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Abstract

We present a technique called Random Image Structure Evolution (RISE) for use in experimental
investigations of high-level visual perception. Potential applications of RISE include the quantitative
measurement of perceptual hysteresis and priming, the study of the neural substrates of object percep-
tion, and the assessment and detection of subtle forms of agnosia. In simple terms, RISE involves the
measurement of perceptual and/or neural responses as visual stimuli are systematically transformed—
in particular, as recognizable objects evolve from, then dissolve into, randomness. Points along the
sequences corresponding to the onset and offset of subjects’ percepts serve as markers for quantita-
tively and objectively characterizing several perceptual phenomena. Notably, these image sequences
are created in a manner that strictly controls a number of important low-level image properties, such as
luminance and frequency spectra, thus reducing confounds in the analysis of high-level visual processes.
Here we describe the RISE paradigm, report the results of a few basic RISE experiments, and discuss a
number of experimental and clinical applications of this approach.
© 2003 Cognitive Science Society, Inc. All rights reserved.
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1. Introduction

Conventional studies of high-level visual perception, and especially those of object recog-
nition, typically characterize behavioral and/or neural responses to stimulus images depicting
various objects or scenes. In addition to numerous behavioral experiments, examples of such
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studies include electrophysiological studies of inferotemporal (IT) cortical neurons which
assess cells’ responses to images of objects such as faces, hands, toilet-brushes, and so on
(Desimone, Albright, Gross, & Bruce, 1984; Perrett, Hietanen, Oram, & Benson, 1992), and
functional neuro-imaging studies that attempt to identify object-specific cortical areas (e.g.,
Kohler, Kapur, Moscovitch, Winocur, & Houle, 1995; Puce, Allison, Gore, & McCarthy, 1995).
However, one can argue that functional interpretations of the responses observed in these studies
are based on what amounts to a sparse and, more importantly, relatively unsystematic sampling
of the space of all possible stimulus images. When the dependent variable is sampled in this
manner, interpreting and extrapolating from the obtained data amount to ill-posed problems.
(One can imagine the difficulty of plotting a curve as a function of an independent variable
x if too few data points exist, if these points are distributed too unevenly along thex axis, or,
worse, if there is no formal metric by which to represent the variations inx along the abscissa.)
Further, in order to interpret the results of such experiments, it is of great importance to ensure
that the seemingly high-level effects of interest are not contaminated by low-level confounds
(e.g., covariation in stimulus contrast, power spectrum, etc.). We have developed a flexible new
approach, called Random Image Structure Evolution (RISE), that addresses these issues by
probing responses to dense sets of visual stimuli that are sampled in a systematic fashion and
controlled for a number of important low-level properties (in particular, spatial frequencies,
luminance, and contrast).

As depicted schematically inFig. 1, images can be thought of as points lying in a high-
dimensional space, where each dimension corresponds to one of the ways in which images
may vary. (For instance, a 100× 100 pixel grayscale image may be represented as a point in
a 10,000 dimensional space, with each dimension corresponding to the luminance of a pixel.)
RISE enables the generation and experimental presentation of sets of visual stimuli sampled
from this space at various distances from any image of interest. These sets of images can be
thought of as trajectories through image space passing through pre-selected or even random
images. By enforcing “continuity” in its sample set, and by providing a simple metric that relates
the stimulus images to one another, RISE allows for a meaningful comparison of responses
across the entire set of images. Thus, one can examine how responses change in moving from
one point along the trajectory to its neighbor and correlate this change with the incremental
image-level change. Discontinuities or pronounced nonlinearities (i.e., “categorical” changes)
in response while moving along a continuous trajectory may be of particular significance since
these may signal the onset of high-level visual and cognitive events. As explained above, an
unsystematic selection of points from the image space does not allow such analysis, in so
far as one would not be able to represent such changing response profiles with respect to a
quantitative, ordered series of values of a (continuous) independent variable.

Working with systematically sampled and continuous trajectories rather than isolated points
can greatly enhance one’s experimental and analytical repertoire. Changes in a variety of
attributes may be measured as a function of the position along these image trajectories; in ad-
dition to basic perceptual responses (e.g., the onset of object recognition), these attributes may
include measures of neural activity as well as theoretical indices of the information content of
the stimuli. By analyzing the mutual correlations of these behavioral, neural, and image-based
variables while simultaneously removing as many confounding factors as possible, one may
obtain information critical for answering a host of important questions in high-level vision.
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Fig. 1. Conceptually, a given image can be said to correspond to a point lying in a high-dimensional “image space,”
as shown here schematically. Specific images of objects and scenes, of the kind used in most recognition studies
constitute a very sparse subset of points in this space (filled circles). Making inferences about high-level visual
processes based on responses measured at a few, possibly quite disparate points is something of an underdetermined
problem. The motivation behind RISE is to overcome this problem by studying perceptual and neural processes
along continuous trajectories (black curve) passing through specific points of interest in this image space. Such
trajectories, then, are simply image sequences depicting well-controlled visual transformations.

This is the key motivation underlying the RISE paradigm. Here, we describe the basic method-
ology of RISE and, as a starting point, the results of RISE experiments concerned with such
phenomena as perceptual hysteresis and priming. We also discuss a number of other interesting
and important ways in which the RISE paradigm might contribute to the study of high-level
vision, including the characterization of the neural substrates of object perception, the quanti-
tative assessment of priming, and the exploration of perceptual learning and development, not
to mention the study of top–down influences on early visual areas.
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2. The RISE paradigm

2.1. Stimulus image processing

RISE can be thought of as a specific type of morphing (Benson & Perrett, 1993; Busey, 1998;
Shelton, 1998) or image degradation procedure (e.g.,Dolan et al., 1997; James, Humphrey,
Gati, Menon, & Goodale, 2000; Snodgrass & Corwin, 1988; see alsoHarmon & Julesz, 1973).
A very simple version of this technique proceeds by exchanging randomly selected pairs of
pixels in an image. As these replacements accumulate, the original image dissolves into a
random field. This procedure can be carried out in reverse order as well, allowing the image
transformation to be displayed backward as well as forward. As such, the first half of a sequence
(“onset” subsequence) could show the image emerging from a random field, while the second
half (“offset” subsequence) shows the image disappearing back into randomness. (SeeFig. 2
for a sample sequence.) Thus, the two extremes of a complete sequence are random patterns
while the midpoint is a fully constituted image; this may be thought of as a continuous trajectory
in image space passing through the original image as its midpoint. The sizes of the flipped
regions and the spatial extents of the transpositions (with small extents leading to local structure
randomization) are under the experimenter’s control. Of course, the original image may depict
anything of interest (e.g., an object, face, scene, abstract shape, etc.).

Besides being computationally simple to implement, this procedure possesses a very attrac-
tive characteristic: it precisely maintains global photometric attributes such as luminance and
color histograms. This avoids confounding of the experimental results with changes in these
low-level attributes. This technique has one shortcoming, however, which it shares with other
approaches in which images are scrambled or partially occluded (e.g.,Grill-Spector et al.,
1998; James et al., 2000) or are subjected to additive or multiplicative noise (e.g.,Rainer &
Miller, 2000): it does not preserve the frequency spectrum of the source image. That is, an un-
intended side-effect of these techniques is the disruption of the original distribution of spatial
frequencies (ranging from sharp edges to smooth gradients, each with a specified orientation)
that compose the image of interest.

