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Abstract—

 

We propose an approach that allows a rigorous under-
standing of the visual categorization and recognition process without
asking direct questions about unobservable memory representations.
Our approach builds on the selective use of visual information in rec-
ognition and a new method (Bubbles) to depict and measure what this
information is. We examine three face-recognition tasks (identity, gen-
der, expressive or not) and establish the componential and holistic in-
formation responsible for recognition performance. On the basis of
this information, we derive task-specific gradients of probability for

 

the allocation of attention to the different regions of the face.

 

In recent years, most face-, object-, and scene-recognition research-
ers have gathered around a common agenda: to understand the struc-
ture of representations in memory. A number of fundamental issues
have been articulated, and researchers typically ask questions such as
the following: Are face, object, and scene representations viewpoint-
dependent (Bülthoff & Edelman, 1992; Hill, Schyns, & Akamatsu,
1997; Perrett, Oram, & Ashbridge, 1998; Simons & Wang, 1998; Tarr
& Pinker, 1989; Troje & Bülthoff, 1996; among many others)? Are

 

these representations holistic (e.g., 

 

view-based

 

; Poggio & Edelman,
1990; Tarr & Pinker, 1991) or made of smaller components (e.g.,

 

geons

 

; Biederman, 1987; Biederman & Cooper, 1991)? Are internal
representations complete (e.g., Cutzu & Edelman, 1996) or sparse (Ar-
chambault, O’Donnell, & Schyns, 1999; Rensink, O’Regan, & Clark,
1997)? Are they two- or three-dimensional (Liu, Knill, & Kersten,
1995)? Are they colored or not (Oliva & Schyns, 2000; Tanaka &
Presnell, 1999)? Are they hierarchically organized in memory (Brown,
1958; Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976)? Is there
a fixed entry point into the hierarchy (Gosselin & Schyns, 2001b; Joli-
coeur, Gluck, & Kosslyn, 1984; Tanaka & Taylor, 1991)? Does exper-
tise modify memory representations (Tanaka & Gauthier, 1997; Schyns
& Rodet, 1997)? What is the entry point to recognition (Tanaka & Tay-
lor, 1991)? What is the format of memory representations, and does it
change uniformly across the levels of a hierarchy (Jolicoeur, 1990)?

To address these complex issues, categorization and recognition re-
searchers should be equipped with methodologies of a commensurate
power—methodologies that can assign the credit for behavioral per-
formance (e.g., viewpoint dependence, configural effects, color, speed
of categorization, point of entry, expertise effects) to specific proper-
ties of the representations of visual events in memory. However, the
relationship between behavior and representations is tenuous, making
representational issues the most difficult to approach experimentally.

In this article, we propose an alternative approach that allows a rig-
orous understanding of the recognition process without asking direct
questions about unobservable memory representations. Our analysis

builds on the selective use of diagnostic information, an important but
neglected component of recognition.

People who recognize visual events do not use all the information
impinging on the retina, but instead use only the elements that are
most useful (i.e., diagnostic) for the task at hand. In most instances,
this information is not available to conscious experience, but the vi-
sual system knows what it is, and how to selectively extract diagnostic
information from the visual array to perform multiple categorizations
of the same input (e.g., Schyns & Oliva, 1999).

Our main epistemological point is that one can acquire knowledge
about the recognition process by carefully studying diagnostic infor-
mation without asking questions (or even making assumptions) about
memory representations (see also Schyns, 1998). This is a powerful
approach because the information used encompasses all the visual

 

features

 

1

 

 that mediate the recognition task at hand. These features
therefore have a dual role. For high-level vision, they reflect the infor-
mation required from memory to categorize the stimulus. For low-
level vision, they specify which information to extract from the visual
array. In short, the features involved in a recognition task bridge be-
tween memory and the visual array. They set the agenda for high- and
low-level vision. Now, let us see what these features are.

 

EXPERIMENT

 

The experiment used Bubbles (Gosselin & Schyns, 2001a) to visu-
alize the information used in three face-categorization tasks. Faces are
good stimuli for our demonstrations: Their compactness enables a
tight control of presentation that limits the spatial extent of useful
cues; the familiarity of their categorization simplifies the experimental
procedure. However, the principles developed with faces also apply to
other visual events (including objects and scenes).

In a between-subjects design, different subject groups performed
three different categorization tasks (identity, gender, expressive or not)
on the same set of 10 faces (5 males, 5 females), each displaying two
possible expressions (neutral vs. happy). Prior to the experiment, we
had all subjects learn the three categorizations of the 10 faces, in order
to normalize exposure to and expertise with the stimuli.

