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In Jaina metaphysics, interpreting experience from a

single point of view is making an error comparable to

that of the six blind men touching an elephant [1].

A first blind man runs straight into an elephant’s

broad smooth side and concludes that it is a wall;

a second blind man pokes the animal’s trunk and

thinks that it is a snake; a third one walks into the

elephant’s tusk to conclude that it is a spear; a fourth

touches a leg and infers that it is a column; a fifth the

tail, concluding that it is a frayed bit of rope; and the

sixth grasps one of the ears and believes it to be a fan.

Jaina doctrine recommends that we apprehend

reality from a multiplicity of different points of view.

Cognitive science is Jainian in essence: several

sub-disciplines apply their own tinted lenses to the

observation of the mind, the common object of

investigation. The confrontation of several

viewpoints should in principle minimize the

distorting influence of any one of them, revealing

the workings of the mind in a clearer light. In

practice, however, the tints are often theoretically

loaded, representing the fundamental assumptions

of the sub-disciplines. Idiosyncratic concepts and

techniques often prevent, rather than foster, a

Jainian communication of viewpoints. Sub-

disciplines are then analogous to the blind men

facing the elephant: their grasp of reality remains

incomplete and potentially distorted.

As a case of point, consider vision research. In the

early days, it was commonly thought that knowledge

about the external world influenced its perception.

Theories of vision were ‘holistic,’ with perception

resulting from interactions between low- and

high-level visual processes [2,3]. However,

significant advances arose from an analytic

approach that isolates one specific visual process to

test its performance envelope in tightly controlled

conditions of experimentation. Nowadays,

discoveries about the formation of face, object or

scene categories, the attention to information in

different recognition tasks, and the mechanisms of

recognition do not really inform research on the

processes of low-level vision. Conversely, models of

face, object and scene recognition and categorization

are not always firmly grounded on the established

principles of early vision. However, to the extent

that high- and low-level vision still examine

different aspects of vision, they run the risk of

being like the blind men facing an elephant.

Recent developments in vision research have

witnessed the emergence of new concepts and

techniques that could become a fruitful basis for

communication between high- and low-level vision.

These developments concern visual information and

its selection to resolve high- and low-level visual

tasks. We articulate these concepts and techniques

into RAP, a new framework within which to

formulate common issues. The main aim of this paper

is to develop RAP and to advocate the need of a

Jainian doctrine in vision science.

RAP

To introduce RAP, we start with what is arguably

the simplest recognition task: detecting whether or

not a target object is present in the input. Suppose

that the target is letter ‘A’ (standing for Available

information). To detect it, assume that the observer

uses a simple process of matching the incoming

stimulus with only one template stored in memory.

Assume further that this observer does not know ‘A’

but instead uses an approximation of ‘A’ that

happens to have the shape of an ‘R’ (standing for

Representation). This memorized ‘R’ could

successfully detect ‘A’ in the input, with an

appropriate matching criterion.

In the process of matching ‘R’ to ‘A’, some

information will be particularly potent. Note that we

designed the example so that the letter ‘P’ (standing

for Potent), the intersection of letters ‘A’and ‘R’,

corresponds to this information. Generalizing from

this simple example, we articulate Represented (R ),

Available (A) and Potent (P ) as follows:

R ⊗ A ≈ P (1)

Equation (1) signifies that potent information,P,

results from an interaction (represented by ⊗)

between represented information,R , and available
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input information,A . Potent information is an

interesting, but little acknowledged construct in

vision. P mediates visual categorization tasks; it is

the information subset of A that can assign the

unknown input to the category represented byR in

memory. To illustrate, imagine that you need to

categorize a face as smiling or not, as male or female,

as young or old, or according to its identity. From a

psychological standpoint, potent information

specifies the visual information that must be

particularly well attended to in order to place a

given face in this or that category [4,5]. This

constraint on the categorization process on the

information needed could modify the tuning of vision

to optimize the extraction of this information in the

input. For this reason we believe that R ⊗ A ≈ P
(or RAP ) is a useful bridge between the main

information components of problems in vision:

R specifies the high-level information requirements

of a categorization task, A the information available

in the input to resolve this task, and P the subset of

A that the human visual system must process

(i.e. attend to, extract and recode) to categorize

the stimulus.

If each component of R ⊗ A ≈ P could be

individually resolved, the equation would go a long

way to bridge the gap between high- and low-level

vision. At this stage, the reader might believe that

the enterprise is no more than a utopia:

representations are unobservable, and potent

information should vary across tasks and observers.