In image scrambling, the increasingly fragmented or pixelated images are constituted pro-
gressively more by higher frequencies, especially those coinciding with the cardinal axes—that
is, the more scrambled images are composed by sharper edges, particularly ones oriented ver-
tically and horizontally. One can readily imagine the many sharp edges that are produced in
an image when one divides a picture of a relatively smooth object (e.g., a face) into small
squares and then randomly rearranges these squares. Unfortunately, not only is one very un-
likely to conserve the original frequency spectrum by blurring the scrambled images or by
adding higher frequencies to the original image (Grill-Spector et al., 1998), these may not be
particularly desirable manipulations in the first place.

In the case of noisy images, even if these are created by linear interpolation between a
source image and a randomized image with an identical frequency spectrum (Rainer & Miller,
2000), there can be no expectation of conserving the frequency spectrum at anywhere but the
extremes of the transformation. To see this, imagine a linear interpolation (i.e., a succession of
weighted averages) between two complementary black-and-white checkerboards, identical in
terms of luminance, contrast, and frequency spectrum. The result will be a series of grayscale
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Fig. 2. A sample RISE sequence generated by pairwise exchanges of image regions (here single pixels). A simple
presentation of these images would proceed in raster order (i.e., from left to right and top to bottom). The source
image appears in the first column of the sixth row.
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images, and, most strikingly, the mid-point image will be a uniform gray field. Clearly, this
transformation does not preserve the frequency spectrum of the original images. Perhaps even
more importantly, the luminance contrast of the images neither remains constant nor varies
monotonically: along the sequences, there is first a decline in contrast from the starting image
to the mid-point, then an increase back up to the contrast of the final image. (This issue is
discussed further below.)

There are a number of reasons why one would be interested in controlling (or, conversely,
selectively and actively manipulating) the frequency spectrum of the stimuli in experiments
interested in higher level vision. To begin with, the particular structure of the frequency spec-
trum of object images, and/or the relationship of these spectra to the complex manner in which
the human visual system filters and processes said images, can have very pronounced effects
on high-level perception. For example, it has been shown that, for the successful recognition
of faces, a relatively small range of frequencies from approximately 8 to 16 cycles across the
face are of surprisingly great importance (e.g.,Costen, Parker, & Craw, 1996; Nasanen, 1999;
Schyns, Bonnar, & Gosselin, 2002; and others). That is, there is a significant decline in subjects’
ability to recognize a face if in the stimulus image the information in this frequency band is
disrupted; conversely, recognition performance remains quite good when this frequency band
is preserved while other spatial frequencies are disrupted. (A detailed review of this topic,
looking also at objects and scenes and at questions of visual perception, attention, and repre-
sentation (e.g., the use of fixed vs. flexible coarse-to-fine strategies of spatial scale usage) can
be found inMorrison & Schyns, 2001.) Moreover, it has been suggested in this case that this
effect is likely a result of the properties of the human visual system rather than an intrinsic
characteristic of the images themselves (Gold, Bennett, & Sekuler, 1999), so that an analysis
of the stimulus images is unlikely to indicatea priori which frequency bands are more or less
important to conserve for recognition. In much the same vein, there has been work studying
the role of so-called spatial frequency channels for reading and letter identification (e.g.,Gold
et al., 1999; Legge, Pelli, Rubin, & Schleske, 1985; Majaj, Pelli, Kurshan, & Palomares, 2002),
and this too has explored the influence of spatial frequencies through both psychophysics and
more bottom–up image-based analysis.

Further, it has been of considerable interest to explore the relationship between the spatial
(as well as temporal) frequencies of visually presented stimuli and the corresponding neural
activity elicited within various structures in the visual system (e.g.,Singh, Smith, & Greenlee,
2000). Such work reinforces the notion that the spatial frequency content of images interacts
with the architecture of the visual system in such a way as to produce complex patterns of
neural activity observed throughout the brain even during relatively simple visual processing.
There has also been work discussing the relationship between spatial frequencies and high-level
visual processes such as basic-level object categorization, for example through the study and
modeling of the role of infants’ relatively weak visual acuity (which essentially filters out higher
frequencies making images appear more blurry) in biasing categorical perception (French,
Mermillod, Quinn, Chauvin, & Mareschal, 2002).

Given these considerations, a preferred alternative approach to the very simple image scram-
bling implementation of RISE is to first perform an analysis of the frequency spectrum (i.e.,
a Fourier analysis) of the source image, then manipulate the spatial structure of the image
without altering its original power spectrum (as well as the overall luminance and contrast
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of the image). In the Fourier domain, this can be done by altering what is called the phase
spectrum while retaining the amplitude (or power) spectrum. In fact, it has been shown that
much of the information specifying natural image structure lies in the global phase spectrum
(Oppenheim & Lim, 1981), so that randomizing the phase spectrum has the effect of degrading
the spatial structure of an image. (Further, replacing the phase spectrum of an image with
that of another image results in an image that resembles the donor of the phase rather than of
the amplitude spectrum; however, the lower-level attributes of the resulting image may better
resemble the donor of the amplitude spectrum.) As such, an alternative to the scrambling tech-
nique described above is to manipulate the source image in the Fourier domain, progressively
transforming the phase while holding constant the amplitude spectrum (Sadr & Sinha, 2001a,
2001b). In the case of the onset portion of a RISE sequence, then, the perfect image evolves
from a random-seeming starting image that has been constructed using a random phase spec-
trum combined with the amplitude spectrum of the original image. The onset subsequence is
achieved through progressive transformation of the random phase spectrum into that of the
perfect image, and the offset subsequence is simply this process in reverse. (SeeFig. 3 for a
sample sequence.) For those interested in perhaps implementing this technique or a variation
thereof, a more detailed description follows below. First, however, a brief overview of relevant
concepts in Fourier analysis may be in order.

As a starting point, the Fourier transform can be thought of as the decomposition of a signal,
e.g., a sound or an image, into a set of simple constituent signals (Bracewell, 2000; De Valois
& De Valois, 1988). One can imagine, for instance, how a sound wave might be composed of a
number of individual sine waves, each with its own frequency (e.g., 1 Hz, 2 Hz, etc.), amplitude,
and relative offset (angle or phase), along with a non-periodic (0 Hz or “DC”) baseline value.
Fig. 4shows how such a decomposition might look for a 2-D signal such as a 100× 100 pixel
image (Fig. 4a). Here, the Fourier transform, a collection of complex (i.e., real and imaginary)
coefficients, is further decomposed into its corresponding real amplitude and phase values
(Fig. 4b and c, respectively).

