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People can often place an identical visual stimulus into a number of different categories.

For example, the top picture of Figure 1 is a woman, with a neutral expression, called “Mary,” if

this were her identity.  In contrast, the bottom picture is a male, with an angry expression, called

“John”.  In a similar vein, the top scene in Figure 2 is an outdoor scene, a city, or New York at

increasingly specific levels of categorization.  The bottom picture is an outdoor scene, a highway,

and only specialists would know that it is I-95.  These different judgments of similar images

reveal the impressive versatility of categorization, but also its considerable resilience to failure.

For example, if you did not know the identity of the faces (or scenes), you could nevertheless

categorize them as male or female (or city or highway).  Categorization is this fundamental

process that progressively reduces highly variable perceptual inputs into a small number of

classes of equivalence (called ‘categories”—e.g., face, neutral expression, female, outdoor scene,

city, New York) whose memory representations mediate thinking and adaptive action.

----------------------------------------------------------

INSERT FIGURES 1 AND 2 ABOUT HERE

----------------------------------------------------------

One fundamental problem for recognition theorists is to understand which visual

information is used to access categories in memory.  Here, we will examine how variations of

[PHIL: contrast plutôt que luminance?] (the grey-levels of an image) are used at different scales

to recognize and perceive complex visual events such as faces and scenes. Research in

psychophysics and neurophysiology indicates that vision breaks down incoming stimuli into a

number of spatial scales (or spatial frequencies).  Spatial filtering is usually construed as an early

stage of visual processing, the outputs of which form a basis for the higher-level operations of

face, object and scene recognition.  A complete account of recognition will therefore require a

good understanding of spatial filtering and the constraints they impose.

Spatial filters encode [PHIL:  same here] luminance variability in the visual field. For

example, spatial filters operating at a fine spatial resolution (i.e. high spatial frequencies) encode
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the detailed edges portraying the contours of a nose, eyelashes, the precise shape of the mouth

and eyes, and so forth.  In contrast, coarser spatial filters (i.e. low spatial frequencies) could

encode pigmentation and shape from shading from the face. That is, spatial filters encode a wide

range of useful information.  How we use information at these scales might therefore have

implications for how we categorize everyday face, object and scene categorization from the

outputs of spatial filters.

Research on spatial filtering is an established tradition of psychophysics. We will see that

the study of scale usage is an excellent medium to examine the interactions between perception

and cognition.  To illustrate, if the visual cues used for different categorizations of an identical

input (face, object or scene) reside at different spatial frequencies, the low-level processing of

spatial frequencies could constrain categorization.  On the other hand, the categorization task

could itself modify the output of early perceptual processes.  At a more general level, the

cognitive impenetrability of vision can be addressed (Fodor, 1983; Pylyshyn, 1999; Schyns,

Goldstone & Thibaut, 1998).

The chapter is organized as follows.  To begin, we introduce the key concepts of spatial

scales and spatial frequency channels.  Theories of scale usage are then reviewed in light of

recent empirical findings.  New methods that can reveal the features underlying different

categorizations are finally described.

SPATIAL SCALES

Natural images provide the viewer with a wide spectrum of spatial information, ranging

from coarse to very fine.  Fine spatial information tends to be associated with image details,

whereas coarse spatial information corresponds to larger, less detailed aspects.  We can describe

this spectrum of spatial information with Fourier analysis (Campbell & Green, 1965; Davidson,

1968). The coarse spatial information in the image becomes the Low Spatial Frequencies (LSFs)

and the fine spatial information the High Spatial Frequencies (HSFs).  Examples of low and high

spatial frequencies derived from natural images are shown in figures 1 and 2.  HSFs reveal a
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neutral woman and an angry man in Figure 1a and 1b, respectively, and a city and highway in

Figure 2a and 2b, respectively. HSFs preserve fine details such as the eyelashes of the faces, the

details of their wrinkles, or the windows of the city buildings.

If you squint, blink, defocus or step back from figures 1 and 2, their interpretation turn into

an angry man in Figure 1a, and a neutral woman in Figure 1b; a highway in Figure 2a, and a city

in Figure 2b.  LSFs can be seen to correspond to the coarse, less detailed parts of the pictures:

Properties such as the colour and luminance of blobs are carried in the LSFs whereas fine details,

such as the eyelashes, are discarded. Luminance blobs provide a skeleton of information from

which fine details can be fleshed out.

A spatial frequency channel is a filter that outputs a restricted range of the information it

receives in input.  Three channel types are often distinguished. A low-pass channel passes all

frequencies below a given cut-off while discarding the frequencies above this cut-off. Conversely,

a high-pass channel retains the frequencies above a cut-off while discarding those below it.

Finally, a band-pass channel only passes the frequencies between two cut-offs, discarding those at

each end.

Psychophysical studies have demonstrated that early vision filters natural stimuli into a

number of separate channels, each tuned to a specific bandwidth of spatial frequencies (see

DeValois & DeValois, 1990, for an excellent review of spatial vision). In their seminal paper on

contrast detection, Campbell and Robson (1968) reported that the detection (and the

discrimination) of simple sinewave patterns was predicted by the contrast of their frequency

components.  This could only occur if early vision was analyzing the patterns with groups of

quasi-linear band-pass filters, each tuned to a specific frequency band (see also Graham, 1980;

Pantle & Sekuler, 1968; Thomas, 1970; Webster & DeValois, 1985). Frequency-specific

adaptation studies demonstrated that the channels were selectively impaired in their sensitivity to

contrast, suggesting they are independent (e.g. Blakemore & Campbell, 1969).
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The visual input appears to be independently processed by 4 to 6 spatial frequency

channels (Ginsburg, 1986; Wilson & Bergen, 1979).  Further developments indicated that the

channels interacted (e.g., Henning, Hertz & Broadbent, 1975) and were nonlinear (e.g., Snowden

& Hammett, 1992).  In spite of this, the consensual view is that spatial filtering occurs prior to

many other early visual tasks such as motion perception (e.g., Morgan, 1992), stereopsis (Legge

& Gu, 1989), edge detection (e.g., Marr, 1982; Watt & Morgan, 1985) and saccade programming

(Findlay, Brogan & Wenban-Smith, 1993).  Spatial filters therefore provide a plausible candidate

for the building blocks of visual perception from which flexible categorizations of faces, objects

and scenes might arise.

