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Despite the complexity and diversity of natural scenes, humans are very fast and
accurate at identifying basic-level scene categories. In this paper we develop a new
technique (based on Bubbles, Gosselin & Schyns, 2001a; Schyns, Bonnar, &
Gosselin, 2002) to determine some of the information requirements of basic-level
scene categorizations. Using 2400 scenes from an established scene database
(Oliva & Torralba, 2001), the algorithm randomly samples the Fourier coefficients
of the phase spectrum. Sampled Fourier coefficients retain their original phase
while the phase of nonsampled coefficients is replaced with that of white noise.
Observers categorized the stimuli into 8 basic-level categories. The location of the
sampled Fourier coefficients leading to correct categorizations was recorded per
trial. Statistical analyses revealed the major scales and orientations of the phase
spectrum that observers used to distinguish scene categories.

Humans are remarkably fast at recognizing and classifying environmental

scenes despite a large and varied number of component objects within a scene

(Potter, 1975). Recent findings suggest that prior recognition of component

objects is not essential for scene recognition, and that the overall gist of the

scene may be more important (Henderson & Hollingworth, 1999; Oliva &

Schyns, 1997, 2000; Oliva & Torralba, 2001; Sanocki & Epstein, 1997; Schyns
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& Oliva, 1994), even though detection of component objects can be achieved in

as little as 150 ms (Fabre-Thorpe, Delorme, Marlot, & Thorpe, 2001; Thorpe,

Fize, & Marlot, 1996) and in the near absence of attention (Li, VanRullen, Koch,

& Perona, 2002).

Studies of the structure of scene categories in memory have identified three

particularly useful levels of scene categorization (Rosch, Mervis, Gray, Johnson,

& Boyes-Braem, 1976; Tversky & Hemenway, 1983): Superordinate (e.g.,

artificial/natural), basic (e.g., city/highway), and subordinate level (e.g., a par-

ticular example of a city). Gosselin and Schyns (2001b) proposed that basic-

level categories are those that minimize the overlap of properties between

categories (i.e., strategy length) and maximize the number of properties that are

unique to this category (i.e., internal practicability), and therefore give rise to

faster recognition (see Gosselin & Schyns, 2001b, for a discussion of the other

properties associated with the basic-levelness of a category). Accordingly, the

gist of one basic-level scene category should be the scene information that

minimizes the overlap of properties with other categories, and maximizes the

number of properties specific to this category.

There has so far been no systematic study of the structure of information

responsible for basic-level scene categorizations. Part of the problem arises from

the complexity and diversity of these stimuli, making it difficult to assess

common information use. Here, we develop a new technique (based on Bubbles,

Gosselin & Schyns, 2001a; Schyns, Bonnar, & Gosselin, 2002) to determine

some of the information requirements of basic-level scene categorizations.

INFORMATION FOR SCENE CATEGORIZATION

Before addressing the issue of the information human use for basic-level cate-

gorizations, we must address the issue of the information that is available in the

image statistics to perform the task. Analysis of a scene in the Fourier domain

results in Fourier coefficients, representing the energy and phase relationships of

each frequency in the image (Campbell & Robson, 1968; de Valois & de Valois,

1988; see Figures 1b and 1c for example of a Fourier transform). The energy in a

Fourier coefficient is the contrast energy of this frequency in the image.

Numerous psychophysical studies have shown that the human visual system is

selectively sensitive to limited bands of spatial frequencies and to the orientation

bandwidth of image components (Campbell & Kulikowski, 1966; Campbell &

Robson, 1968; de Valois & de Valois, 1988). In addition to these physiological

restrictions on information content, the spectral distribution of natural scenes

also imposes constraints on the available information. Natural scenes are known

to have a characteristic energy spectrum, with a linear decrease of energy with

increasing spatial frequency (Field, 1987; Parraga, Troscianko, & Tolhurst,

1999). The distribution of energy in natural scenes has been shown to char-

acterize their structure, albeit as a first approximation (e.g., GueÂrin-DugueÂ &
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Oliva, 2000; Oliva & Torralba, 2001; Schwartz & Simoncelli, 2001; Schyns &