As depicted, the origin of the amplitude and phase spectra is situated at the center, with
the horizontal and vertical axes corresponding to horizontal and vertical spatial frequencies,
respectively. Here, for example, the vertical axis spans vertical spatial frequencies from−49
to 50 Hz, where Hz denotes cycles across the width or height of the image. (Notice that the
highest frequency coincides with one half of the resolution of the image. In one sense, the
finest edge that may reasonably be assessed by the Fourier transform is that between a pair of
pixels, and the limit here is 50 pairs, or 50 cycles along the image.) For real-valued signals,
“negative” frequencies simply represent complex conjugates of the positive frequencies, so
both the amplitude and phase spectra exhibit an inherent symmetry.

With amplitude and phase spectra in hand, one may reproduce the original signal, or a close
approximation thereof, using the inverse Fourier transform. Notably, if one manipulates the
amplitude and/or phase spectra prior to performing the inverse transform, these changes will be
reflected in the reconstructed signal. A common example is the creation of blurry images by the
attenuation of high frequency values in the amplitude spectrum; boosting these values produces
a sharper (and often noisier) image. Here, the focus is on manipulating the phase spectrum, and
we present a simple illustration to provide a sense of how such changes in the Fourier domain
may be reflected in the image domain.Fig. 4d–f depict the output of the inverse Fourier
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Fig. 3. A sample RISE sequence generated by progressive degradation of the phase matrix of the source image.
Although the technique progressively disrupts the spatial structure of the image, important low-level image properties
of the original image, such as the spatial frequency spectrum and overall luminance, are perfectly preserved.

transform following the randomization of phase values in specific frequency bands (1–16 Hz,
17–32 Hz, and 33–48 Hz, respectively). Whereas the output of the inverse Fourier transform
using the original phase and amplitude spectra would give an image virtually identical to the
original, each of these phase-manipulations results in a distinct disruption of the structure of
the image specific to the targeted frequency bands.

To perform the image transformations in RISE, then, we begin by performing a Fourier
transform, typically a discrete Fast Fourier Transform (FFT), of the original image of interest.
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Fig. 4. Simple illustration of Fourier analysis and phase randomization. Top row: (a) original image, (b) log of
amplitude spectrum, and (c) phase spectrum (values range from−π to π radians). Bottom row: output images from
inverse Fourier transform given original amplitude spectrum and modified phase spectrum randomized in the (d)
1–16 Hz, (e) 17–32 Hz, and (f) 33–48 Hz frequency bands.

We extract the amplitude and phase spectra from the complex elements of the FFT of the
image. Each of the images in the RISE sequence is produced by way of an inverse FFT
(IFFT) performed on the combination of the original amplitude spectrum with a modified
phase spectrum. As such, in our phase-manipulation implementation of RISE, all images in
the sequence have identical amplitude spectra and luminance.

In the simplest case, the original phase spectrum is gradually transformed into a random
one consisting of a similar distribution of phase values. Although a simple linear interpolation
may be used to achieve this transformation, we first perform a randomized operation on the
target (random) phase spectrum that, for approximately half of the elements, circumvents the
zero-crossings that would otherwise occur (i.e., the preponderance of zero and near-zero phase
values at and around the 50% interpolation level, resulting in a non-uniform phase distribution
with a marked mode at zero). This feature of the technique, discussed again further below,
serves to maintain the distribution of phase values over the course of the transformation and,
ultimately, to help control the contrast of the images produced. First, we randomly select half
of the target phase values. Second, for each of these values, we either add or subtract 2π. The
choice between adding or subtracting 2π is made in such a way as to yield a target value that is
of the same sign as the corresponding element in the original phase spectrum, thus no longer
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requiring these phase elements to pass through a value of zero during the interpolation between
their original and target values. For example, if a certain element of the original phase spectrum
has a value of 0.5 and is being interpolated to a final value of−0.5 in the randomized spectrum,
we essentially flip a coin and decide whether or not to add 2π to the final value (0.5) in order
to circumvent the zero-crossing (i.e., by interpolating from 0.5 to−0.5 + 2π rather than to
−0.5). For interpolations in the other direction (e.g., from−0.5 to 0.5), we would randomly
choose whether or not to subtract 2π from the target phase value.

Finally, there are two additional considerations regarding the target phase spectrum. First,
the phase value corresponding to the zero frequency (or DC component, seen at the center of
the spectra shown inFig. 4b and c) is not changed from that of the original. Second, because all
real-valued signals (e.g., normal sounds and images) have Fourier spectra that are symmetric,
we ensure at all times that the modified phase spectra retain this symmetry. In this way, the
IFFT does not produce signals that contain imaginary values and, consequently, images that
have undergone inadvertent changes in power spectrum.

When creating a number of RISE sequences for use in an experiment, it may in some cases
be desirable to perform certain pre-processing procedures on the source images. For example,
one may wish to ensure that all of the object images in an experiment (or experimental block)
have equivalent frequency spectra so that both within and across RISE sequences only the phase
spectra vary. One way of doing this is to collect the amplitude spectra of all the original object
images and from them create an average amplitude spectrum (e.g.,Bracewell, 2000); a new
set of source images could then be constructed by combining the average amplitude spectrum
with each of the unmodified phase spectra and performing the IFFT. It is worth noting that
the IFFT may give results beyond the range of acceptable luminance values (i.e., luminance
values less than zero or greater than those supported by the display); a simple linear shift and
rescaling of the luminance values can be performed to bring them into the correct range, but
precisely the same operation should be performed over the entire set of normalized source
images. In a similar fashion, one could precede the RISE image processing by normalizing the
luminance histograms of all the source images, a potentially important pre-processing step if
the original images vary a great deal in their luminance and contrast. Typically, this would be
done before rather than after the normalization of the amplitude spectrum. Finally, it may be
of interest to note that one can choose to have all of these RISE transformations converge to a
single final image. This is done quite simply, by choosing one random phase spectrum to serve
as the common end-point for all the interpolations.

For experimental purposes, we ensure that the random phase spectrum chosen for the image
sequence generation, in combination with the random addition and subtraction of 2π in the
interpolation, ultimately results in the monotonic evolution and degradation of the image (e.g.,
monotonic decrease and increase in absolute (L1) or the sum of squared differences (L2 dis-
tance) from the source image) during the onset and offset subsequences, respectively (Fig. 5).
More importantly, however, while the technique described above may allow a small drift in
image contrast, we nevertheless ensure that any such drift is monotonic across the desired
sequence of images chosen for presentation in a RISE experiment. (This can be done by select-
ing a different final random phase spectrum, for example, and/or by reassigning the random
additions and subtractions of 2π.) By comparison, another image degradation technique based
on simple interpolation of phase spectra (Rainer, Augath, Trinath, & Logothetis, 2001) has
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Fig. 5. Ten RISE sequences were generated, each based on 1 of 10 source images common objects. Here are plotted
the L2 distances (i.e., sum of squared differences) between each of the original source images and the images in
its associated RISE sequence. It can be seen that RISE image processing can be performed in such a way as to
ensure monotonic evolution and degradation within each of the onset and offset subsequences, respectively. Notice
that, because the source images appear in non-degraded form at the midpoint of the RISE sequences (i.e., at the
transition between the onset and offset subsequences), here the L2 distance is appropriately 0.

received strong criticism (Dakin, Hess, Ledgeway, & Achtman, 2002) due to the fact that it
produces image sequences with marked and non-monotonic changes in contrast. If one does
not compensate for changes in the distribution of the phase values, and specifically an increase
in the number of near-zero phase values toward the middle of the interpolation sequence, the re-
sulting images develop bright corners and lose contrast elsewhere. This results in an important
low-level confound in the interpretation of data collected using such image sequences.