To be successful, empirical handles are needed

on the notoriously slippery components of RAP.

The remainder of this paper discusses recent

developments that provide the first tools to visualize

aspects of R (‘reverse correlation’) and P (‘Bubbles’).

We will introduce reverse correlation and Bubbles,

in each case presenting illustrative examples of

their application and generic algorithms for their

operation. We then discuss the complementarity of

the techniques and, finally, how they relate to the

available information A. At the outset, it is worth

pointing out that these tools are by no means a

panacea. However, they nonetheless provide

important empirical handles on important

constructs of cognitive science that have so far

proven elusive.

Reverse correlation

Wiener showed that noise could be used to analyze

the behavior of a black box, even suggesting that the

brain could be studied that way [6]. His method is now

known as reverse correlation. Later, Ahumada and

Lovell [7] modified the technique and made it

suitable to applications in psychophysics.

To illustrate, imagine that we add Gaussian white

contrast noise to the letter ‘A’ to generate thousands

of noisy stimuli. (Adding such noise when the

Gaussian distribution has a mean of zero and

standard deviation of 0.1, for example, means that

95% of the pixels of the ‘A’will be less than 0.165

away from the original contrast, see Fig. 1a.) If we

averaged the noisy letters, we would retrieve the

original signal ‘A’. Imagine an observer that has to

decide whether or not a stimulus contains ‘A’. He can

make two possible responses (‘yes, the signal is

present’ or ‘no, the signal is absent’) in each one of two

possible conditions of stimulation (signal + noise, or

noise alone). This leads to four possible classes of

response (see Fig. 1b): a Hit (say ‘Yes’when ‘A’ is

present), a False Alarm (say ‘Yes’when ‘A’ is absent),

a Miss (say ‘No’when ‘A’ is present), or a Correct

Rejection (say ‘No’when ‘A’ is absent).

Reverse correlation derives a Classification
Image from the stimuli associated with the four

classes of responses. Suppose we kept a record of all

the stimuli that led to a hit and a false alarm. We add

them together to obtain a Yes Image that depicts the

information that elicited that response (see Fig. 1b).
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Fig. 1. (a) Three signal + (Gaussian) noise stimuli and three noise-only stimuli. (b) The four classes of
possible response, and the steps involved in the computation of the Classification Image (see text).
Computer simulations produced the observer’s responses. For each noisy stimulus, the model
computed the city-block distance to the ‘R’ template that approximates the ‘A’ signal. It positively
matched ‘R’ with ‘A’ (a ‘yes’ detection response) whenever the stimulus was closer to the mean of the
signal + noise distribution. By contrast, when the stimulus was closer to the mean of the noise-only
distribution, the model produced a ‘no’ rejection response. Noise level was adjusted to maintain
performance at ~75% correct.



Likewise, we add the stimuli associated with a miss

and a correct rejection to derive a No Image
depicting the information that led to that response.

The Classification Image is the difference between

the Yes Image and the No Image. It depicts the

representation that the observer used to detect ‘A’

against noise.

The Classification Image in Fig. 1 depicts an ‘R’

(for Representation), even though the original

signal was only a noisy ‘A’ (for Available). Where did

the right leg of the ‘R’ come from? The answer

illustrates the power of reverse correlation: it can

reveal ‘hidden’ information about a representation

in memory when this representation is used to

categorize the input. Specifically, when the observer

matches the memorized template ‘R’ against the

input, noise in the input is sometimes interpreted as

the right leg of the memorized template (irrespective

of whether or not the signal ‘A’ is present). Across

many trials, this interaction between the observer

and the input reconstructs the missing leg of ‘R’

from noise. The reconstruction happens because the

representation ‘R’ (not ‘A’) drives the categorization

process; it is a top-down reconstruction of

represented memory structures. False Alarms and

Misses are crucial for this reconstruction. Without

them, Hits would only depict ‘A’, and Correct

Rejections would be a homogeneous image. In

practice, noise is adjusted to a level that maintains

about 25% categorization error [8].

Reverse correlation addresses the R of R ⊗ A ≈ P :

it provides a behavioral handle on internal category

representations. The technique has been

successfully used in a number of domains ranging

from features of auditory signals [7,9–11],

electroretinograms [12], visual simple response time

[13], single pulse detection [14], vernier acuity

[8,15], stereopsis [16], letter discrimination [17–19],

single neuron’s receptive field [20–27], see [28] for a

review, modal and amodal completion [29], face

recognition [19,30], scene discrimination [31], to

attention [32].

