applies to windowing as well. Are not the eyes a window

on the world? And are not objects almost never seen in

their entirety? As Murray, Sekuler, and Bennet (2001)

put it: ‘‘One of the challenges to object recognition is the

fact that sensory information reaching the eyes is often

incomplete: Objects occlude parts of neighboring objects

and parts of themselves. Even though we constantly
perceive partly occluded objects, we rarely notice that

the visual information we receive is incomplete.’’ (p. 1)

Thus, windowing is certainly a type of noise we are

accustomed to dealing with in the real-world.

Third, and most convincingly, observers’ contrast

energy thresholds have been found to be an approx-

imately linear function of external noise power in
practically every task in which this relationship

has been tested, including discrimination of fat vs.

thin Kanizsa squares, and this is strong evidence

that observers use the same strategy at all levels

of external noise, from negligible levels to high lev-

els of noise. (Murray and Gold, p. 17)

An analoguous approximate linear relationship was

found between contrast energy threshold and the area

revealed by Gaussian bubbles. Two experienced psy-

chophysical observers from the Universit�ee de Montr�eeal
with normal, or corrected to normal vision, resolved

either the GENDER (EM), or the EXNEX (IF) on the

face set employed in the experiment described in Section
6 (see also Schyns et al. (2002)). Observers had previ-

ously participated in several other Bubbles experiments

with the same face set and with the same tasks; their
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performance had thus stabilized at the time of this

investigation. The experiment ran on a Macintosh G4

computer using a program written with the Psycho-

physics Toolbox for Matlab (Brainard, 1997; Pelli,

1997). The stimuli were presented on a calibrated high-

resolution Sony monitor, with a refresh rate of 85 Hz.

Contrast energy thresholds for a 75% correct response

rate were measured at four levels of windowing (400,
500, 600, and 700 bubbles with a standard deviation

equal to 3 pixels, or 0.067� of visual angle, for stimuli

spanning 256 · 256 pixels, or 5.72 · 5.72� of visual angle)
using the method of constant stimuli (we employed five

levels of contrast energy for each level of windowing) a

total of 96 * 5 levels of contrast energy * 4 levels of

windowing¼ 1920 trials per observer; R2 for the best-

fitted cumulative Gaussians ranged from 0.692 to 0.947,
with an average of 0.803). We found approximate linear

relationships between contrast energy thresholds and

levels of windowing (IF: R2 ¼ 0:947; EM: R2 ¼ 0:738).
In sum, the Murray and Gold claim that use of

Bubbles ‘‘drastically’’ modifies observers’ strategies and

so reduces the value of the technique compared with

additive Gaussian white noise reverse correlation is

unfounded. Our face recognition comparison did not
lend support to this claim. In addition, none of the

arguments put forth by Murray and Gold claiming that

Gaussian white noise is preferable to Gaussian bubbles

stands up to closer scrutiny.
8. Conclusions

Murray and Gold claimed that there are some
‘‘shortcomings’’ with Bubbles. We have addressed their

criticisms and shown: (1) that their formal analysis is

restricted in scope; (2) that the argument that Bubbles

would not fully characterize the LAM observer is

inconsequential; (3) that in a fair comparison, Bubbles

and reverse correlation reveal a similar use of informa-

tion in human observers; and (4) that none of the

arguments put forth for preferring additive Gaussian
white noise over windowing with Gaussian bubbles

survives closer scrutiny. Thus, there are no troubles with

Bubbles.
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