Note that in addition to depicting the evolution/degradation of an image from/to a random
counterpart, with trivial variation this technique may also be used to “morph” between two
or more source images. In terms of the high-dimensional image space discussed above, such
transformations would correspond to trajectories connecting two or more pre-selected points
of interest. As above, the transformation of the phase matrices may be brought about by various
methods, such as by the modified interpolation scheme or by random, accumulating substitution
of elements. If the source images are first normalized in terms of their global power spectra and
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luminance, these will be held constant throughout the morph sequence, with the only change
being in the underlying phase.

2.2. Basic experimental paradigm

In the simplest case, using RISE sequences in which one pre-selected object image emerges
from and then dissolves back into a random field, one can obtain quantitative measures of
at least two important aspects of an observer’s percepts. The first of these may be called the
perceptual onset point, the position along the initial half of the RISE sequence where the
observer is first able to (correctly) identify the emerging image. The second measurement is
the perceptual offset point, the position along the second half of the RISE sequence beyond
which the observer is no longer able to recognize the target image. As discussed below, these
two measurements can be of great use in the study of numerous aspects of high-level vision, but
before proceeding to explore these potential applications, we first discuss how RISE sequences
may actually be presented to observers in an experimental setting.

Passive viewing of RISE sequences may be adequate in certain experimental settings. For
example, one can think of RISE image sequences as playing much the same role as the simpler
time-varying visual stimuli passively viewed in electrophysiology experiments designed for
subsequent reverse correlation analysis (e.g.,DeAngelis, Ohzawa, & Freeman, 1993). However,
for most behavioral and functional neuro-imaging experiments overt responses will be required
to assess subjects’ perceptual experiences. In fact, in such cases it is also important to establish
objective verification of the subjects’ perceptual reports. If subjects are naive as to the image
that will appear in a RISE sequence and are instructed to identify the image as soon as possible
during the onset subsequence, the subjects’ correct identification of the object presented can
serve to validate subjects’ verbal reports of perceptual onset. Objectively verifying perceptual
offset, however, requires a slightly more sophisticated approach.

A solution we propose is to insert distractor images throughout the original RISE offset
subsequence (Fig. 6). These distractors are taken from RISE sequences created from other
source images, with each distractor image chosen to be at a level of degradation between those
of the preceding and following images. As such, the resulting “mixed” RISE offset subsequence
depicts a series of images of progressively greater degradation, but each of these may or may not
be degraded versions of the original “target” image. As this mixed offset subsequence proceeds,
there will come a point when subjects can no longer recognize and reliably identify the presence
of the target image from among the distractors; this point serves as the measure of perceptual
offset. Obviously, with distractors present, subjects must actively report their frame-by-frame
percepts and cannot continue merely to automatically name the target item at each frame of
the offset subsequence. Moreover, subjects also can not rely on emerging noise patterns as a
means of identifying each item, because all items evolve toward the same degraded image.

What follows is a simple illustrative experiment using the RISE image processing and
stimulus presentation techniques described above. Here, we use RISE to measure the perceptual
onset and offset points of subjects for a small set of object images, in a manner resembling the
ascending and descending series in the method of limits. In the process, we obtain objective and
quantitative measures of perceptual hysteresis that are not confounded either with low-level
properties of the images or with the processes of image presentation or response collection.
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Fig. 6. A sample “mixed” RISE offset subsequence incorporating distractors. Here we have indicated the target
object by framing it in white. Throughout the sequence, the images have precisely the same luminance and frequency
amplitude spectrum (Fourier magnitude). Here, they also gradually converge to a common random phase spectrum.
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2.3. Experiment A: perceptual onset, offset, and hysteresis

2.3.1. Aim
The purpose of this experiment is to illustrate the use of RISE in objectively assessing

onset and offset points along a number of image trajectories and in obtaining objective and
quantitative measures of the effects of perceptual hysteresis.

2.3.2. Methods
2.3.2.1. Participants.Four students from the Massachusetts Institute of Technology (MIT) par-
ticipated in this study. All subjects provided informed consent and received payment according
to MIT guidelines.

2.3.2.2. Stimuli.Five RISE sequences, of the “mixed” distractor variety, were generated us-
ing the phase-manipulation technique described above. Each of the sequences depicted the
randomly interleaved evolution of one “target” object and 10 distractors. These sequences
were generated from 255× 255 pixel grayscale images of easily identified objects (seeFig. 7
for the five target objects), and the luminance histograms and amplitude spectra of all the
source images were first normalized, as described above, prior to the creation of the RISE se-
quences. Each onset and offset subsequence consisted of 75 images ranging, in steps of 2.5%,
from 50 to 85% interpolation of the source and random phase spectra, where 100% interpola-
tion corresponds to the unaltered (though pre-processed) source image. Starting from the first
frame of these mixed sequences, each group of five frames consisted, in random order, of one
target-object- and four distractor-object-based RISE frames, and, in a slight departure from the
distractor technique described above, each of the 15 groups of five frames would correspond
to a common interpolation level. For example, in frames 6 through 10, the target object (e.g., a
baseball) would be presented at the 52.5% interpolation level and might appear in frame 9; as
such, frames 6, 7, 8, and 10 would therefore depict various distractor objects (e.g., a house, a
dog, etc.), also at the 52.5% interpolation level. For each of the five 75-frame RISE sequences,
all the target and distractor images were interpolated toward a single, common random phase
spectrum. This results in the images becoming increasing indistinguishable the more they are
degraded.

2.3.2.3. Procedure.The experiment consisted of five blocks, each corresponding to one of the
target objects and consisting of one mixed RISE onset subsequence followed by its comple-
mentary offset subsequence. The stimuli were presented on a gamma-corrected CRT display
(minimum luminance:∼0–5 cd/m2; maximum:∼90 cd/m2) in a dimly lit room (∼5–10 cd/m2)
and were viewed binocularly. Each image in these sequences was presented for 750 ms and
subtended approximately 8◦ of viewing angle. At the end of each 750 ms presentation, the
image frame was overwritten with a black square. During this self-timed inter-stimulus period,
subjects pressed one of two keys, indicating whether they had or had not recognized the object
in the frame just presented. Subjects were naive as to what images would appear in each RISE
sequence and naive also, during onset subsequences, as to which object was considered to be
the “target.” As such, during onset subsequences, when subjects first reported being able to
recognize each of the objects, target or distractor, we were able to confirm their reports by
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Fig. 7. Onset and offset of object perception in RISE sequences for five objects, represented by the left and right
edges of each bar, respectively. Observers exhibit a marked perceptual hysteresis during the offset subsequence—the
transition from light to dark gray in each bar serves to indicate the reflection of the onset point about the vertical
axis. Data are averaged across four observers.

simply requiring that they also explicitly identify the object seen (by typing a word or two).
At the beginning of each offset subsequence, the target object was explicitly singled out and
perceptual offset was measured using the distractor technique described above.