We determined the face information used for each task by having
Bubbles sample an input space to present sparse versions of the faces
as stimuli. The subjects categorized these stimuli, and Bubbles

 

 

 

kept
track of the samples of information that led to correct and incorrect
categorization responses. From this performance information, we were
able to establish how each region of the input space is selectively used
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1. Feature is a loaded term in vision science, and its meaning can vary across
subdisciplines. Henceforth, we use the term to refer to any elementary property
of a distal stimulus that the observer uses to resolve the cognitive task at hand
(Schyns, Goldstone, & Thibaut, 1998). We show that even though the method

 

we discuss, Bubbles,

 

 

 

does not strictly isolate the representations of these fea-
tures, it is reasonable to assume that Bubbles

 

 

 

reveals the portions of the input
space in which specific instances of the diagnostic features are represented.
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in each categorization task, and to derive the 

 

effective stimulus

 

, which
depicts this selective use of information.

 

Method

 

Participants

 

Participants were 45 paid University of Glasgow (Glasgow, United
Kingdom) students, with normal or corrected-to-normal vision. Each
participant was randomly assigned to one of the three experimental
groups (

 

n

 

 

 

�

 

 15 per group), who categorized, respectively, the identity,
gender, and expressiveness (expressive or not) of the faces.

 

Stimuli

 

The experiment ran on a Macintosh G4 computer using a program
written with the Psychophysics and Pyramid Toolboxes for Matlab
(Brainard, 1997; Pelli, 1997; Simoncelli, 1997). Stimuli were gener-
ated from the gray-scale faces of Schyns and Oliva (1999; 5 males and
5 females, each of whom displayed two different expressions, neutral
and happy; hairstyle, global orientation, and lighting were normalized).

We applied Bubbles

 

 

 

to an image-generation space composed of three
dimensions (the standard 

 

x

 

- and 

 

y

 

-axes of the image plane, plus a 

 

z

 

-axis
representing spatial frequencies). We chose to search spatial frequencies
because psychophysical studies have established that early vision analyzes
the input at multiple scales (see De Valois & De Valois, 1990, for a review).

Figure 1 illustrates the stimulus-generation process. To compute
each stimulus, we first decomposed an original face into six indepen-
dent bands of spatial frequencies of one octave each. The cutoffs of
the scales were, respectively, 90, 45, 22.5, 11.25, 5.62, and 2.81 cycles
per face, from the finest to the coarsest scale. The coarsest band was a
constant background and is not depicted in Figure 1.

The face represented at each band (see Fig. 1b) was then partly re-
vealed by puncturing a number of randomly located Gaussian windows
(henceforth called bubbles) in a black mask covering the face area of the
image (see Fig. 1c). We normalized to 3 the number of cycles per bubble
that any bubble could reveal and adjusted the size of the Gaussian for
each frequency band accordingly (standard deviations of the bubbles
were 0.13, 0.27, 0.54, 1.08, and 2.15 cycles/deg of visual angle, from the
finest to the coarsest scale). Because the size of the bubbles increased as
the scale became more coarse, the number of bubbles differed across
scales so that the total area of the face revealed, on average, would re-
main constant. To generate a sparse face (see Fig. 1e), we added to-
gether the partial face information revealed at all the scales (see Fig. 1d).

To maintain 75%-correct categorization of sparse faces, we adjusted
(on a trial-by-trial basis) the number of bubbles (i.e., the total subspace
revealed by the bubbles). In sum, Bubbles

 

 

 

performed an asymptotically
exhaustive random search of the input space (see Gosselin & Schyns,
2001a, for a detailed discussion of the properties of Bubbles).

 

Procedure

 

Prior to the experiment, the participants’ experience with the stim-
uli was normalized by showing them printed pictures with correspond-
ing names at the bottom and requiring them to learn to criterion (perfect
identification of all faces twice in a row) the gender, expression, and
name attached to each face.

The experiment comprised two sessions of 500 trials (25 presenta-
tions of each of the 20 faces), but we analyzed the data from only the
last 500 trials, when subjects were really familiar with the faces and

experimental procedure. In each trial, one sparse face computed as
described earlier appeared on the screen. To respond, participants
pressed labeled keys on a computer keyboard. The task was self-paced
(but we nevertheless collected reaction times), and no feedback was
given. A chin rest maintained subjects at a constant 100-cm viewing
distance. Stimuli subtended 5.72

 

�

 

 

 

�

 

 5.72

 

�

 

 of visual angle on the
screen.