SCALE USAGE FOR CATEGORIZATION

If vision filters the input at multiple spatial scales, the question arises as to how

information from these channels is used to categorize complex stimuli.  Two scenarios of scale

usage are possible.  Early constraints on the availability and extraction of coarse and fine scale

information may impose a fixed order on their usage in categorization.  More recently however, it

has been suggested that such a fixed view of scale usage may be misguided, and that we should

instead consider scale usage as flexible and dependent on the demands of the categorization task

at hand.

Fixed usage: Coarse-to-fine hypothesis

A commonly held view is that there is a fixed bias to process scale information from coarse

to fine, both in early vision, and in its usage for face, object and scene recognition (e.g.,

Breitmeyer, 1984; Fiorentini, Maffei & Sandini, 1983; Parker & Costen, 1999; Parker, Lishman

& Hughes, 1992, 1997; Schyns & Oliva, 1994).  This idea originates in a classical physiology

research in which Enroth-Cugell and Robson (1966) determined the spatio-temporal

characteristics of X and Y retinal ganglion cells.  They observed a sustained response to high-

resolution stimuli in X cells, but a transient response to low-resolution stimuli in Y cells.  Hubel

and Wiesel (1959, 1962) found that this dichotomy was preserved at the lateral geniculate
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nucleus:  Y cells dealing with a transient, gross analysis of the stimulus project to the

magnocellular layers of the lateral geniculate nucleus, whereas X cells concerned with a sustained

and detailed analysis project to both parvo- and magnocellular layers.  Computational vision

theorists picked up on this temporal and anatomical distinction to derive models of early visual

processes, including edge extraction, stereopsis and motion (see Marr, 1982, for discussions and

examples).

In recognition, researchers soon realized that algorithms could not operate on raw pixel

values from a digitized picture.  A multiscale representation of the image was required to

organize and simplify the description of events (e.g., Marr, 1982; Marr & Hildreth, 1980; Marr &

Poggio, 1979; Watt, 1987; Witkin, 1987).  For example, edges at a fine spatial resolution are

notoriously noisy and represent confusing details that would be absent from a coarser

representation.  Fine scale details, however, are often required when the objects to be

distinguished are similar, or more generally, when the task requires detailed information. An

efficient strategy may initially produce a stable, but coarse, description of the image before the

noisier, but finer, information is extracted for successful categorization. In other words, the LSFs

may be extracted and used before the HSFs.  This is the coarse-to-fine hypothesis.

The notion of a coarse-to-fine recognition strategy is more often assumed than explicitly

stated. Parker and Costen (1999, p. 18) eloquently summarize the general view: “the lower spatial

frequencies in an image are processed relatively quickly while progressively finer spatial

information is processed more slowly.” The status of the coarse-to-fine hypothesis remains to be

clarified. Is there a physiological bias in the temporal availability of coarse and fine scale

information, with LSFs being extracted before HSFs? Would such a bias be so constraining as to

result in a coarse-to-fine strategy of using scale information for categorization? (i.e., a

perceptually driven coarse-to-fine categorization scheme). Or is there a coarse-to-fine

categorization strategy for another reason, namely that an efficient strategy for recognizing
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complex images first produces a coarse skeleton of the input which is then fleshed out with fine

scale details? (i.e., a strategically driven categorization scheme).

The view that there is a coarse-to-fine bias in the usage of spatial scales for recognition has

permeated this research area (e.g., Breitmeyer, 1984; Fiorentini, Maffei & Sandini, 1983; Parker

& Costen, 1999; Parker, Lishman & Hughes, 1992, 1997; Schyns & Oliva, 1994). Accordingly,

the first theory of scale usage proposes that the most effective route to recognition would be via

coarse scale information which is subsequently fleshed out with higher spatial frequencies (e.g.,

Schyns & Oliva, 1994; Sergent, 1982, 1986).  The perceptual vs. strategical status of this fixed

coarse-to-fine scheme was not addressed until recently (see Morrison & Schyns, in press).

Schyns and Oliva (1994) used hybrid stimuli similar to those of Figure 2 to provide

evidence of a coarse-to-fine bias in scene processing. Hybrids depict the LSFs from one image

and the HSFs from another. This is achieved by superimposing a low-passed image with a high-

passed stimulus.

For their first experiment, Schyns and Oliva (1994) used a matching task whereby a sample

was presented for either 30 ms or 150 ms followed immediately by a mask and then a target.