2.3.3. Results
Fig. 7shows the onset and offset points for the five RISE sequences averaged across the four

observers. It is interesting to observe that although the progression of the RISE transformations
is relatively gradual, for all of the objects there appears to be fairly good agreement (i.e.,
relatively low variance) across subjects for both the onset and especially offset measures.
Coincidentally, the subjects’ responses included very few false alarms: over all the images
presented to all the subjects, there was only one incorrect (i.e., premature and subsequently
corrected) recognition reported during the onset subsequences, and, during the most degraded
tail of the offset subsequences, there were in total only four instances when subjects reported
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seeing the target image when it had not in fact been presented. (In general, of course, false
alarms can be a useful tool for analyzing the subjects’ percepts and behavioral biases, and
it is conceivable that either the RISE images themselves or the instructions to the subjects
could be modified in such a way as to promoted more false alarms. For our current purposes,
however, it seems beneficial and encouraging that there were so few incorrect responses.) These
findings correspond well with the participants’ subjective reports of the perceptual onset and
offset transitions as being fairly “sharp,” and that they were neither guessing nor struggling to
gauge their level of confidence before providing each response. Taken together, these results
demonstrate well the ability of the RISE technique to objectively and quantitatively assess
perceptual onsets and offsets, and to do so in a somewhat natural manner that agrees well with
the viewers’ subjective experiences.

Before concluding the discussion of the results of this experiment, it is of particular interest
to note the significant amount of perceptual hysteresis observed in the RISE sequences for
all objects. That is, offset can be seen to occur at a level of image degradation much greater
than which supports the onset of recognition,F(1, 30) = 101.4, p � .001. This result and its
implications are discussed further below.

3. Applications of the RISE paradigm

The RISE paradigm can be a very flexible and powerful tool in the investigation of several
open questions in high-level vision. In this section, we explore some of the more important and
intriguing applications of RISE, discussing a variety of RISE experiments that have already
been conducted as well as a number of exciting possibilities for the future.

3.1. Characterizing the neural substrates of object perception

The characterization of the neural substrates of object perception is an undertaking of pro-
found significance in psychology and neuroscience. Progress on this front not only brings us
closer to understanding the functional architecture of the brain, it may also bear more tangi-
ble benefits, such as improved diagnostic and therapeutic approaches in the clinical domain.
Previous studies have demonstrated the role of various parts of the brain in the processing of
basic perceptual attributes such as motion and color (Newsome & Pare, 1988; Van Essen &
DeYoe, 1995; Zeki et al., 1991). However, in terms of the neural substrates of more complex
perceptual faculties, though much progress has been made over the past several years (e.g.,
Martin, Wiggs, Ungerleider, & Haxby, 1996; Perrett et al., 1992; Puce et al., 1995), significant
gaps remain in our understanding.

Consider, for example, the well-researched domain of human face perception. In a typical
brain imaging or electrophysiology study, a neuron/area that responds more to images of
faces than to non-face distractors is often considered to be a “face-cell/area” (Perrett et al.,
1992; Puce et al., 1995). However, this methodology may not convincingly establish that the
neural response is indeed correlated with the “faceness” of the stimuli. The differential neural
response could very well be driven by some other attribute of the stimuli that has little to do
with their being (or not being) images of faces. In other words, it is conceivable that neurons or
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brain regions that appear to be differentially responsive to images of faces (i.e., as opposed to
images of non-face objects) nevertheless might also be responsive to images that are, in some
important way, “near” face images in the space of images but are not otherwise subjectively
perceived as faces or even face-like.Kobatake and Tanaka’s experiments (1994), wherein
complex visual stimuli, such as hands and tiger heads, were “simplified” without decrement
in neuronal responses, are a case in point.

The progressive change in neural activity, and how it correlates with changes in conscious
perceptual responses, as stimuli are systematically and continuously varied can be much more
diagnostic in establishing links between perceptual processes and neural activity. To this end,
RISE explores not merely the absolute levels of perceptual/neuronal responses for individual
images, but also how responses change as one moves towards or away from these images in
a systematic fashion along continuous trajectories in image space. Along these trajectories,
covariance of behavioral responses with the profile of neural activity, if found, would strongly
implicate a candidate neural substrate in the high-level perceptual processing of these stimuli.

For example, evidence of hysteresis in the neural response, correlated with perceptual hys-
teresis during the offset RISE subsequence could be particularly important for determining
whether the measured neural responses are purely stimulus driven or are related to the object
percept. Such investigations could be conducted using a combination of RISE and functional
imaging or electrophysiological techniques and would involve correlating neural recordings
with concurrently obtained behavioral data from either human or non-human subjects. It is
important to restate the fact that images in RISE offset subsequences are literally identical to
their counterparts in the onset subsequences, thus allowing for simple and direct comparisons
of their corresponding neural responses.

This simple strategy is similar to that employed in recent functional magnetic resonance
imaging (fMRI) work byKleinschmidt, Buchel, Hutton, Friston, and Frackowiak (2002)study-
ing letter recognition, wherein subjects’ perceptual reports were recorded as the luminance
contrast of a noisy image of a letter was ramped up and then down. (See alsoWilson, 1977for
earlier studies and modeling of hysteresis in binocular grating perception.) Because subjective
reports of perceptual offset occurred at lower levels of contrast than those corresponding to
perceptual onset, the authors could compare the functional imaging data for identical images
that had resulted in different perceptual reports. However, a similar analysis of the change in
neural activity at the pre-onset to onset transition (as well as the offset/post-offset transition)
would be problematic with this approach, given that the perceptual events of interest are con-
founded with the increase in stimulus contrast required to elicit them—a direct result of using
contrast ramping, rather than another degradation technique which could control for changes
in contrast, as the method for driving the perceptual changes of interest.

It is worth noting that while higher level perceptual processes such as object and face
recognition are generally considered to be relatively invariant to changes in luminance contrast,
this clearly does not hold within the range of contrast corresponding to the perceptual thresholds
themselves. (Otherwise, the manipulation byKleinschmidt et al., 2002, for example, simply
would not work in the first place.) Moreover, even when considering the recognition of object
images presented at contrast levels above perceptual threshold, a recent fMRI study of the
corresponding brain activity along the visual cortical pathway has shown that the notion of
contrast invariance in higher level processing should be considered more a matter of degrees
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than an absolute (Avidan et al., 2002). During changes in luminance contrast, activity in early
visual cortex (e.g., V1) was seen to vary more than the activity in the lateral occipital complex
(LOC), again supporting the notion of increasing contrast invariance at higher levels of visual
processing; however, it is important to not discount the finding that the responses measured in
the LOC nevertheless did also vary with changes in contrast. (To further complicate matters,
the degree of contrast-sensitivity in the higher visual areas was also modulated by the nature of
the objects presented (e.g., faces vs. cars).) As such, even though activity in higher level visual
areas such as the LOC is generally correlated with relatively complex visual processes (e.g.,
object shape processing;Kourtzi & Kanwisher, 2001), this activity can also be modulated, in
a non-trivial manner, by lower level features of the stimulus such as contrast.

