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Internal surface representations approximated by reverse correlation
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Abstract

We presented two naı̈ve observers with 20,000 random-dot stereograms. On each trial, the observers had to indicate the presence

or absence of a complex 3D pattern (a large �+� sign in relief). However, unbeknownst to them, the stereograms did not contain any

signal, but only disparity noise. Responses and verbal reports indicate that the observers �saw� the suggested 3D surface configuration

in roughly half the trials even though structured local low-level signal was never presented. Using reverse correlation, we derived an

approximation of the internal surface-based representations, or templates, that best accounted for the observers� responses. These
templates were shown to be spatially well defined and temporally stable. We propose that the 3D surface-based representations that

we derived are the first approximations and depictions of the intermediary process that allows the visual system to successfully link

degraded, bottom–up signal and high-level, top–down object recognition.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The process through which the visual system recovers

complex, three-dimensional (3D) visual scenes from in-

verted, degraded, bi-dimensional retinal images is still

poorly understood. It is however generally agreed that

an intermediate process must occur between early infor-

mation pickup and more complex visual processes such
as object recognition. It has been suggested that this

intermediary stage involves the construction of a sur-

face-based representation of the visual scene (Marr,

1982; Nakayama, He, & Shimojo, 1995; Pylyshyn,

1999).

The concept of a surface representation stage parsi-

moniously accounts for an array of visual phenomena.

These include modal and amodal completion in which
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missing information has to be inferred to successfully

interpret the geometry of the visual scene (Bacon & Ma-

massian, 2002; Kanisza & Gerbino, 1982; Kellman &

Shipley, 1991; Nakayama et al., 1995; Nakayama, Shim-

ojo, & Silverman, 1989; Tse, 1999, 2002; but also see Ru-

bin, 1921). It has also been proposed that such a surface-

based intermediary stage plays a role in more basic

visual functions such as depth perception, motion per-
ception and texture segmentation (see He & Nakayama,

1992, 1994a, 1994b; Nakayama & Shimojo, 1990).

To this day, however, this surface representation

stage largely remains a theoretical construct inserted be-

tween low-level information and high-level vision as part

of a serial process. Indeed, �isolating� this stage for study
is made difficult by the fact that a surface representation

is inherently anchored in retinal low-level information.
Neri, Parker, and Blakemore (1999), for example, used

reverse correlation to approximate the surface template

that subjects used to solve a stereoscopic task. Their

stimuli, however, always contained some disparity signal
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so that the template they inferred could have been di-

rectly modulated by the form of the low-level informa-

tion.

We present here an attempt to extract a surface rep-

resentation purely determined by the task, and not by

any residual signal present in the stimulus. Our demon-
stration follows the paradigm of �superstitious percep-

tions� first used by Gosselin and Schyns (2003) for

two-dimensional patterns.

We asked observers to indicate the presence or ab-

sence of a complex 3D pattern (a large �+� sign in relief)

in random-dot stereograms which, unbeknownst to

them, only contained disparity noise. Although the stim-

uli contained no structured signal, the observers� re-
sponses and verbal reports indicated that they �saw�
the suggested configurations.

The absence of structured signal therefore allowed us

to bypass the early, low-level stage of visual processing

without compromising object recognition or the high-

level processes on which it is dependent.

We then used reverse correlation (Ahumada &

Lovell, 1971; Beard & Ahumada, 1998; Gold, Murray,
Bennett, & Sekuler, 2000; Gosselin & Schyns, 2003; Neri

et al., 1999) to give form to the intermediary process that

allowed the observers to relate the encoded disparity

noise to the detection of the target. In other words, we

have revealed the internal representations, or templates,

that best accounted for the observer�s responses. As our

stimuli contained no signal, the internal surface repre-

sentations that we depict can be said to be purely top–
down, in the sense that they are uncontaminated by

low-level signal.
Fig. 1. Sample random-dot stereogram. Both the location and the

depth of the individual texture elements were determined in a fully

random manner. The stereograms therefore contained no signal.
2. Methods

One 22 year old female (MB) and one 23 year old

male (AF), both undergraduate students at the Univer-

sity of Glasgow, were paid to take part in the experi-

ment. They were experienced psychophysical observers

with normal stereoscopic vision but were naive as to

the rationale and aims of the experiment.
The participants were asked to complete 40 blocks of

500 trials (approximately 10 h overall) within two weeks.