Participants indicated whether or not the sample matched the target. Samples were either full

spectrum, low-passed, high-passed or hybrid images, and targets were always full spectrum

scenes. For LSF-hybrids, the low frequencies matched the target (i.e. the LSFs of the hybrid

represent the same scene as the full spectrum target), and for HSF-hybrids the high frequencies

matched the target. Thus, a single hybrid could be matched with two different scenes, the one

depicted in LSFs and the one in HSFs. The two scenes represented by one hybrid could both be

matched with their respective target at 30 and 150 ms durations. Nevertheless, exposure duration

changed the interpretation of the hybrids: Short exposures elicited more accurate matchings of

LSF-hybrids compared with the long exposures (d’ = 2.08 vs. 1.4) , whereas the converse was

true of HSF-hybrids (d’ = 1.06 vs. 3.0). This finding in a scene matching task is consistent with a

coarse-to-fine mode of processing. Matching tasks, however, are very different from typical
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situations of categorization and they tap into different processes (e.g., Biederman & Cooper,

1991). In a second experiment Schyns & Oliva (1994) obtained evidence for a coarse-to-fine

recognition (as opposed to matching) strategy. Each trial was an animation created by the

sequential presentation of two hybrids for 45 ms each with no ISI. An animation contained two

distinct sequences, one coarse-to-fine and the other fine-to-coarse--i.e., observers saw two

different scene sequences simultaneously. For example, if the top hybrid from Figure 2 is

immediately followed by that on the bottom, the coarse-to-fine sequence would represent a

motorway while the fine-to-coarse animation would depict a city. It is important to stress that

each trial consisted of a single presentation of each of the two hybrids.  When asked to name the

animated scene in the sequence observers chose the coarse-to-fine interpretation more frequently

than the fine-to-course scenario (67% vs 29%, respectively). This is evidence in support of a

coarse-to-fine categorization strategy (see also Breitmeyer, 1984; Fiorentini, Maffei & Sandini,

1983; Parker & Costen, 1999; Parker, Lishman & Hughes, 1992, 1997).

Flexible usage hypothesis

An alternative to the fixed coarse-to-fine hypothesis was put forward by Oliva and Schyns

(1997; Schyns & Oliva, 1999).  The images in figures 1 and 2 can be categorized in a number of

ways depending on the use of LSF vs. HSF perceptual cues.  In general, the cues subtending

different categorizations might themselves be associated with different regions of the spatial

spectrum. For example, Schyns and Oliva (1999) showed that the perceptual cues most useful for

judging the identity, gender and expression of a face were associated with different spatial scales

(see also Sergent, 1986). Thus, the observer who categorizes an image might be biased to the

spatial scales with which task relevant perceptual cues are associated. Schyns and Oliva (1999)

suggested that rather than being fixed in a coarse-to-fine sequence, the scale usage for

categorization could be flexible and determined by the usefulness (or diagnosticity) of cues at

different scales. We call this the flexible usage hypothesis. In contrast, the coarse-to-fine

hypothesis neglects the nature of the categorization task and its information requirements.  In the
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flexible scale usage, the perceptual processing of an identical visual input may be influenced by

the nature of the categorization task (Schyns, 1998). There is indeed evidence that categorization

can influence the construction of the  image percept (e.g., Schyns, Goldstone & Thibaut, 1998).

In a recognition task, Oliva and Schyns (1997, Experiment 1) demonstrated that the LSF

and HSF components of a hybrid scene presented for 30 ms both primed subsequent recognition

of a full spectrum scene.  This indicates that the coarse and fine scale cues are both available

early, arguing against a mandatory, perceptually-driven coarse-to-fine scheme.  In the related

domain of global-to-local processing, researchers have shown that the effect of global precedence

was itself modulated by task constraints.  For example, Grice, Graham and Boroughs (1983)

illustrated that an advantage for the global interpretations of larger letters made of smaller letters

could be overcome when subjects could attend to and fixate the local constituent letters (see also

Sergent, 1982; and Kimchi, 1992, for a review).

The flexible usage hypothesis suggests that categorization mechanisms tune into the scales

that represent information relevant to the task at hand. Two factors need to be considered: the

categorization task which specifies the visual information required to resolve this categorization,

and the multiple levels of representation of this visual information across the different spatial

scales.  Flexible use might result from a selective use of only a few of these levels for the task at

hand.  Oliva and Schyns (1997) and Schyns and Oliva (1999) reported data consistent with the

flexible stance. In Oliva and Schyns’ (1997) second experiment observers saw scenes, each

presented for 135 ms, to identify (city, highway, living room or bedroom?). They first saw images

meaningful at LSFs or HSFs only--e.g., a fine scale highway combined with coarse scale noise.

Without discontinuity in presentation, the following images were hybrids--e.g., HSFs depicted a

city and LSFs a motorway. Observers identified the hybrids according to the scale at which

diagnostic information was initially presented. That is, observers sensitized to fine scales

perceived the HSF component from a hybrid, whereas those sensitized to coarse scales perceived

the LSF scene from the identical hybrid. Interestingly, observers claimed to be unaware that two



10

different scenes were present in any one hybrid image, arguing against the possibility that

observers first perceived two scenes in hybrids and then decided to report the scene consistent

with the sensitization phase. This finding suggests that scale usage is flexible and tunes into the

scale at which diagnostic information is represented.

The idea that different categorizations of identical visual inputs (e.g., identity, gender,

expressive or not) rely on distinct regions of the spatial spectrum is central to the flexible usage

hypothesis. If this is the case (we return to this topic later) then the hypothesis of flexible usage

predicts that the perception of identical hybrids should depend on the categorization performed.

This question was addressed in Schyns and Oliva (1999) using hybrids derived from the faces of

unfamiliar people. For example, a neutral female at HSFs may be superimposed with an angry

male at LSFs (see Figure 1a). In Experiment 1, stimuli were presented for 50 ms, and the nature

of the categorization was found to moderate stimulus perception. To illustrate, when asked

whether the face was expressive or not, observers had a tendency to perceive and to report the

fine scale face.  However, there was no bias for a gender decision and there was a coarse scale

bias when asked to specify the face expression as happy, angry or neutral. Again, observers

remained unaware of the presence of two faces in any one image. In sum, perception of identical

hybrids was determined by the categorization task, suggesting that categorization processes tune

into diagnostic information at specific scales.