A nice illustration of the integration of RISE with neuroimaging techniques may be seen in
a recent face perception experiment byLiu, Harris, and Kanwisher (2002)using magnetoen-
cephalography (MEG). These authors used a variant of RISE to produce degraded images of
faces and houses and to determine thresholds for, and characterize the neural responses cor-
related with, successful versus unsuccessful between- and within-class discriminations. With
this approach, it was possible to isolate a very early (100 ms) occipitotemporal MEG signal
component (“M100”) that appears to be tied to the successful categorization of a stimulus
as a face. Notably, unlike the face-selective N200/M170 component previously character-
ized byAllison, Puce, Spencer, and McCarthy (1999)and others, this earlier M100 compo-
nent does not seem to be correlated specifically with successful identification of individual
faces.

Again, it is of particular interest here to note one’s ability, using such an approach, to compare
early neural responses during trials in which subjects did or did not experience a task-relevant
object percept (e.g., were or were not able to make within- and between-class discriminations
of faces and houses). Because of the controls placed on the image processing, neural responses
for each of these images could be readily compared to one another with little concern of the
confounding contributions of differences in a number of important low-level image properties.
Also, while differences in appearance necessarily exist between the images corresponding to the
thresholds for between- versus within-class discriminations in this particular task, the crucial
difference between the two conditions is in the perceptual state (and behavioral response) of the
subject. (Indeed, while subjects generally tend to experience “eureka”-like perceptual onsets
with RISE, the image transform itself can progress rather gradually. As such, in addition to
their strictly controlled low-level properties, objectively speaking the images on either side of
the perceptual onset and offset thresholds may, in fact, also be rather similar in appearance.)
This is not unlike the ability to directly compare neural responses for correct versus incorrect
trials for repeated presentations of images at a given threshold level of degradation (i.e., images
that are actually identical but which elicit different neural and perceptual responses at different
times).

Along these lines, we have also undertaken some simple RISE-based MEG experiments of
object and face perception (Sadr & Sinha, 2003; Sadr, 2003), with plans for fMRI experiments
in the near future. In these experiments, neural activity is recorded using MEG as subjects
view and respond to RISE sequences of objects and faces. As above, the analysis of the neural
signals is guided by subjects’ perceptual reports: with behavioral responses in hand, RISE
stimulus trials and corresponding MEG data are classifiedpost hocinto trials corresponding
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to (as well as preceding and following) perceptual onset and offset. As withLiu et al. (2002),
we are able to identify specific occipitotemporal MEG signal components corresponding to
the conscious perception of faces and objects. Further, by exploiting the basic presentation
protocol of RISE onset and offset sequences (and by presenting the RISE sequence of each
object or face only once), we are able to characterize the changes in neural responses coincident
with perceptual onset and offset, along with those related to the phenomenon of perceptual
hysteresis.

Analogous fMRI experiments could greatly advance our ability to characterize the spatial
patterns of neural activity associated with perceptual onset and might allow us to better dis-
tinguish the activity correlated with the visual perception of objects of different classes. Such
experiments, and simple variants thereof, may help further our understanding of the neural
substrates underlying a number of important aspects of conscious perception (e.g., categor-
ical perception) as well as such phenomena as perceptual learning, priming, and hysteresis.
Moreover, such work would allow a more direct integration and comparison of RISE-based
techniques with the existing fMRI literature (e.g.,Avidan et al., 2002; Kleinschmidt et al.,
2002; and others).

3.2. Quantitative assessment of priming

Traditionally, the most commonly used indices of priming have been the reduction of re-
sponse latencies or the improvement of other task-relevant measures of performance (e.g.,
Bartram, 1974; Kosslyn, 1994). The RISE protocol provides a new priming index: the position
along the pattern evolution axis where an observer first recognizes the object being displayed.
This is a measure of the minimum amount of visual information a subject needs to perform
the detection task. Similar thinking underlies the line-drawing fragmentation (Snodgrass &
Feenan, 1990) and gradual “unmasking” (James et al., 2000) paradigms also used in the
study of visual priming, particularly repetition priming. In fact, it is important to point out
the relationship of these techniques to a seminal experiment byBruner and Potter (1964)
in which subjects formed early, and invariably incorrect, hypotheses regarding the content
of very blurry images; primed in this way, subjects took much longer to recognize the ob-
jects depicted in these images as they were brought progressively into focus. In our case, we
control a number of important image properties that can be confounded with higher level per-
ceptual effects during the progression of the image sequences. Also, we have decided here
to use our technique to study a form of priming not based on repeated visual presentations
of the target object images. That is, we prime subjects while still leaving them naive as to
the appearance and, in fact, the identity of the visual target stimulus. The simple RISE ex-
periment described below demonstrates that priming decreases the amount of information
required to visually perceive an object, leading to a shift toward earlier onsets along the RISE
trajectory.

3.2.1. Experiment B: priming perceptual onset
3.2.1.1. Aim.The purpose of this experiment is to illustrate the use of RISE in studying the
degree to which non-visual priming may shift the point of perceptual onset during the evolution
of an object from a seemingly random image.
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3.2.1.2. Methods.

Participants. Eight MIT students participated in this study. All subjects provided informed
consent and received payment according to MIT guidelines.

Stimuli. The stimuli for the priming experiment were identical to those used in Experi-
ment A.

Procedure. The procedure for the priming experiment was entirely identical to that of
Experiment A except for one manipulation, a concurrent word memorization task. Prior to
each RISE onset subsequence, the subject was asked to commit to memory one word and
instructed that their recall for that word would be tested at the end of the image sequence. They
were not told that for approximately half the trials, the word presented matched the common
name for the target image in the sequence (e.g., “baseball,” or “car”); for the other trials, this
word was unrelated to the target image that would be seen. The assignment of matching versus
non-matching trials was counter-balanced across subjects.

3.2.1.3. Results.Fig. 8 shows the onset points for the five RISE sequences, averaged across
matching versus non-matching verbal prime conditions. It can be seen that when the concur-
rent memory task involved a matching word, there was a significant shift of the perceptual
onset point toward a more degraded level,F(1, 30) = 34.34, p � .001. This suggests that
the matching verbal prime manipulation resulted in a reduction of the amount of visual infor-
mation required by subjects to correctly recognize the target images, even though the subjects
were naive to both the identity and appearance of the objects that would be seen. There was
no significant effect of or interaction with the specific identity of the object for each trial.
Also, although it may not be entirely appropriate to compare data across experiments, it is
perhaps worth noting that there was no significant difference between the onset points in the
unrelated-prime trials and the corresponding onset points measured in Experiment A (no prim-
ing), but there was a significant difference between the magnitude of this priming effect and
that of the hysteresis effect seen in Experiment A,F(1, 30) = 26.2, p � .001—the hysteresis
effect seems to produce a greater shift in the perceptual threshold.