Oliva, 1994; Simoncelli, 2003; Simoncelli & Olshausen, 2001; Switkes, Mayer,

& Sloan, 1978; Tadmor & Tolhurst, 1993; Torralba & Oliva, 2003). For

example, the 2-D image of a city has dense vertical and horizontal organization

and the occurrence of the horizon line in coastal scenes produces a bias towards

horizontal organization. The reasoning is that if these represent distinctive

properties of scene categories, then they should be represented with higher

energies in their amplitude spectra. Oliva and Torralba (2001) examined the

amplitude spectra of artificial and natural scenes to formulate the ``spatial

envelopes'' of scene categories. The average slope and dominant orientations of

the amplitude spectra corresponded to degrees of scene ``openness'', ``expan-

sion'', ``roughness'', and ``ruggedness''. These characteristic amplitude spectra

were compared with basic-level scene categories. For example, mountain scenes

scored highly on the ``ruggedness'' parameter, whereas coastal scenes and

landscapes scored highly on the ``openness'' parameter. However, this

approximation is valid for all visual stimuli compatible with the amplitude

spectra of these scenes, and visually meaningful scenes are only a small subset

of this set. Most other stimuli are simply noise (see Figure 1e).

This arises because phase relationships describe how spatial frequencies of

varying energy linearly contribute to represent the structures of the image (the

blobs, contours, and edges; Morrone & Burr, 1988; Oppenheim & Lim, 1981;

Piotrowski & Campbell, 1983; see Figure 1d and 1e). The importance of phase is

illustrated by the effect of disrupting the phase of spatial frequencies, which

renders a scene unrecognizable (compare original image in Figure 1a to image in

Figure 1e; see also Sadr & Sinha, 2004; Schwartz, Tjan, & Chung, 2003; Sekuler

& Bennett, 2001; Thomson & Foster, 1997; Thomson, Foster, & Summers,

2000). While amplitude spectra vary from scene to scene (Tadmor & Tolhurst,

1993, 1994), the statistics captured by phase information contain the majority of

the visual information used to discriminate scenes. Natural image statistics differ

primarily from each other in terms of the higher order correlations that structure

their phase spectra (Thomson, 1999; Thomson & Foster, 1997; Thomson et al.,

2000), which allow sparse linear coding of higher order image statistics across

spatial frequencies (Field, 1994; Morrone & Burr, 1988; Olshausen & Field,

1996; Sekuler & Bennett, 2001; Simoncelli & Olshausen, 2001). Consequently,

everyday scene categorizations must use the information represented in the

phase spectra.

To determine the phase information required for basic-level scene categor-

izations, we used a technique of selective alteration of phase in the Fourier

coefficients while normalizing (whitening) the amplitude of each component

frequency (see Figure 2c; Simoncelli & Olshausen, 2001; Tadmor & Tolhurst,

1994; Thomson, 1999). The algorithm randomly samples the Fourier coeffi-

cients of the phase spectrum (see Figure 2b). Sampled Fourier coefficients

retain their original phase while the phase of nonsampled coefficients is
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Figure 1. (a) The original image in 2-D space. (b) Representation of Fourier space with spatial

frequency bandwidths of 0±8, 8±16, 16±32, and 32±64 cycles per image, and orientations from 0 to

3598. Orientations from 180 to 3598 are a mirror symmetric sample of the phase and amplitude

components at 0±1798. (c) Representation of image amplitude component in Fourier space. (d)

Representation of image phase component in Fourier space. (e) Reconstruction of image amplitude

with the phase component scrambled (above), and image phase with the amplitude component

scrambled (below) in 2-D space.
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replaced with that of white noise. An inverse Fourier transform reconstructs the

experimental stimulus of that trial (see Figures 1e, 2c, & Figure 3 for exam-

ples). To maintain categorization performance below ceiling (at 75% correct),

the ratio of image phase to noise phase is adjusted online, on a trial per trial

basis, independently for each category. For each category, the Fourier coeffi-

cients leading to correct categorizations are registered independently of those

leading to incorrect categorizations. To ensure that the experimental task does

not trivialize the complexity of real-world scene recognition, we chose a wide

a variety of scenes and scene categories from an established database (Oliva &

Torralba, 2001).

METHOD

Subjects

Twenty-four male and female observers aged between 18 and 35 took part in the

experiment. All observers had normal or corrected to normal vision.

Figure 2. (a) Original image. (b) Random sampling of phase component. (c) Stimuli consisting of

sampled phase with remaining phase scrambled and image amplitude replaced by white noise. (d)

Adaptive procedure, which determines density of phase sampling per trial.

Original Image Sampled phase Stimuli
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Stimuli

Images from a scene database (Oliva & Torralba, 2001), 2400 in total, were used

as stimuli. There were 300 examples of scenes for each category, and eight

categories in total (highway, street, town centre/house, tall building, coast/

beach, open landscape, forest, and mountain; see Figure, 3). The taxonomy of

the scene categories had been validated previously (see Oliva & Torralba, 2001).