In their Experiment 2, Schyns and Oliva (1999) isolated the perceptual byproducts of a

categorization task.  In phase one, two subject groups applied a different categorization task

(expressive or not, vs. which expression) to an identical set of hybrid faces, to induce two

orthogonal scale biases (to HSF and LSF, respectively).  In phase two, all subjects had to judge

the gender of the same set of hybrid faces. The results established a perceptual transfer of the bias

acquired in a first categorization to the subsequent gender task.  For example, when one group

preferentially categorized the hybrid of Figure 1a as a female on the basis of its HSF, the other

group categorized the same picture as a male on the basis of its LSF.  Note that groups only
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differed on the frequency bandwidth bias acquired in the first phase of the experiment.  It is

important to stress that in the second phase, all aspects of the experimental task (i.e., the gender

categorization, the hybrid stimuli, and their conditions of presentation) were strictly identical

across subjects, who nevertheless perceived the same hybrid faces markedly differently. From

this perceptual transfer we can conclude that categorization can modify the perception of scale

information.  Note, however, that we established this flexible scale usage at very brief (30 ms)

exposures.  For longer exposures, and this can be experienced by looking at the hybrids of Figure

1,  saccadic eye movements take place and the fine scale seems to dominate perception.

To summarize, it is often assumed, but rarely tested, that spatial scales are processed in a

coarse-to-fine manner (e.g., Marr & Hildreth, 1980; Watt, 1987). It would seem that LSFs are

extracted before HSFs from simple sinewave stimuli (e.g., Parker & Dutch, 1987) and that scale

information may be integrated more efficiently in a coarse-to-fine sequence (Parker et al, 1992;

1997). However, this does not imply the existence of a mandatory recognition strategy using

information from coarse to fine. In fact, the evidence (Oliva & Schyns, 1997; Schyns & Oliva,

1999) conflicts with the view that scale usage for categorization is fixed, and rather suggests it is

flexible and driven by the presence of diagnostic information at different scales. Furthermore,

converging evidence suggest that the diagnostic use of coarse and fine scale cues in

categorization tasks does change the perceptual appearance of the incoming stimulus.

SEARCHING FOR DIAGNOSTIC SCALE INFORMATION

The work reviewed so far demonstrates a flexible attentional control on scale information

when this scale is diagnostic (e.g., Oliva & Schyns, 1997). There is also evidence that different

categorization tasks tap into different scales of the same stimulus (Schyns & Oliva, 1999).  The

attentional control of scale use could therefore arise from the information demands of different

categorization tasks.  This section will explore this hypothesis in detail.

Hybrids can be used to ascertain preferred scale usage (e.g., LSF vs. HSF) from the

categorization responses of subjects.  They can also reveal the scale that is perceived, and inform
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on the processing of the neglected scale (e.g., Oliva & Schyns, 1997). However, as a general

method to search for the information diagnostic of categorization tasks, hybrids are inherently

limited.  First, it is difficult to create a hybrid composed of more than two different bandwidths of

spatial information while preserving the independent perception of each bandwidth.

Consequently, hybrids are restricted to dichotomous searches in scale space (e.g., LSF vs. HSF,

or mid-frequencies vs. HSF, and so forth).  A second shortcoming is that the method does not

locate in the image plane the cues that are diagnostic at a specific scale.  To illustrate, suppose

you recognized the faces of Figure 1 on the basis of HSF cues (e.g., using their eyelashes and the

corner of the mouth).  From your categorizations, we would know that you preferred to use the

HSF plane, but not which cues you used in this plane. To summarize, the search space for

diagnostic cues is three-dimensional (the two-dimensional image x multiple spatial scales).  Of

this space, the hybrid methodology can only search one dimension (the spatial scales), using a

dichotomy (e.g., LSF vs. HSF).

[PHIL: je mettrais un alinéa ici]We now turn to a method, called Bubbles [PHIL:  il faut

mettre "a" à cause de SLIP--j'ai changé partout](Gosselin & Schyns, 2001a) that addresses these

two shortcomings and therefore generalizes the search for diagnostic cues to the entire three-

dimensional space.

The diagnostic information of Identity, Gender, Expressive or Not

In a nutshell Bubbles can determine the use of information specific to a categorization task.

Bubbles samples an input space (here, the 3D space discussed above) to present sparse versions of

the stimuli (here, faces).  Observers categorize the sparse stimuli (here, into their identity, gender,

and expressive or not) and Bubbles keeps track of the information samples that [PHIL:  n'est-ce

pas "led" plutôt?]lead to correct and incorrect categorizations.  From this information, Bubbles

determines how each region of the input space is selectively used in each categorization task, and

depicts the selective use with an effective stimulus.  The following sections discuss in detail the

results of [PHIL: première citation, donc tous les noms doivent apparaître]Schyns, Bonnar and
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Gosselin (in press, see also Gosselin & Schyns, 2001a, [PHIL:  j'ai ajouté une ref. à RAP] and

Gosselin & Schyns, 2002).

In this application, the image generation space comprised the two dimensions of the image

plane and the third dimension of spatial scales.  To compute an experimental stimulus, we

decomposed a face picture (see Figure 3a) into 6 bands of non overlapping spatial frequencies of

one octave each—with cutoffs at 90, 45, 22.5, 11.25, 5.62, 2.81 cycles per face, from fine to

coarse, respectively, see Figure 3b.  The coarsest (i.e., 6th) band served as a constant background

because it does not contain useful face information, and so only five bandwidth are represented in

Figure 3b.  We sampled this image space with [PHIL:  j'ai mis "bubbles" en italic] bubbles of

information (hence the name of the technique).  The bubbles were a number of [PHIL:  je préfère

comme suit] Gaussian windows applied to each of the five spatial frequency bands (the size of

each bubble was adjusted so that 3 cycles per face was revealed at each scale—i.e., standard

deviations of bubbles were [PHIL: ca a plus de sens de parler de "cycles per face" pour ce qui est

des tailles des bulles parce que nous parlons de "cycles per face" pour les bandes de fréquences

plus haut.  Je n'ai rien changé, mais te suggère de le faire.] .13, .27, .54, 1.08, and 2.15 deg of

visual angle, from fine to coarse scales, see Figure 3c).  Across trials, the locations of all bubbles

changed randomly.  Thus, after many trials, bubbles sample the entire image space and the search

for diagnostic cues is [PHIL:  je dirais plutôt : "non-biased" que "exhaustive"]exhaustive.