The assessment of priming using RISE is particularly convenient because it does not require
precise measurement of small temporal effects or carefully controlled tachistoscopic image
presentations. If necessary, one could even perform RISE experiments, priming or otherwise,
without a computer; in the clinical setting, for example, patients could be tested using a set of
pre-printed cards. (One would first calibrate the printing process, of course, so as to not disrupt
the important image properties controlled by RISE in the digital images.) It is also of critical
importance that RISE allows priming and other perceptual effects to be studied independently
of motor influences. As long as the subject can in some way report the occurrence of these
perceptual events, the specific details of the motor responses are not necessarily of concern.
One consequence of this is that higher level perceptual processing (and deficits thereof) can be
studied even with subjects with motor impairments and/or in settings and situations in which
motor responses, especially reaction times, cannot be recorded precisely or reliably. Further,
because RISE transformations can be set to progress at any desired rate, this technique affords
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Fig. 8. Comparing onset of object perception with matching versus unrelated verbal priming induced by a concurrent
word memory task. Black bars correspond to mixed RISE presentations verbally primed by a word matching the
target objects’ name, while light gray bars correspond to the same RISE sequences primed by an unrelated word.
Matching word primes resulted in a significant shift toward earlier recognition of the target. Data are averaged
across four observers per condition.

almost arbitrarily high sensitivity to the subtle effects of various priming manipulations. In a
sense, this is analogous to having the ability to dilate time in a reaction time experiment.

3.3. Developmental and clinical studies

3.3.1. Normal and abnormal perceptual learning and development
Just as for experiments in priming, shifts in the onset point may be a useful measure in

studies of perceptual learning and development. For instance, one could use RISE to study
the development of children’s object encoding strategies, thought to progress from being local
feature-based to being more holistic or configural (Carey & Diamond, 1977, 1994). One can
generate and present to children RISE sequences in which configural information becomes ev-
ident sooner than fine featural details; we would hypothesize that, over time, children’s onset
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points will migrate out from the fully formed image. It could be instructive to correlate this mi-
gration with other indices of configural coding, such as recognition performance with inverted
faces (Bartlett & Searcy, 1993; Brooks & Goldstein, 1963; Diamond & Carey, 1986). Such an
approach would bear some relation to those taken byGollin (1960)and others (e.g.,French
et al., 2002) in their studies and modeling of perceptual and cognitive development and learning.

It is worth noting that data regarding onset points in normal child populations can also serve
as references against which to study the perceptual development of children with differing,
even abnormal developmental histories. Differences in the perceptual onset point for a given
child relative to that of age-matched controls can be used to detect developmental problems
ranging from the purely visual to those more cognitive in nature. The effectiveness of RISE as
a sensitive tool for discerning the consequences of atypical developmental histories has already
been borne out in a recent study which, using RISE sequences of faces as its stimuli, found
an enhanced perceptual sensitivity of physically abused children to anger cues in faces, along
with a reduced sensitivity to sadness cues (Pollak & Sinha, 2002).

3.3.2. Visual agnosias and prosopagnosia
In addition to the investigation of developmental changes and abnormalities, RISE is also

well suited to the study (and perhaps even the diagnosis) of other high-level perceptual
deficits. Associative agnosias and prosopagnosia, disorders in which basic visual processes
are spared but object- or face-recognition is specifically compromised (Damasio, Damasio,
& van Hoessen, 1982; Warrington, 1982; Farah, 1990; Rumiati et al., 1994), are of partic-
ular interest. Detecting and diagnosing visual agnosias can be a difficult undertaking, and
current tests, such as the Birmingham University Neuropsychological Screen andSnodgrass
and Vanderwart’s test set (1980), may not be sufficiently sensitive to detect subtle deficits.
The ability to name the objects depicted in the well-formed images typical of such tests does
not necessarily guarantee that recognition ability is fully intact, and it is possible that certain
perceptual deficiencies might become evident only with systematically degraded stimuli. As
such, by providing a quantitative measure of the minimal amount of coherent visual informa-
tion required by an individual to recognize an image, RISE may serve as a more powerful
tool for detecting and diagnosing visual agnosia. In particular, RISE might facilitate the detec-
tion of subtle and progressive agnosias or prosopagnosia (e.g.,Mendez & Ghajarnia, 2001) at
relatively early stages of advancement.

3.4. Studying top–down influences on early visual areas

It is reasonable to expect that phenomena such as perceptual hysteresis, of the kind observed
in RISE experiments, rely at least in part on high-level visual processes. It would be interesting
to determine if and in what manner such processes exert top–down influences on early visual
areas (Hupe et al., 2001; Jones, Sinha, Poggio, & Vetter, 1997; Seghier et al., 2000; Sinha &
Poggio, 1996, 2002). If, as discussed above, the activity in higher visual areas exhibits hysteresis
corresponding to perceptual measures, one could also search for evidence of such hysteresis
in earlier visual areas. As a starting point, one could test, for example, whether the firing of
an orientation-specific V1 cell is tied strictly to the presence of an oriented edge in an image
or if, during a RISE offset subsequence, its firing might survive the degradation of that edge,
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perhaps even to the point of perceptual offset. A similar experimental design can be used to
examine the low-level neural correlates of perceptual priming and learning.

4. Discussion

The intent of the present paper is to provide a working description of the RISE paradigm,
to supply some simple illustrations of its experimental use, and to discuss a few of the ways in
which it may be used in further explorations of important aspects of high-level visual perception.
However, the above exposition of the RISE paradigm is focused on one relatively simple
implementation of RISE, and it may be worthwhile to consider a few important variations on
this theme, along with a closer look at both high- and low-dimensional approaches to stimulus
spaces and trajectories.

In one perhaps obvious extension of RISE, one might imagine generalizing the technique
beyond individual, static source images to the domain of dynamic stimuli, such as image
sequences. For example, an entire image sequence depicting an object in motion could be
systematically subjected to progressive levels of degradation. This would produce an ordered
set of image sequences, each of which (varying from fully degraded to pristine) could be
presented in turn, just as an ordered set of static degraded images are presented during a simple
RISE presentation. Alternatively, the time-course of RISE (evolution and/or degradation) could
be arranged to coincide with the time-course of the dynamic event(s) depicted in the image
sequence. Conceivably, analogous approaches could also be taken for the manipulation of other
time-varying signals, such as speech.

Nevertheless, such technical variations as these, along with the relatively simple illustrations
presented throughout this paper, do not highlight a key attribute of the RISE paradigm: the
ability to create, for a single source image, multiple image sequences depicting transformations
to and from numerous end-points, random or otherwise. Returning to the notion of images as
points in a multidimensional image space, the basic idea would be to approach a given image of
interest from not one but several paths and, for each path, to determine the points of perceptual
onset and offset. In effect, onset and offset points would be recast instead as surfaces, and it is
reasonable to expect that these surfaces may not have simple (e.g., spherical) geometries. In
this manner, using finely-sampled trajectories to and from numerous, diverse end-points, one
should be able to describe the complex structure of these perceptual thresholds, as well as the
effects of such phenomena as priming and neurological deficits on these threshold surfaces.
(That said, in a recent replication of Experiments A and B, using image sequences based on
the same objects but generated using different random seeds, it was nevertheless reassuring to
find no significant differences in the overall results described above.)