The 1276 127 pixel 256 greyscale images subtended 9.36 9.38 of visual angle

Figure 3. Examples of stimuli from each of the eight scene categories used in the experiment in

their original format and in amplitude noise with phase density of .95.
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on the screen. Using a fast Fourier transform, we extracted the Fourier coeffi-

cients of each scene and ``whitened'' its amplitude spectrum by replacing it with

the amplitude spectrum of white noiseÐresulting in an average energy slope

equal to zero (a = 0) across scenes.

In the whitened images, we introduced phase noise by randomly sampling the

Fourier coefficients (see Figure 2b). The sampling range spanned all cycles per

image from 1 to 63 (corresponding 0.11 to 6.76 cycles per degree of visual

angle; 64 cycles per image = DC, which is not sampled), and for all orientations

between 08 and 1798. For each sample, a mirror symmetric sample was con-

structed to extract spatial frequencies at orientations between 1808 and 3598. We

randomly transformed the phase (±p radians to p radians) of nonsampled Fourier

coefficients between 08 and 1798 (orientation) at each frequency by replacing it

with the phase of white noise (with a different white noise image computed for

each stimulus). The phase information of all Fourier coefficients between 1808
and 3598 orientation was the same as the phase of the coefficients between 08
and 1798 orientation, respectively. An inverse Fourier transform reconstructed a

sparse experimental stimulus (see Figures 1e, 2c, and 3 for examples).

During the experiment, to maintain categorization accuracy at 75%, we

adjusted online the density of the sampled phase, independently for each cate-

gory (see Figure 2). Phase density was fixed at 95% for the first 50 trials per

category to obtain a stable estimate of performance accuracy. Stimuli were

constructed and the experiment was run using MATLAB version 5.0 and the

Psychophysics Toolbox (Brainard, 1997; Pelli, 1997), on a Macintosh G4

computer.

Procedure

Practice. Observers completed a practice session prior to the experiment to

ensure they were familiar with the categorization task. In the task 160 images of

scenes from the same scene database (20 examples per category) were used.

None of the images used in the practice session were used in the experiment.

Observers were presented with a greyscale image of a scene and asked to name

it using one of the eight possible categories. Presentation of 160 images

constituted one practice block. Each observer repeated practice blocks until they

reached a criterion of 95% correct for one block.

Experiment. In a within-subjects design, a total of 2400 experimental

stimuli were presented to each observer. Presentation was segmented into four

blocks of 600 trials each. Order of presentation of experimental stimuli was

randomized across observers. In all, the experiment lasted approximately 2.5±3

hours. Each scene was only presented once. On each experimental trial an

observer categorized the sparse stimulus into one of the eight basic-level

categories by pressing the appropriate labelled keyboard key. There were no
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constraints on response time, and the stimulus remained on the screen until their

response.

RESULTS AND DISCUSSION

Figure 4a summarizes the average phase density required for observers to reach

the 75% categorization correct performance criterion. Figure 4b shows a con-

fusion matrix indicating the errors made with each scene category. Note that

performance with coast scenes and landscape scenes fall below the performance

criterion, and these scenes were often confusedÐthis was true even when

density of phase sampling was at the maximum allowed in the algorithm, 99.5%

of phase information in phase, 0.5% of the phase scrambled. Figure 4c shows the

average density of phase sampling per trial for each scene category averaged

across subjects. Although the highest level of phase sampling was required for

coast and landscape scenes, observers' performance remained well above chance

level (performance accuracy of 45±50% when performance at chance level

equals 12.5% correct for an eight alternative forced choice task).

It is possible that the visual features that typically occur in coast and land-

scape scenes are particularly sensitive to disruption of amplitude, and thus,

cannot tolerate the effects of phase noise to the same extent as the other scene

categories. Previous studies have shown that amplitude noise is most disruptive

for perception of textured and shaded components occurring in natural scenes

(e.g., the border between the coastline and skyline, contours of hills, and surface

of a lake) that predominate coast and landscape scene categories (Morgan, Ross,

& Hayes, 1991; Tadmor & Tolhurst, 1993). The four artificial scene categories,

and the forest and mountain scene categories, consisted mainly of well-defined

edges and were less affected by amplitude noise, and, consequently, able to

tolerate higher levels of phase noise (see Figure 3 for a comparison of sparse

stimuli). It is also likely that the visual characteristics of the basic-level scene

categories coast and landscape are not ``redundant'' enough, or have low

internal practicability (Gosselin & Schyns, 2001b, 2002). That is, the features

typically occurring in coast scenes, (e.g., horizon line between sky and sea,

ripples of sea) also occur frequently in landscape scenes (horizon line between

sky and landscape, ripples of lake), leading to confusions between the two

categories (e.g., 38.5% of responses to coast scenes were in the landscape

category; see Figure 4b).