----------------------------------------------------------

INSERT FIGURE 3 ABOUT HERE

----------------------------------------------------------

In a trial, we added the information samples produced by multiplying the scale-specific

face information (Figure 3b) with its respective bubbles (Figure 3c) to produce a sparse stimulus

(Figure 3e). The subspace revealed by the bubbles was adjusted to maintain categorization of the

sparse faces at a set criterion (here, 75% correct). To respond, observers pressed the appropriate

keyboard key (i.e., male vs. female;  expressive vs. non-expressive;  or, e.g., "John").
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On any given trial, we can hypothesize that a correct response means that the information

samples revealed enough information to categorize the stimulus. An incorrect response means

that there was not enough face information in the samples.  Across trials, the interaction between

the random bubbles and the observer is therefore a random search for diagnostic task information,

using the observer to tease apart the information samples into diagnostic and nondiagnostic.

Specifically, we keep track of the locations of the bubbles that lead to correct

categorizations in a different CorrectPlane for each scale (henceforth, CorrectPlane(scale), for

scale = 1 to 5, from fine to coarse).  In each of these planes, we literally added the masks of

bubbles (see Figure 3c, for examples of masks) leading to correct responses.  In contrast,

TotalPlane(scale) is the sum of all masks leading to correct and incorrect categorizations.

From CorrectPlane(scale) and TotalPlane(scale), we derive ProportionPlane(scale) =

CorrectPlane(scale) / TotalPlane(scale) per observer.  ProportionPlane(scale) is the ratio of the

number of times a specific region of the input space has led to a successful categorization over

the number of times this region has been presented in the experiment.  Across subjects, the

averaged ProportionPlane(scale) weighs the importance of the regions of each scale for the

categorization task at hand (Gosselin & Schyns, 2001a).  If all regions were equally important,

ProportionPlane(scale) would be uniform.  In other words, the probability that any randomly

chosen bubble led to a correct categorization of the input would be equal to the expected

performance criterion–here, .75.  By the same reasoning, regions above (vs. below) the criterion

are more (vs. less) diagnostic for these tasks.

We construct a confidence interval around the mean of the ProportionPlane(scale), for each

proportion (p < .01).  Significance is summarized in a DiagnosticPlane(scale) that represents with

a 1 a diagnostic proportion and with a 0 a nondiagnostic proportion.  The DiagnosticPlane(scale)

is a mask that can filter out the nondiagnostic information at each scale of the face image. We can

use them to depict the selective use of information in each task.  The resulting effective stimulus is
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simply obtained by multiplying the face information at each scale in Figure 3b with the

corresponding DiagnosticPlane(scale).

Figure 4 compares the relative use of scale information in the identity (top), gender

(middle) and expressive or not (bottom) tasks. The figure reveals a differential use of information

across tasks and scales.  Whereas the mouth is represented at all scales in identity and expressive

it is does not appear at the finest scales in gender.  Similarly, the eyes are both represented at all

scales in identity, but only one of them figures in the effective face of gender, and both are

neglected in the effective face of expressive.  The chin is only well defined in identity.  Compared

to the mouth and the eyes, the nose is much less represented in all tasks.

----------------------------------------------------------

INSERT FIGURE 4 ABOUT HERE

----------------------------------------------------------

We can quantify the use of each spatial scale across tasks.  To this end, we divided the

diagnostic areas revealed at each scale by the total area covered by the face in the image plane.  In

Figure 4, the histograms represent the use of diagnostic information at different spatial scales–1

means finest, and 4 coarsest scale.  The small face pictures illustrate which cues are used.  The

use of fine scale information (labeled 1 in the histograms, and depicted in the leftmost small

picture) differs considerably across tasks.  It depicts the eyes, the mouth and the chin in identity,

whereas in gender the finest scale is only used for the left side eye, and in expressive for the

mouth.  In contrast, the coarsest scale (i.e., the fourth scale) is much less differentiated.  It forms a

skeleton that is progressively fleshed out with increasing spatial resolution (see the progression of

face information from coarse to fine in the small pictures of Figure 4, from right to left.)

In sum, Bubbles can search for the information relevant for different categorizations of the

same stimuli.  It extends the hybrid method presented earlier because it can pin-point the exact

location of the diagnostic features in a complex image space.

Second order holistic features
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It is widely accepted that face processing may rely on both componential cues (i.e., local

features such as the mouth, nose, eyes, a mole) and noncomponential information (the spatial

relations between these features), though how these cues are integrated remains unclear (e.g.,

Bartlett & Searcy, 1993; Calder, Young, Keane & Dean, 1999; Farah, Wilson, Drain & Tanaka,

1998; Macho & Leder, 1998; see also chapters of Bartlett, Searcy and Abdi; Farah & Tanaka;

Murray, Rhodes & Schuchinsky, in this volume for disucssions of configural vs. featural

information). We use the term ‘relational’ to refer to a mode of processing that encodes the

spatial relations of the face without making further claims about the nature of this encoding.

Relational and component cues are different sorts of information as, for example, turning a face

upside down has a greater detrimental effect on encoding of the former (e.g., Bartlett & Searcy,

1993; Leder & Bruce, 1998). They may be associated with different spatial scales. Indeed,

Sergent (1986 p. 23-24) argued “A face has both component and configurational properties that

coexist, the latter emerging from the interrelationships among the former. These properties are

not contained in the same spatial-frequency spectrum...”. More precisely, Sergent (1986)

suggested that component and relational properties may be associated with fine and coarse scales,

respectively.