We will now illustrate the application of reverse

correlation with three specific examples. The first one

tackles the low-level vision problem of the shape

(i.e. representation) of the receptive fields of LGN,

simple cells and complex cells. The second example

from [29] addresses one problem in middle-level

vision: the representation underlying the perception

of illusory contours. The third example from [19]

turns to high-level vision to depict the properties of

object representations. Together, these examples

illustrate the wide application of reverse correlation.

Reverse correlation and the representation of
receptive fields
In their seminal studies, Hubel and Wiesel

examined the receptive fields of single cells in the

visual pathway [33,34]. The receptive field of a cell is

the portion of the visual field to which the cell

responds. Single cells in different parts of the visual

stream respond optimally to different patterns of

light impinging their receptive field. For example,

the on-center/off-surround cell (LGN) (see Fig. 2a,

left) fires maximally to the pattern of one spot of
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Fig. 2. Spatial receptive field (RF) structure of the major classes of
neurons in the geniculostriate pathway. (a) Schematic and
experimental profiles of the RF of an ON-center neuron from the LGN of
a cat. Left, in the traditional depiction, the RF has a central ‘ON’ region
(+), responsive to the onset of a bright stimulus, and a surrounding
‘OFF’ region (−), responsive to the onset of a dark stimulus (or the offset
of a bright stimulus). Right, a 2-D spatial (x,y) RF profile for an
ON-center LGN cell, as measured using a reverse correlation technique.
Regions of visual space that are responsive to bright spots are
delimited by solid contour lines; regions responsive to dark spots are
represented by dashed contours. Darkness of shading is proportional to
response strength. A center-surround structure is clearly seen in this
profile, although the surround is fairly weak. (b) Left, the spatial RF of a
simple cell in visual cortex V1 exhibits an alternating arrangement of
elongated sub-regions that are responsive to either bright (+) or dark (−)
stimuli. A measured RF profile for a simple cell from cat striate cortex
(area 17) is shown on the right as a contour map (conventions as in a).
(c) Left, spatial RF structure of a complex cell. Pluses and minuses are
shown throughout the field, indicating that the cell responds to both
bright and dark stimuli at every position. Right, the RF profile of an area
17 complex cell, as measured using reverse correlation. Because
regions responsive to bright and dark stimuli overlap, separate profiles
are shown for bright and dark stimuli. (Adapted from DeAngelis,
Ohzawa and Freeman [28].)

‘Reverse correlation... can reveal

’’hidden’’ information about a

representation in memory when

this is used to categorize the input.’



light hitting the central green area of its receptive

field, and no light in the surround red area (see also

Fig. 2b and c, left images, for other examples of

receptive fields). Thus, a receptive field is a pattern

against which incoming light is matched to drive the

response of a cell.

Reverse correlation has recently been applied to

precisely derive the shape of various receptive fields.

For example, DeAngelis, Ohzawa and Freeman [22]

presented a continuous flow of pseudo-random

stimuli (i.e. patterns of spots and bars) to the eyes of a

cat, and continuously recorded the spikes of one

neuron (e.g. in the LGN) ( see also [21]). Remember

that reverse correlation reconstructs a representation

from noise when this representation is used to match

the input. DeAngelis et al. correlated the range of

responses of a cell with the noisy inputs [22]. In a

nutshell, a high (vs low) firing rate indicates a high

(vs low) match (i.e. correlation) between the noisy

stimulus and the optimal pattern of light in the

receptive field of the cell. The rightmost image in

Fig. 2a depicts the outcome of such a procedure.

(The right images in Fig. 2b and c show the same for

different types of cells.) It demonstrates not only that

the receptive fields have their expected shapes, but

also that the sensitivity of a given receptive field can

be very precisely mapped.

Reverse correlation can thus be used to identify

the representation underlying what is assumed to be

the perception of the real contours (at the level of the

neuron). We will see in the next section that the

technique has also been applied to a problem at a

higher level of visual organization: the perception of

illusory contours – that is, perceived contours that do

not physically exist in the image.

Reverse correlation and illusory contours
Casual observers would experience no difficulty in

classifying the leftmost and rightmost objects of the

top row of Fig. 3 as a thin square and a fat square,

respectively. For these judgments, they would use the

available information, A, of real convex and concave

contours. Perhaps more surprisingly, they can still

resolve the task with only the sparse information of

the second row. Here, observers perceive ‘illusory

contours’appearing between the openings of the

slightly rotated ‘Pacmen’ [35]. Illusory contours are

not present in the images; they are not in A, the

available input information. However, are they

present in R, the representation used to classify the

squares as thin or fat?