Now, we turn to examine the spectral information (spatial scale and orien-

tation) that was effective for scene categorization. For each trial, we recorded

the location of all the sampled Fourier coefficients together with the accuracy of

the observer (correct or incorrect). Across the trials of a category, regularities

should emerge in these paired locations and accuracies if the corresponding

phase information represents a discriminative property of this scene category.

The dual information of correct and total Fourier coefficients was kept
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Figure 4. (a) Proportion of phase spectrum required for 75% accuracy per scene category. (b)

Distribution of responses per scene category in percentages, including error responses. (c) Mean

phase density (specified by a gradient descent algorithm) across trials for each scene category.
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separately for each for the eight basic-level categories, and averaged across all

observers. For each category, we then computed the proportion of correct over

total (correct/total), for each Fourier coefficient. This proportion is the observer

probability that a given coefficient leads to a correct categorization. To the

extent that the amplitude information of this Fourier coefficient was whitened,

the probability isolates the contribution of phase information.

For each scene category, we have a total of 12,644 Fourier coefficients to

examine, hardly a small dimensional space! To simplify the data, we averaged

the proportions associated with each Fourier coefficient according to 12 orien-

tations of spatial frequency (from 08 to 1798 by increment of 158 intervals) and
four spatial frequency bandwidths (0±8, 8±16, 16±32, and 32±64 cycles per

image; see Figure 1b for illustration). This segmented the data into 48 dimen-

sions, each representing a different bandwidth and orientation given, respec-

tively, by the radius length and angle in the semidiscs of Figure 5. A vertical

orientation in the Fourier spectrum corresponds to horizontally orientated

components in a scene, for example, the horizon line in a coast or highway

scene.

We then transformed the segmented data for each category into 48 Z-scores

(by computing an average and standard deviation from the 48 averaged pro-

portions, independently for each category). A Z-score > 1.65 (p < .05) was

considered ``diagnostic''. Figure 5 represents in red these diagnostic regions. All

bandwidths and orientations were transformed into Z-scores, but all significant

Z-scores (> 1.65) occurred in the 0±8 and 8±16 cycles per image bandwidths

(0±1.74 cycles per degree), thus Figure 5 shows only these bandwidths.

How do these diagnostic regions in Fourier space correspond to 2-D image

features in natural scenes? A striking aspect of our results is that the diagnostic

bandwidths of the phase spectra for all scene categories occurred at relatively

low spatial frequencies. Low spatial frequency information can provide a quick

and rough estimate of a scene sufficient for fast recognition (Schyns & Oliva,

1994). For example, the localized structure (phase) of the components of a

highway scene should provide sufficient information to discriminate a highway

from the localized structure of components in mountain scene, even if image

energy is obscured by white noise. To better relate the diagnostic orientations in

the phase spectra to image features, we compared our Z-score data (Figure 5)

with the averaged energy spectrums of scene categories taken from the same

database of scenes (Oliva & Torralba, 2001). Remember that a vertical orien-

tation in the Fourier spectrum corresponds to horizontally orientated compo-

nents in a scene, for example, the horizon line in a coast or highway scene. The

diagnostic phase spectra (present study) and the energy spectra (Oliva & Tor-

ralba, 2001) for coast and highway scenes were biased to vertical orientations.

The visibility of the horizon line was described as the degree of ``openness'' in

energy spectra. Horizontal phase and amplitude components correspond to

vertically structured components in a scene, for example, the outline of a house
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Figure 5. Plot of diagnostic phase in Fourier space (0±16 cycles per image, with orientation in

degrees) for each scene category.
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or building. In the present study, horizontal orientations in the phase spectra

were diagnostic for town centre/house and street scene categories. This coin-

cides with properties found in the averaged energy spectra of artificial (e.g.,

``urban close up'' and ``city centre'') scene categories and is also described by

Oliva and Torralba (2001) as degree of ``roughness'' in the energy spectra.