Our analysis with Bubbles has focussed on information of a strictly componential nature

(i.e., each proportion of the ProportionPlanes).  When several proportions form a continuous

region (as was the case for the diagnostic masks, see Figure 3b), it is tempting to assume that the

face features within the regions are themselves used holistically (configurally). However, this is

not necessarily the case.  For example, an observer could use holistically two nonadjacent areas

of the face (e.g., the two eyes, or one eye and the mouth).  Conversely, two adjacent components

could be used independently, but assigned to the same diagnostic region.

We define a holistic use of information as a conjunctive use of information.

Operationally, a holistic use of information implies that the presentation of information from

several separate bubbles (a conjunction of information) does drive recognition performance.
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Here, we limited the conjunction to two distinct bubbles of information, a second order analysis.

Thus, in this section, we perform a second order search for the better conjunctions of features in

the gender and the identity tasks of Schyns et al. (in press).  We restrict our analysis to five main

areas of the faces, known from our experiments to be particularly diagnostic: the left eye, the

right eye, the nose, the left portion of the mouth, and the right portion of the mouth.  We derive

the proportion of correct categorizations associated with all possible conjunctions of the five

areas of interest.  This is summarized in a 5 x 5 matrix per scale, where each cell represents a

feature conjunction.  In this cell, we increment a counter each time the stimulus comprised at least

one bubble in each of two regions concerned and the categorization was correct.  We increment a

separate counter every time the conjunction was presented, irrespective of response.  We perform

this simple analysis for all stimuli, subjects and responses1, and the resulting proportion correct is

the division of the two counters.  We then compute the significant proportions. Figure 5 depicts

the DiagnosticPlane(scale) for feature conjunctions (the plane is now a 5 x 5 symmetrical matrix).

----------------------------------------------------------

INSERT FIGURES 5  ABOUT HERE

----------------------------------------------------------

A white square in Figure 5 indicates a significant feature conjunction at one of the scales.

The DiagnosticPlane(scale) are symmetrical, but to facilitate reading, we have only kept upper

triangle of the symmetrical matrices.  These results are best interpreted with the potent

information depicted in Figure 4.  Remember that the first order analysis revealed the importance

of the eyes and the mouth to identify faces.  Note that the diagnostic conjunctions for IDENTITY

involve mostly relationships between the two eyes and the mouth.  In GENDER, these

relationships involve mostly the left eye (see Figure 4) and both corners of the mouth (in the first

and second scales), and a recurrent relationships between the left corner of the mouth and the

nose across all scales. Thus, the second order analysis confirms a differentiated use of

information across tasks, adopting the form of diagnostic feature conjunctions.
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In sum, Bubbles is a search for diagnostic information in any n-dimensional image

generation space, even if the space is abstract. Bubbles is therefore not restricted to the 2D image

plane, but eye scans are.  Because bubbles of information are independent samples in the input

space, we can compute how second-order relationships between the samples (but also relationship

between more than two distinct bubbles of information) contribute to recognition, and thereby

ascertain the amount of holistic processing at different scales.

In the reported data, the DiagnosticPlanes were averaged across subjects, but we could

have performed the analysis on a subject per subject basis (opening promising research avenues

in visual development, the acquisition of perceptual expertise and visual agnosia).  The analysis

can also be performed by item (i.e., stimulus), to enable a finer understanding of the recognition

of each stimulus in well-specified task contexts. Succinctly stated, Bubbles is a reverse projection

of the memory representation of an object onto the input information.  Suitably applied, it could

predict, from use of diagnostic information, how early visual filters at different spatial scales

would become tuned to optimize the intake of low-level visual information (e.g, contrast and

orientation) in different recognition tasks.

GENERAL DISCUSSION

Researchers in face, object and scene recognition are often concerned with questions

about object representations.  For example, they ask key questions such as: “Are face, object and

scene representations viewpoint-dependent (Bülthoff & Edelman, 1992; Hill, Schyns &

Akamatsu, 1997; Perrett, Oram & Ashbridge, 1998; Simons & Wang, 1998; Tarr & Pinker, 1989;

Troje & Bülthoff, 1996; among many others) ? “ “Are these representations holistic (e.g, view-

based, Poggio & Edelman, 1990; Tarr & Pinker, 1991), or made of smaller components? (e.g,

geons, Biederman, 1987; Biederman & Cooper, 1991)”; “Are internal representations complete

(e.g., Cutzu & Edelman, 1996), or sparse (Archambault, O’Donnell & Schyns, 1999; Rensink,

O’Regan & Clark, 1997); two- or three-dimensional (Liu, Knill & Kersten, 1995); colored or not

(Oliva & Schyns, 2000; Tanaka & Presnell, 1999) ?”  “Are they hierarchically organized in
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memory (Brown, 1958; Rosch, Mervis, Gray, Johnson & Boyes-Braem, 1976) ?”  “If so, is there

a fixed entry point into the hierarchy (Gosselin & Schyns, 2001b; Jolicoeur, Gluck & Kosslyn,

1984; Tanaka & Taylor, 1991) ?”  “What is the format of memory representations, and does it

change uniformly across the levels of a hierarchy?” (Jolicoeur, 1990). “Does expertise modify

memory representations (Tanaka & Gauthier, 1998; Schyns & Rodet, 1997) and the entry point to

recognition (Tanaka & Taylor, 1991) ?”

To address these issues, researchers should embrace powerful methodologies that can

assign the credit of behavioral performance (e.g., viewpoint-dependence, configural effects, color,

speed of categorization, point of entry, expertise effects and so forth) to properties of face, object

and scene representations in memory.  However, the relationship between behavior and

representations is tenuous, making representational issues the most difficult to approach

experimentally.