Gold, Murray, Bennett and Sekuler used reverse

correlation to address this question [29]. Their

observers saw fat and thin Kaniza squares embedded

in Gaussian white noise. As explained earlier, the

authors collected in separate bins the stimuli for

which observers made Hits, False Alarms, Misses

and Correct Rejections. After adding the Hits and

False Alarms to obtain the Yes Image, and the

Misses and Correct Rejections to obtain the No
Image, they subtracted the No Image from the Yes
Image to obtain a Classification Image.

Figure 3 summarizes the results of the

experiment. The left and right columns illustrates

the different conditions of ‘thin’ and ‘fat’ signals,

respectively. From top to bottom, the rows depict the

conditions of real contours, illusory contours,

occluded completion, textured-occluded completion,

and fragmented images. In each row, the central

column represents the corresponding classification

image (the red Pacmans are displayed for visibility).

Inspection reveals that all classification images but

one (the fragmented condition) demonstrate the use

of represented vertical contours to perform the thin

vs fat square task. However, these contours were

only present in one condition of stimulation (real

contours, top row).

Reverse correlation and object representations
We applied reverse correlation to the higher-level

problem of depicting the properties of internal object

representations in memory [19]. In Experiment 1, an

observer was instructed to detect the presence of the
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Fig. 3. Illustration of stimuli and results from Ref. [29], mapping the
behavioral receptive field for visually completed contours. Each row
corresponds to a different condition. Columns (a) and (b) show thin and
fat stimuli, respectively. In the experiment, each corner Pacman was
rotated by ±1.75°. The Pacmen of the stimuli shown in the figure have
been rotated by ±3.5° for clarity. Column (c) shows smoothed average
classification images, combining data from three observers. In other
words, it shows the locations of the stimuli observers used in
discriminating thin and fat; black and white pixels indicate the most
significant locations. (Red inducers have been superimposed for
visibility.) Note that for all conditions except the fragmented one,
observers use information in essentially the same locations, although
there is no physical contour located there in the case of illusory,
occluded, and textured-occluded objects.



letter ‘S’ on half of the trials. In Experiment 2, an

observer had to discriminate a smiling, from a

non-smiling face. However, and this is crucial to the

design of these experiments, observers were only

stimulated with white noise fields. That is, no signal

(i.e. a ‘S’ letter or a smiling mouth) was ever added to

the fields of white noise. However, observers firmly

believed that they perceived an ‘S’ letter in

Experiment 1, and a smiling face in Experiment 2.

As a white noise sequence does not represent any

coherent structures in the image plane, these

superstitious perceptions must arise from the

observer’s share. Using reverse correlation, we were

able to depict the observer’s internal representation

of an ‘S’ and a smiling mouth (see Fig. 4).

Interestingly, the spectral composition of the

classification images corresponded in both cases to

the most efficient bandwidth for the recognition of

natural letters and face expressions [36–38].

Note that this application (and that of Ref. [22])

captures the essence of the reverse correlation

technique: classified noise enables a reconstruction

of hidden structures. This is closer in spirit to

Wiener’s original proposal and presents the main

advantage that it cannot introduce any bottom-up

(signal) bias in the classification responses. The main

disadvantage, however, is that classic psychophysical

methods cannot be applied (e.g. d′ computations).

In summary, the examples have shown that

reverse correlation can reveal theR of R ⊗ A ≈ P .

It does so via a reverse projection of a represented

structure onto noise. In low-level vision, we have seen

how this process could reconstruct the shape of

receptive fields of LGN, simple and complex cells.

Turning to middle-level vision, the technique revealed

the representation underlying the perception of

illusory contours. In high-level vision, it revealed the

properties of an ‘S’and a smiling mouth represented

in memory. In all cases, the depiction of R comprised

information that was not immediately visible inA.

We now turn to another component of RAP – P, the

potent information, and Bubbles, a new technique to

visualize it.

Bubbles

To introduce Bubbles, consider again the six blind

men sparsely sampling information from an

elephant. Assume now that they can communicate

their respective viewpoint. Together, the blind man

thinking that the elephant is a fan, and the blind

man thinking that the elephant is a column might

wrongly conclude that they are both facing a tree.