Previous studies of image statistics have also shown that vertically structured

features are common to artificial scene categories (Baddeley, 1997; Switkes et

al., 1978; van der Schaaf & van Hateren, 1996). Diagonal orientations featured

in the diagnostic phase spectra of mountain scenes, highways, streets, and tall

buildings. Diagonal orientations in the Fourier spectrum correspond to scenes

containing sloping edges, for example, the outline of a mountain, or perspective

view of a street. Diagonal orientations occurred in the averaged energy spectra

of mountain scenes (described as degree of ``ruggedness'') and described the

degree of ``expansion'' in artificial scenes (e.g., vanishing lines in the per-

spective view of a scene; Oliva & Torralba, 2001). These comparisons suggest

that the diagnostic phase spectra for each scene category coincide with char-

acteristic amplitude spectra of the same scene categories reported by Oliva and

Torralba.

However, a direct correlation of the results of Oliva and Torralba (2001) with

our findings is not practical for the following reasons: First, we used the phase

spectra in our study, not the energy spectra. While established methods exist for

averaging the energy spectra of a set of images (e.g., van der Schaaf & van

Hateren, 1996), averaging the phase information of a collection of images in a

scene category does not provide a meaningful description. Previous studies of

image phase in natural scenes have used higher order statistics to describe image

phase (e.g., measures of skewness or kurtosis; Thomson, 1999). Thus, we cannot

compare the ``average'' image phase of scene categories with our diagnostic

phase spectra. Second, our data is not correlated directly with the energy

spectrums of Oliva and Torralba because their study reveals the amplitude

information available in the scene categories, whereas our diagnostic scene

spectrums reveal the potent phase informationÐthe subspace of available

information used effectivelyÐin these scene categories (Gosselin & Schyns,

2002).

How effective is this diagnostic phase information for discrimination of one

scene category from another, and to what extent do diagnostic regions overlap

between scene categories? The third phase of the analysis tested the effective-

ness of the diagnostic regions of the phase spectrum to distinguish the images

used in the experiment. To this end, we reconstructed the images used in the

experiment using only the ``diagnostic'' regions of the phase spectrum, repla-

cing nondiagnostic regions with the phase of white noise, and cutting off fre-

quencies above 16 cycles per image (e.g., a coast scene with the diagnostic

spectrum of coast). For each scene picture (e.g., one coast) we constructed seven

distractors with the diagnostic spectra of the other scene categories (e.g., one
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coast with the phase of landscape, forest, highway, etc.). We then correlated the

reconstructed scenes (both diagnostic and distractors) with the original images

for each of the eight categories. A t-test (paired samples, df = 7) applied to the

correlation coefficients of the diagnostic reconstructed scenes, and the correla-

tion coefficients of the distractors, revealed higher correlations with the original

image for images reconstructed with diagnostic phase spectra than for dis-

tractors, t = 2.617, p < .05. The correlational data demonstrates that even in high

levels of phase noise, the diagnostic phase spectra for each scene category

distinguished each scene from the nondiagnostic distractors. This implies that

different regions of the phase spectra are diagnostic for different scene

categories.

To examine the extent to which scene categories shared the same diagnostic

orientations and bandwidths, the diagnostic regions for each scene category (see

Figure 5) were added together and each region expressed as a proportion of the

maximum possible overlap (from 0 to 8 categories). Figure 6 shows the fre-

quency of diagnostic regions common to more than one scene category. Diag-

nostic regions shared by more than one category have a value above 0.125, those

diagnostic for one scene category only have a value of 0.125 and regions used by

none of the scene categories have a value of zero. The asterisked boxes in the

table in Figure 4b indicate which scene categories overlapped. If observers were

using one common area of the phase spectrum nonspecific to scene category, the

number of regions shared by scene categories should be relatively high. Figure 6

shows that no one region is shared by more than two scene categories. This low

level of overlap suggests that the local structures and edges described by the

diagnostic phase spectra of a scene category are not common to many other

Figure 6. The diagnostic phase of all scene categories weighted by the frequency of occurrence for

each bandwidth and orientation (0±16 cycles per image).
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scene categories. For example, diagonal orientations at 30±458 and at 8±16

cycles per image are diagnostic for a mountain scene. This phase information

should outline the sloping edge of the mountain, and differentiate it from images

containing sloping edges that describe component features not specific to the

``mountain'' category (e.g., a highway).

CONCLUSION

In sum, we applied the bubbles technique (Gosselin & Schyns, 2001a) to the

phase spectra of scenes to determine the spectral information that is effective for

scene categorization. Analyses of the spectral information that led to correct

categorizations produced diagnostic regions of the phase spectra that were

category specific. According to the properties associated with basic-level cate-

gories (Gosselin & Schyns, 2001b), it is likely that these diagnostic orientations

and bandwidths contain the scene information that minimizes the overlap of

properties with other basic-level categories, and maximizes the number of

properties specific to this category.
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