In this chapter, we have taken an alternative approach that allows a rigorous understanding

of the recognition process, without asking direct questions about unobservable memory

representations. Our analysis builds on the selective use of diagnostic information, an important

but neglected component of recognition. People who recognize faces, objects and scenes do not

use all the information available to them, but instead select the most useful (i.e., diagnostic)

elements for the task at hand.  The visual system knows what this information is, and how it

should be selectively extracted from the visual array to perform flexible categorizations of the

same input.

To analyze the flexible use of information, we started from a set of plausible building

blocks, the output of spatial filters in early vision (spatial scales), and examined how they were

used during the recognition process. We explained that distinct visual cues for recognition often

reside at different spatial scales, themselves processed by different frequency-specific channels in

early vision.  We showed that the use of this information for categorization tasks was not

determined by early biases but could instead be flexibly adjusted to the requirements of the task at
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hand.  Furthermore, in these circumstances, the perception of the stimulus could depend on the

scale information selectively attended.  Using Bubbles, a more powerful methodology, we pin-

pointed the scale information responsible for different categorizations of the same face.  This is a

rigorous depiction (see Schyns et al., 2001 for further formal developments) that opens up a

number of new exciting research avenues to bridge the gap between high- and low-level vision.

Attention and perception

The reviewed experiments with hybrids and Bubbles demonstrated that attention can

exert a selective control on the scale information used for categorization. Further evidence of

selective and task-dependent processing can be found in psychophysics. The detection of

sinusoidal gratings worsens when spatial frequency varies across trials compared with the same

gratings presented in blocks of constant spatial frequency (e.g., Davis & Graham, 1981),

consistent with selective activation or monitoring of spatial frequency channels (Hübner, 1996).

The common underpinnings between the hybrid methodology, Bubbles and the

psychophysics of early vision provide one promising research avenue to specify the influence that

the categorization task can exert on the perception of a face, object, or scene. For example, one

could design a study combining hybrid categorization with psychophysical techniques to

understand whether attention to a diagnostic spatial scale (or neglect of a scale) affects the

filtering properties of the earliest stages of visual processing--e.g., contrast thresholds, frequency

tuning, orientation selectivity.

In a recent study, Sowden and Schyns (2000) have examined the visual implementation

of selective, scale-specific extraction of visual cues.  In a within-subjects design, observers were

trained to detect near-threshold contrasts in low and high spatial frequency gratings—cued with a

distinct tone.  They reported a decrement in grating detection when observers were miscued (e.g.,

when the LSF tone was followed by a HSF grating), supporting the occurrence of an expectancy

effect.  The categorization task could likewise cue people to scale-specific face, object and scene

features.  The cueing in Sowden and Schyns (2000) suggests one possible implementation of the
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categorization-dependent perceptions reported in hybrids: [PHIL:  veux-tu dire "sensitivity

modulation" plutôt?  Sinon, je ne comprends pas.] contrast modulation could occur in spatial

frequency channels as a function of task-related expectations, enhancing or lowering the

availability of scale-specific information for subsequent processing.  In this context, Bubbles

delivers precious information (see Figure 4).  It predicts how scale information should be used in

different parts of the visual field, for different categorizations of the same stimulus.  It is in

principle possible to examine how different parts of the visual field become sensitized to contrast

and orientation as a function of categorization tasks. Evidence that categorization tasks can exert

such early influence would have far reaching implications for classical issues in cognitive science

ranging from the depth of feedback loops in early vision, the early vs. late selection models of

attention (Pashler, 1998), the bi-directionality of cognition (Schyns, 1998), the sparse vs.

exhaustive perceptions of distal stimuli (Hochberg, 1982), to the cognitive penetrability of vision

(Fodor, 1983; Pylyshyn, 1999).

A striking observation in studies with hybrid stimuli is that people who are induced to

attend, and consequently perceive consciously, information depicted at only one scale appear to

be unaware of some aspects of the cues at the other scale. This leads to the question of whether

unattended scale information is nevertheless recognized covertly, and if so, at what level of

specificity?  For example, in a recent study (Morrison & Schyns, 2000 [PHIL:  n'apparait pas

dans les références comme tel.]), two groups of observers were initially sensitized to identify the

faces of famous people at either low or high spatial frequencies (the other scale was noise). After

a few trials, and without participants being told of a change, hybrids were presented which

depicted the faces of two different celebrities, one at fine and the other at coarse scales. Both LSF

and HSF groups performed similarly with respect to identifying the faces in hybrids: Observers

recognized the face at the sensitized scale accurately and claimed to be unaware of the identity of

the face at the unattended scale. However, the groups differed as observers sensitized to HSFs

detected the face at the unattended scale (for them, the coarse scale face) more accurately than
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those in group sensitized to LSFs (in their case, the fine scale face). This suggests that people can

only perform a precise overt identification at the scale they attend, though cues at the other scale

may permit other categorizations such as detection.  Similar issues have been addressed in

attention research (see Pashler, 1998).  The added twist here is that different categorization tasks

can be accomplished selectively with attended and unattended information.

Tasks, spatial content and size

There is an important relationship between spatial content and size. Images of different

size may vary not only on the basis of specific metrics but also in terms of spatial content. This is

because fine contours (fine scale information) are better represented in large images compared

with smaller versions (which comprise only the coarse scale information of the larger image).

For example, using faces again, certain judgments of expressions (e.g. happiness) are more

resilient to changes in viewing distance than others (see Jenkins et al., 1997).  More generally, it

will be interesting to examine how different categorization tasks of the same face, such as its

gender, expression, age, identity and so forth, specifically degrade with progressive increases in

viewing distance.  This will provide a better indication of the scale at which the information

necessary to perform this categorization resides (particularly so if the degradation of performance

is not linear with the decrease in stimulus size).