However, the blind men thinking that they are

respectively facing a snake, a rope and a wall could

rightly infer that the object is an elephant. To

categorize the elephant, the blind men would need

to find the potent combinations of viewpoints.

Bubbles’ modus operandi is similar to this: the

technique samples a stimulus space while keeping

track of the samples that lead to successful

categorizations. Potent information is the expected

outcome of Bubbles.

Going back to the letter example, suppose that ‘A’

is displayed behind an opaque mask punctured by a

number of randomly located Gaussian holes (called

‘bubbles’, see Fig. 5a). The observer must decide

whether or not the image behind the mask matches

their represented ‘R’. In such conditions of sparse

information, the bubbles may, or may not, reveal the

potent information allowing the classification.
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Fig. 4. (a) In the letter experiment of Ref. [19], observers only saw
50 × 50 static-bit, white-noise images. A, raw classification image;
B, distribution of the average squared amplitude energy for different
spatial frequencies of the classification image (expected energy =
constant); C, classification image filtered with a low-pass (Butterworth)
filter with a cut-off at 3 cycles per letter. A black ‘S’ on a white
background is revealed. (b) In the smiling face experiment, the white
noise comprised 27.5% of the black pixels of the contours of a
mouthless face (indicated with a red marker in A and C) randomly
sampled. A, raw classification image; B, distribution of the average
squared amplitude energy for different spatial frequencies of the
classification image (expected energy = constant); C, classification
image filtered with a low-pass (Butterworth) filter with a cut-off at
30.52 cycles per face. A smile showing the teeth is revealed.



As in reverse correlation, we turn to the

observer’s responses to unravel the potent

information. In Correct Image, we sum all the

bubbles leading to Hits and Correct Rejections

(see Fig. 5b). In Incorrect Image, we sum all the

bubbles leading to Misses and False Alarms. We

then derive the Proportion Image by dividing 

the Correct Image by the sum of the Correct
and the Incorrect Images (or the arithmetically

equivalent operation shown in Fig. 5). The

Proportion Image is an ‘attentional mask’ that

weighs the importance of each region of the input

space for the task at hand. In our letter example,

the Proportion Image reveals the letter ‘P’, the

information of ‘A’ that is potent to categorize ‘A’ as

‘R’. Note that ‘P’ is the intersection of the

represented information ‘R’ with the available

information ‘A’.

Categorization errors are important in Bubbles.

If the observer performed the experiment without a

single error, we would conclude that any random

selection of bubbles contained sufficient information

to classify the input. In contrast, categorization

errors reveal the bubbles that did not contain potent

information. In practice, the number of bubbles

puncturing the opaque mask is adjusted to maintain

an error rate of about 25% [4].

Bubbles for face identification
In high-level vision, we used Bubbles to understand

the potent information underlying face identification

[4]. To generate stimuli, we first decomposed the

individual faces into six spatial frequency

bandwidths of one octave each (see Fig. 6a and b).

The bandwidth containing the coarsest information

was used as a background. For the other bandwidths,

we created an independent mask punctured with

bubbles whose size was adjusted to the scale

considered. The faces observers actually saw were

reconstructed by adding the face information

revealed at each scale by the bubbles. The observers’

task was to identify the displayed face in a

10 alternative-forced-choice paradigm (there were

10 different identities, 5 males and 5 females).

To derive P we computed a different Proportion

Image per scale (Fig. 6c). For readability, we

multiplied the scale information of Fig. 6b with the

potent masks of Fig. 6c to obtain Fig. 6d. At the finest

scale, the eyes and a corner of the mouth stand out

(see the leftmost picture in Fig. 6d). At the next to

finest scale the information comprises the eyes, the

nose and the mouth. The next scale is closer to a

configural representation of the face: together, the

eyes, the nose, the mouth and the chin form a

meaningful recognition unit, but in isolation, none of

the features could identify the face [5,39–41]. At the

next scale, the left side of the face silhouette is used;

lighting was always at the right side of the faces and

therefore their left sides were more shaded and more

informative. The potent, or effective face is

reconstructed by adding the potent information at

each scale (see Fig. 6e).