On each trial, a new random-dot stereogram appeared

and remained on screen until the observer responded.

The participants were instructed to indicate whether a

large plus sign (i.e., �+�) was present or not by pressing

the appropriate key (yes–no paradigm). They were told

that the plus sign covered the full length and width of
the stimulus area and that it would appear nearer than

the background (i.e., in relief). They were also told

that the plus sign would be present in 50% of the trials,

but would be difficult to perceive due to a large amount

of noise. No additional details were provided about the

experiment. In particular, it is important to note that the
observers were never shown an image of the plus sign

without noise before running the experiment.

The observers sat 1 m away from the monitor, placed

their chin on a chin-rest and viewed the stimulus pairs

through a modified Wheatstone stereoscope. The stimuli

were created using the PsychToolbox (Brainard, 1997;
Pelli, 1997) for MATLAB and were presented on a

21’’ monitor connected to a Macintosh G4 computer.

The mid-gray background luminance was set to 18.5

cd/m2. Both halves of the stereograms subtended

2.470�·2.470� of visual angle (154·154 pixels). They

were composed of a white background filled with 700

black texture elements spanning 0.048�·0.048� of visual
angle (3·3 pixels). The average density of each half-
image of the stereogram (black to white pixel ratio)

was 0.232. Each texture element was randomly posi-

tioned in the left-eye and was shifted in the other eye

equiprobably by either 0.963 (one pixel to the right) or

�0.963 (one pixel to the left) arcmin (see Fig. 1). These

disparities placed each dot approximately 9 mm in front

or behind the screen.

All this information can be summarized in a �dispar-
ity map�: the disparities of the 700 texture elements are

put at the locations of their center in a 150·150 matrix;

the locations corresponding to the absence of texture

element are assigned the value of zero.

The number of texture elements and their disparity

were chosen such that a single noisy surface was the

dominant percept (pyknostereopsis; Tyler, 1983). Cru-

cial to our demonstration is the fact that the random-
dot stereograms never contained any consistent signal.

Both the position of the dots and the depth at which

they appeared were determined in a fully random man-

ner. Of course, the degree of correlation between indi-

vidual stimuli and the hypothetical cross slightly varies

across trials. It is these slight variations that allow the

use of reverse correlation. It must be understood, how-

ever, that these correlations are very small. Also, each
stimulus is much more correlated with a variety of other

hypothetical visual objects than they are with a cross.

Thus, the main factor in subject responses is clearly their

expectation of what is to be seen in the noise. One of us
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has shown this directly in the context of the detection of

letters defined by contrast. Observers saw different let-

ters (i.e., �H� and �Y�) in the same sequence of contrast

noise fields and approximations of the internal represen-

tations that best accounted for the observers� percep-
tions were derived (Gosselin & Schyns, 2002).
Fig. 2. Results as revealed by reverse correlation. (a) The lower-left

panels are the raw classification images. In order to segregate

horizontal and vertical information, we averaged the first and last

third of the rows (see the two segments joined by a line underneath the

classification images) and the first and last third of the columns (see the

two segments joined by a line left of the classification images) in

the raw classification images in order to obtain the open circles of the

(b) top and (c) right scatterplots, respectively. Solid lines are travelling

averages of 16 successive data points. In all images, the negative

disparity peaks indicate the central bar in depth toward the observers.
3. Results and discussion

In spite of no signal ever being presented, the obser-

vers detected a large plus (�+�) sign in 48.8% (MB) and

50.6% (AF) of the trials. When asked about their re-

sponse strategy, both MB and AF crossed their index
fingers together to form a �+� and respectively said ‘‘I

was looking for two perpendicular bars crossing in the

middle of the stimulus’’ and ‘‘I was looking at the inter-

section of the lines, waiting for the plus to jump out’’.