A similar reasoning applies to common object and scene categorizations.  It is well

known that people can apply categorizations at different levels of abstraction to the same stimulus

(Rosch, Mervis, Gray, Johnson, and Boyes-Braem, 1976; for a review, see [PHIL:  c'est paru ça--

je l'ai changé dans les refs.] Gosselin & Schyns, 2001b).  For example, the same animal can be

called Collie at the subordinate level, dog at the basic level and animal at the superordinate level.

Of these three main levels, two (the basic and subordinate) are arguably closer to perception (see

Schyns, 1998, for arguments). The categorization literature has often reported that people seem to

be biased to the basic level.  The nature of this bias remains a controversy.  One possibility is to

consider that in natural viewing conditions, we experience objects at many different distances.  If,
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for example, basic-level categorizations were more resilient to changes of scale and viewing

distances than subordinate categorizations, then the cues subtending the basic level would be

present in most retinal projections of distal objects.  This natural bias in the distribution of image

cues could bias categorization processes to the basic level, suggesting an interaction between

categorization tasks and the differential availability of their scale information.

Archambault, Gosselin and Schyns (2000) confirmed this hypothesis.  In a first

experiment, subjects were asked whether two simultaneously presented objects (computer-

synthesized 3D animals from eight different species, bird, cow, dog, horse, frog, turtle, spider

and whale, rendered in 256 gray-levels with a Gouraud shading model) had the same basic-level

(e.g. whale), or the same subordinate-level category (e.g., Humpback whale).  Object pairs could

appear in any one of 5 sizes, corresponding to 12, 6, 3, 1.5, .75 and .38 degrees of visual angle on

the screen.  Note subjects could inspect the object pairs for as long as they wished, licensing the

conclusion that the task was tapping into the absolute level of scale information required for the

categorizations.  In these conditions, the authors found that subordinate judgments were

significantly more impaired by a reduction in stimulus size than basic judgments.  Their second

experiment confirmed the results in a straightforward naming task.  Thus, constraints on the 2D

proximal projection of 3D distal objects differentially modify the availability of scale-specific

information for basic and subordinate categorizations.

In the flexible usage scenario, the requirements of information needed for different

categorization tasks determine a bias to the scale where these cues are best represented.  The

experiments just reviewed suggest a natural bias for the finer scales in subordinate

categorizations, whereas all scales are equally usable for basic categorizations.  This suggests that

basic categories are represented in memory either with shape cues that intersect all scales (e.g. a

silhouette), or with different cues specific to each scale. In general, we believe that the

interactions between the task demands of different categorizations and the structure of input
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information can selectively modulate the relative extraction of visual information at different

spatial scales (coarse vs. fine) and spatial extents (global vs. local).

CONCLUDING REMARKS

Our main epistemological point is that one can acquire knowledge about the recognition

process by carefully studying diagnostic information without asking questions (or even making

assumptions) about memory representations (see also Schyns, 1998). This is a powerful approach

because the information used encompasses all the visual features that mediate the recognition task

at hand.  These features therefore have a dual role.  For high-level vision, they reflect the

information required from memory to categorize the stimulus, and the job of low-level vision is to

extract them from the visual array.  Succinctly stated, the features involved in a recognition task

bridge the gap between memory and the visual array.  They set an agenda for research in high-

and low-level vision.
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End Notes

1.  Because few bubbles were presented together at the coarsest and next to coarsest scales, co-

occurrences of bubbles were rare and we restrict our analysis to the three finest scales.
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Figure captions

Figure 1. Figure 1 (from Schyns & Oliva, 1999) illustrates two hybrid faces.  The fine spatial

scale (High Spatial Frequencies, or HSF) represents a nonexpressive woman in the top picture

and an angry man in the bottom picture.  The coarse spatial scale (Low Spatial Frequencies, or

LSF) represents the angry man in the top picture and the neutral woman in the bottom picture.  To

see the LSF faces, squint, blink, or step back from the picture until your perception changes.

Figure 2. This figure (adapted from Schyns & Oliva, 1994) shows two examples of hybrid scenes.

The top picture mixes the fine information of a city with the coarse information of a highway.

The bottom picture mixes the opposite information.

Figure 3 illustrates the application of Bubbles  to the 3D space composed of a 2D face

[PHIL:](adapted from Gosselin & Schyns, 2001a).  Pictures in (b) represent five different scales

of (a); (c) illustrate the bubbles applied to each scale;  (d) depict the information of the scales of

(b) sampled by the bubbles of (c).  Note that on this trial there is no revealed information at the

fifth scale.  By integrating the pictures in (d) we obtain (e), a stimulus subjects actually saw.

Figure 4. (a) The larger face depicts the effective face stimulus for the identity task [PHIL:]

(adapted from Schyns, Bonnar & Gosselin, in press).  The smaller pictures illustrate the

diagnostic information used to resolve the identity task at each independent scale from fine to

coarse, respectively.  The coarsest scale is not depicted as it contains no meaningful information.

The bar chart provides a quantitative illustration of the proportion of the face area used to resolve

the task at each scale.  Figures (b) and (c) follow the same format as figure (a) illustrating the

potent face for the gender task and expressive or not task respectively, the diagnostic information

for each task at each scale and a quantitative account of the use of information in the bar charts.
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Figure 5.  The diagnostic feature conjunctions resulting from the second-order analysis of

Bubbles for the Identity and Gender tasks [PHIL:] (adapted from Schyns, Bonnar & Gosselin, in

press).  At each scale, a white square reveals a significant conjunction of features that drove

recognition performance.  Note that the symmetry of the DiagnosticPlane(scale) has been

eliminated to improve the readability of the matrices.
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