In summary, Bubbles is a general technique that

can assign the credit of a visual categorization task to

its potent visual information. In R ⊗ A ≈ P , potent

information mediates between representations and

available information. From a processing point of

view, the interaction between the human observer

and randomly located bubbles can be depicted as a

random search for potent information in the space of
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Fig. 5. (a) Three stimuli of signals revealed by bubbles (50 Gaussian bubbles with a 2 pixels standard
deviation) and, on the right, bubbles alone stimuli. (b) The four classes of response, and the steps
involved in the computation of the Classification Image. The data were obtained by computer
simulation. For each bubbled image, the model computed the city-block distance to an ‘R’ template
(with bubbles) that approximates the ‘A’ signal, and responded ‘Yes, present’ when the stimulus was
closer to the mean of the distances of the signal-revealed-by-bubbles, and ‘No, absent’, when the
stimulus was closer to the mean of the distances of the bubbles only. The number of Gaussian
bubbles with a standard deviation of one pixel was adjusted to three to keep the performance of the
observer at ~75% correct responses.

‘...Bubbles is a general technique

that can assign the credit of a visual

categorization task to its potent

visual information.’
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available information. With enough trials, a random

search is exhaustive and all the search space is

explored. It is worth pointing out that the search

space can be abstract. It does not need to be tied to

the image space (e.g. in the face example, one of the

dimensions of the search is scale, but the search can

be generalized to more abstract spaces, translation

invariant, colored, and so forth).

RAPping it all up

R ⊗ A ≈ P can frame the information problem of

visual categorization tasks. To be fruitful, RAP
requires powerful handles on the nature of R (reverse

correlation), P (Bubbles) and A . What is A , then? A is

the information formally useful to resolve a specific

task. To illustrate, imagine an observer in a toy world

who must identify 10 images, which are equal in all

points but for 100 varying grey-level pixels. Formally,

only these 100 pixels form A , because they are all

useful to resolve the task. If the grey scale had

256 levels, A would be 100 × 8 bits of information.

If our observer had a perfect memory he could use

each one of the 100 pixels to memorize the 10 images –

for a total memory resource of 100 × 8 × 10 bits of

information. To this ideal observer, the information in

memory would equal the information available to

resolve the task, and R ⊗ A ≈ P would be A ⊗ A ≈ A .

Reverse correlation would reveal that A ⊗ A ≈ A , and

so would Bubbles, because each informative pixel can

individuate the 10 faces for the ideal.

Human observers cannot represent the 10 images

with all of the information in A . Instead, they

typically encode visual events with sparse

representations that comprise only the most useful

information in the task. A capacity-limited

information bandwidth observer could isolate a

subset of 10 pixels from the available 100, represent

the 10 images in terms of these 10 pixels, and

dismiss the remaining 90 available pixels. This

information reduction would transform A ⊗ A ≈ A
into R ⊗ A ≈ P , to reflect that only 10 pixels of 

potent information represent the images in the

memory of this observer (i.e. 10 × 8 bits of

information per image).

From A and P, we could measure the ‘efficiency’

[42] of the sparse observer in comparison to the ideal.

In our example, the efficiency is related to P /A.

Specifically, (10 images × 10 pixels × 8 bits)/

(10 images × 100 pixels × 8 bits) = 0.1. Note that if

the human observer was omniscient, its efficiency

would become P /A = A /A = 1. Efficiency measures the

proportion of available information that the observer

can use to resolve a task.

To identify R , we note that human observers

have biases and beliefs that are independent of the

information diagnostic in the task. Observers could

believe that a certain number of pixels distinguish

between the face when they do not. These pixels

would neither be part of A (because they are

constant across images), nor part of P (because

useless pixels cannot be potent), but nevertheless

be represented in memory, to represent contrasts

with other categories.R then differs from P and A,

hence R ⊗ A ≈ P.

Conclusions

This article has developed RAP, a framework to

characterize problems in vision. We have seen how

reverse correlation provides a behavioral handle on

representations, Bubbles tackles potent information,

and suggested that the ideal observer could

characterize the available information. Our

technique emphasizes the role of potent information,

and we would contend that the failure to acknowledge

the role of potent information is one of the reasons

underlying the difficult dialogue between the

domains of high- and low-level vision.
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(a)

(b)

(c)
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(d)

Fig. 6. The outcome of Bubbles in Experiment 2 of Ref. [4]. Participants learned 10 identities. They
then attempted to identify the faces revealed by bubbles. The number of bubbles was adjusted to
maintain the performance constant at 75% correct responses. Images in (b) represent five
independent scales of (a) from fine to coarse: 90, 45, 22.5, 11.25, and 5.62 cycles per face. (c)
Statistically significant potent regions at each spatial scale. (d) is the product of (b) multiplied by (c).
(e) is the potent stimulus: a depiction of the information used to identify faces in Experiment 2.
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