Recent experiments by Goffaux, Corentin, Schyns, Gos-

selin, and Rossion (2003) demonstrate that detection in

such superstitious perception experiments is accompa-

nied by gamma activation in the infero-temporal region
whereas rejection is not. Gamma activation has been

linked to object perception (Tallon-Baudry & Bertrand,

1999). This strongly corroborates the verbal reports of

our observers.

When asked about the aim of the experiment, both

said it was about ‘‘detection thresholds’’. MB spontane-

ously reported that she thought the independant varia-

ble was the amount of noise. Neither suspected that
the stimuli might not be present. In other words, the

observers genuinely saw large plus signs, which is con-

sistent with other reports of �superstitious� perceptions
(i.e., �S�s and smiles in contrast bit noise; Gosselin &

Schyns, 2003).

We used reverse correlation to identify and depict the

information that the observers used while they were ex-

periencing �superstitious� perceptions. For each obser-
ver, a �detection image� and a �rejection image� were

computed by adding all the disparity maps of the stimuli

leading to detection and rejection, respectively. We sub-

tracted the rejection image from the detection image to

produce a classification image. This classification image

is proportional to the best least-square linear fit to the

detection data 1. Fig. 2(a) shows the classification image

for each observer with the convention that dark corre-
spond to negative disparities and bright to positive dis-

parities. Dark �+�s are revealed for both observers,

consistent with a �+� sign protruding in relief. These clas-

sification images are linear approximations of the tem-

plates that the observers used to match against the

noise. In other words, they are depictions of the internal
1 Here, the scaling factor is equal to 1502 (i.e., the area of a

�disparity map� in pixels)/700 (i.e., the number of texture elements)/

20,000 (i.e., the number of trials) = 0.0016.
surface representation that allowed the observer to link

low-level information (the noise) and high-level infor-

mation (the large �+� sign they looked for).

The regular, symmetric geometry of the classification

images allowed us to segregate their horizontal and



Fig. 3. Spectral analysis of the classification images. (a) The open

circles represent the distributions of the average squared amplitude

disparity for different spatial frequencies (collapsed across all orien-

tations) of the classification image and the solid lines the best fitted

Gaussian functions. Disparity �bit� noise is by definition unbiased

across the spectrum and biases in the spectral analysis therefore reveals

structured information. The arrow indicates the spatial frequency

range of the individual textured elements, which is considerably higher

than the revealed peak. (b) The classification image low-passed by a

Butterworth filter with a cutoff at 4 cycles per image. These images

depict the templates that best accounted for the observers� behavior in
the detection task.
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vertical components. We averaged the first and last third

of the horizontal lines (see the two segments joined by a

line underneath the classification images) and the first

and last third of the vertical lines (see the two segments

joined by a line left of the classification images) and ob-

tained the cross-section of the templates shown in Fig.
2(b) and (c) for both observers. The open circles repre-

sent the raw averages and the solid lines, the travelling

averages of 16 successive data points. This analysis re-

veals that the horizontal bars were more clearly repre-

sented than the vertical bars. More importantly, the

cross-section of the templates shows that the informa-

tion immediately adjacent to the bars, both horizontally

and vertically, was also taken into account in interpolat-
ing the surface configuration. Indeed, it can be clearly

seen that positive disparity lobes stand on both sides

of the negative peak that represents the bar itself.

The lobes on either side of the central bars in the clas-

sification images suggest an inhibitory mechanism to en-

hance the representation of the �+� sign against the

surrounding regions. In other words, the observers were

sensitive not only to the �+� itself but to the full surface
configuration in which it was embedded. Such figure-

ground segregation is an important aspect of the surface

representation stage (Nakayama et al., 1995). Further-

more, the structures of our templates are consistent with

what Neri et al. (1999) have found using reverse correla-

tion on disparity signal plus noise.