In a simple multi-trajectory RISE experiment, one may prefer at the outset to measure the
multiple perceptual thresholds across rather than within subjects, since, for a given subject,
repeated exposure to one object would be expected to result in increasingly priming-shifted
onset measures. However, within-subject designs are still feasible, particularly if a number of
different objects are tested in a randomly interleaved manner across numerous blocks. The data
can be depicted using a combination of schematic polar-like plots, along with visualizations
of the threshold images themselves—for example, the image at the mean onset point for one
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trajectory could be compared with that for any number of other trajectories, as well as with the
original source image itself, in order to represent the visual information most likely involved
in the recognition of a given object.

It so happens, however, that with this approach, as described above in its simplest terms,
it may be difficult to extract object-parts-based analyses of the visual information driving
recognition. One may contrast this with various techniques designed precisely and primarily
for the extraction of task-relevant image structure (e.g.,Ahumada, 1987; Mangini & Biederman,
2001; Murray, Bennett, & Sekuler, 2002). This is partly due to our having thus far described only
a global-image implementation of RISE (which, further, manipulates the full phase spectrum;
see below), and while it is true that across a set of differing random trajectories there will
be a differential evolution of the parts of the source object, it is also true that in each RISE
sequence the images evolve and degrade globally. A comparison of pre- versus post-onset
images, for example, may tend to reveal that passing through the onset threshold coincides
with a global improvement in the appearance of the image (particularly the more salient, e.g.,
higher contrast, parts of the image) rather than with the revelation of a few particularly important
(and supposedly diagnostic) image regions. One solution to this apparent limitation is simply
to selectively apply the RISE transforms to sub-regions of the source image. For example, one
could alternatively evolve and degrade different parts of a face (e.g., eyebrows, mouth, etc.)
rather than the whole face (Pollak & Sinha, 2002) in order to assess the relative contributions
of these face parts in the expression and visual analysis of various emotions.

It is interesting, then, that to further expand the functionality of the basic RISE image
processing technique, one of the simplest and most obvious embellishments also serves to
increase its resemblance to a number of other techniques that have focused specifically on
local, parts-based image manipulations in order to study the representations underlying vi-
sual recognition (e.g.,Gosselin & Schyns, 2001; Pomplun, Ritter, & Velichkovsky, 1996). In
addition, just as one can perform a spatially local version of RISE, one could also perform
RISE phase manipulations that are not global in the frequency domain. That is, one could
progressively manipulate only the phase values corresponding to certain spatial frequencies of
interest in order to study their relative involvement in a given visual task (and/or their relative
contribution to the appearance of a given object or object class). This technique is essentially
what was used byNasanen (1999)to create individual face images to investigate the relative
importance of different frequency bands for face recognition, and it has been more recently
applied to the study of basic-level categorization (Schyns & Gosselin, 2002).

Even with the simplest implementation of RISE, however, a full appreciation of the workings
and applications of the technique would benefit from a good intuition of the nature of the
image trajectories involved, not to mention the space in which they reside. Perhaps the best
descriptions of these are also the most frank. Within the full space of all possible images,
all images produced and presented in RISE reside in a subspace (or manifold) characterized
by a shared global power spectrum, luminance, and contrast; RISE trajectories are smooth
paths that reside in this space and connect pairs of selected images (e.g., an object image and
a randomized counterpart) via a direct linear interpolation of their respective Fourier phase
coordinates. One could even say that there is a bias in the sampling of these paths—that is,
a bias of selecting only the image trajectories that control for power spectra and luminance,
yield monotonic evolution/degradation of the object image, directly and smoothly connect the
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end-point images, etc. Needless to say, we think such constraints are well-founded for our
current purposes, and there are no further criteria by which images are included or excluded or
by which such image space excursions are sampled. Indeed, as discussed above, one may even
exploit the existence of many possible trajectories to/from a given object image in quantifying
perceptual threshold surfaces, all while controlling a number of important image properties.

It is also worthwhile to relate the general basis of our approach with other work based on
the exploration of lower dimensional, parameterized shape/feature spaces. A nice illustration
of such an approach can be seen in recent work byLeopold, O’Toole, Vetter, and Blanz (2001)
employing morphs (e.g., averages, caricatures, and anti-caricatures) of high-resolution 3-D
models of laser-scanned faces. Certainly, the exploration of a relatively low-dimensional space
with concomitant perceptual measures (e.g., face identification or gender discrimination) may
be quite expedient, and often the correspondence between the parameterized space and the as-
sociated image properties is relatively transparent (e.g., values along one or more dimensions
might represent, say, different nose lengths). Further, another low-dimensional shape-based
approach has been central to the development of a very intriguing, formalized representa-
tion of shape similarity and its application to 3-D object discrimination (Edelman, 1995). In
comparison, the higher dimensional photometric approach taken in RISE may be considered
agnostic, in a sense, to the underlying, lower dimensional object structures that contribute to
the appearance of the object images of interest. Consequently, however, RISE may be applied
to the manipulation and use of a vast and varied set of source images. As a result, RISE may
be in certain respects more suitable for the study of perceptual and neural responses to actual
images of arbitrary, real-world objects/scenes of interest when, for example, 3-D renderings of
parameterized, low-dimensional models are either unavailable, unfeasible, or perhaps in some
way inappropriate for a particular experimental objective.

At this point it may be appropriate, in fact, to briefly revisit the motivations that have
shaped the development of RISE in its current form. A quick perusal of the experimental and
theoretical discussions above may rightly impress upon the reader that while RISE may be
useful in exploring the influence of image structure on high-level visual processes, it is in
many ways a paradigm that is aimed more toward providing a simple and effective procedure
by which to manipulate and study the visual processes themselves. That is to say, it is simply
more the flavor of RISE, in its current form, to empower an experimenter to elicit key perceptual
transitions and thereby study their neural correlates and/or their hysteresis, susceptibility to
priming, change during childhood development, etc.—and to do so while eliminating some
important low-level confounds intrinsic to a number of other common techniques—rather than
to directly quantify, for example, the relative importance of certain image regions or spatial
frequencies in the performance of a given recognition task (e.g., the importance of the eye region
for facial identity but apparently not for expressiveness, the use of spatial frequencies between
11.25 and 22.5 cycles for identification vs. 5.62–11.25 cycles for expressiveness judgments,
and so on;Schyns et al., 2002).

In summary, we hope this paper shows the relative strengths and flexibility of the RISE
paradigm for the exploration of a number of important issues in high-level vision. In its simplest
form, RISE can be used to collect information about the formation and disruption of object
percepts, but it can very easily also serve to sensitively measure the perceptual effects of
priming, to quantitatively and objectively study perceptual hysteresis, and to examine the
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consequences of abnormal perceptual development and learning. It represents a new approach
to the study of the neural substrates of high-level visual perception, and it could also find
use in the clinical setting to assess and perhaps diagnose certain visual disorders. Despite its
versatility, it is a computationally straightforward technique that is relatively easy to implement.
In fact, once RISE image sequences are created, their experimental use does not necessarily
require even the use of a computer—the image frames could conceivably be presented in printed
form (e.g., in a flip-book) and subjects’ responses can be recorded by hand and in a leisurely
fashion. RISE derives its power from the simple idea that the investigation of high-level visual
perception via behavioral and neural measures can be made more compelling, not to mention
easier to interpret, when experiments more thoroughly and systematically explore the space of
images.
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