Disparity �bit� noise has equal energy at all spatial fre-
quencies. Since it is not biased for any spatial frequency,
the expected energy of a randomly produced classifica-

tion image should therefore be uniform across the whole

spectrum. Any bias in the spectral analysis of the classi-

fication image would therefore be indicative of struc-

tured information of the kind that might underlie

superstitious perceptions.

We found such biases in the spectral analysis of the

classification images of our two observers, in the range
1–3.236 cycles per image (cpi) for MB and 1–3.945 cpi

for AF (Fig. 3(a)). This range is far lower in scale than

the local information contained in individual texture ele-

ments (indicated by the arrows in Fig. 3(a) for both

observers) and is therefore indicative of a more global

representation. The peak energy in the classification

images can be estimated by fitting a Gaussian function

to the energy histogram. The best fit is shown as solid
lines in Fig. 3(a) and peaked at 1.167 cpi for MB

(std=2.069; R2=0.999) and at 2.303 cpi for AF

(std=1.642; R2 =0.951). To determine the observer-

specific bias range, we included all spatial frequencies

within 1.96 standard deviation away for the mean of

the bestfit.

We can visualize the information contained in the

classification images by filtering them with a low-pass
filter (e.g. Butterworth) with a cutoff at 4 cycles per im-

age. The results can be seen in Fig. 3(b), where negative
disparities are again depicted in dark and positive dis-

parities in bright. For. both observers, Fig. 3(b) reveals

a large dark �+� plus on a bright background.

From this data it is possible to quantify the similarity

between our observers� internal surface representations

and individual stimulus. As we have said previously it

is necessary to have some variance in this similarity to

use reverse correlation. However, for our purposes (i.e.
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Fig. 4. Stability of the template across time. In order to quantitatively assess the stability of the template, we broke down the information derived

from all trials in Fig. 2 into five consecutive blocks of 4000 trials. The solid line for each block corresponds to the travelling average of 30 successive

data points. These solid lines were then connected at corresponding vertices by straight lines to form a surface. Pearson correlations are given for all

successive blocks. Both the (a) horizontal and the (b) vertical components were remarkably stable over time.
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to isolate top–down processes), it is likewise important

that it is minimal. The standard deviations of the distri-

butions of Pearson correlations between the subjects� fil-
tered classification images and the 20,000 noise fields

are, respectively, 6E�5 (mean=1E�4) and 6E�5

(mean=6E�5) for AF and MB. Certainly, the noise

fields were much more correlated with a variety of other

hypothetical visual objects than they were with a cross
(Gosselin & Schyns, 2002).

Because the classification images were computed

from the sum of all trials, it is crucial that the percepts

and the templates are stable over time. Verbal reports

confirmed that the percepts did not qualitatively vary

across blocks and Fig. 4 quantitatively demonstrates

the consistency of the templates. The trials were split

in 5 blocks of 4000, and the horizontal (Fig. 4(a), both
observers) and vertical (Fig. 4(b), both observers) com-

ponents were again segregated. The high-correlation of

the curves across both dimensions (see the Pearson cor-

relations between successive blocks in Fig. 4) indicates

consistency and supports the claim that both the tem-

plates and the percepts were precise, stable and well de-

fined.
4. Conclusions

We have elicited �superstitious� perceptions of a com-

plex 3D surface configuration in pure disparity noise.

The absence of structured low-level signal allowed us

to study the surface representation stage in isolation

from lower processes. Not only are presentations with-

out signal optimal statistically, they are to this day the
only tool available to fully isolate top–down mecha-

nisms from bottom–up interference. Using reverse cor-

relation, we have approximated and depicted the

internal surface representations, or templates, that the

observers ‘‘superimposed’’ on the noise in order to do

the task. On the basis of these internal representations,

or templates, they did not merely search for cross-like

disparities, but actively perceived the cross that they
had in mind. Both percepts and templates were shown

to be temporally stable and spatially well defined. We

have thus revealed internal surface representations un-

corrupted by any consistent low-level signal. We have

shown that these surface representations could account

for the way in which observers performed in the �super-
stitious� perception task and, more generally, for the
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way the visual system infers complex 3D structure from

low-level visual information.
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