In the 

 

identity

 

 condition, participants had to determine the identity of
each sparse face (from 10 possibilities). In the 

 

gender

 

 condition, they
were instructed to decide whether the stimulus was male or female. In
the 

 

expressiveness

 

 condition, they had to judge whether the sparse face
was expressive or not (smiling or neutral). The three groups therefore
performed different categorizations of the same stimulus set.

 

Results

 

On average, subjects required a total of 33, 20, and 15 bubbles to
reach the 75%-correct performance criterion in the identity, gender,
and expressiveness conditions, respectively. We hypothesize that on
any given trial, if the subject could correctly categorize the sparse face
on the basis of the information revealed by the bubbles, that informa-
tion was sufficient for that categorization. Across trials, we therefore
kept track of the locations of the bubbles leading to correct categoriza-
tions. To this end, for each scale we added the masks with the bubbles
leading to correct categorizations in order to create a 

 

CorrectPlane

 

—
henceforth, CorrectPlane(scale), where scale 

 

�

 

 1 to 5, from fine to
coarse (see Fig. 1c for examples of masks). CorrectPlane(scale) there-
fore represents, for each scale, the locations where sampling of face
information (bubbles) led to correct responses. We also added the
masks with bubbles leading to both correct and incorrect categoriza-
tions to create 

 

TotalPlane(scale)

 

. So TotalPlane(scale) represents, for
each scale, the total sampling frequency of face information.

From the information in CorrectPlane(scale) and TotalPlane(scale),
we determined, for each subject separately and on a cell-by-cell basis,
the ratio of the number of times a specific location led to a successful
categorization over the number of times this location was presented,
CorrectPlane(scale)/TotalPlane(scale). We refer to this ratio as 

 

Propor-
tionPlane(scale)

 

. Across subjects, the averaged ProportionPlane(scale)
weighs the importance of the regions of each scale for the categoriza-
tion task at hand. If all regions were equally important, Proportion-
Plane(scale) would be uniform across cells, and equal to the performance
criterion—here, .75. Consequently, regions significantly above (vs.
below) the performance criterion are more (vs. less) diagnostic of the
considered categorization.

To determine this significance, we built a confidence interval (

 

p 

 

�

 

.01) around the mean of the ProportionPlane(scale), for each propor-
tion. 

 

DiagnosticPlane(scale)

 

 was created by representing diagnostic
(significant) proportions with a filtering weight of 1 and nondiagnostic
proportions with a filtering weight of 0. These diagnostic weights
were then used to filter the original stimulus to derive the 

 

effective
stimulus

 

 (see Fig. 2), which depicts the selective use of information in
each task. The effective stimulus is simply obtained by multiplying the
face information at each scale in Figure 1b with the corresponding Di-
agnosticPlane(scale).

 

Use of scale information in the three categorization tasks

 

The large face pictures of Figure 2 illustrate the relative use of
scale information in the three groups of participants. For example,
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whereas the mouth is well defined at all scales in the identity and ex-
pressiveness conditions, it is neglected at the finest scales in the gen-
der condition. In a related vein, the eyes are both represented at all
scales in the identity condition, but only one of them is kept in the
gender condition, and both are neglected in the expressiveness condi-
tion. The chin is well defined in the identity condition, but not in the
other two conditions. Compared with the mouth and the eyes, the nose
is less well defined in all tasks.

To quantify the use of spatial scales across tasks, we computed a
proportion reflecting the diagnostic face area at each scale (see the his-
tograms and corresponding plots of information in the small face pic-
tures in Fig. 2). In the small face pictures in Figure 2, the use of fine-
scale information (i.e., the first scale) is most differentiated across the
three tasks. In the identity task, it depicts the eyes, the mouth, and the
chin, whereas in the gender task, it is used only for the left eye, and in
the expressiveness task, it is used only for the mouth. In contrast, the

Fig. 1. Application of Bubbles to the three-dimensional space composed of a two-dimensional
face and spatial scales on the third dimension. The pictures in (b) represent the information from
the face in (a) that is present at five different bands of spatial frequencies (scales). The illustrations
in (d) show the information that is revealed at each scale when the face is covered by a mask
punctured by the bubbles shown in (c). Note that on this trial there is no information revealed at
the fifth scale. The pictures in (d) were integrated to obtain the stimulus subjects actually saw (e).
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coarsest scale (i.e., the fourth scale) is much less differentiated across
tasks. Thus, the coarse scale forms a skeleton that is progressively dis-
tinguished and fleshed out with increasing spatial resolution (see the
progression of face information from coarse to fine in the small pic-
tures of Fig. 2, from right to left).

A comparison of the relative use of scales within each task shows a
clear advantage in the identity task for the third scale, corresponding
to face information between 11.25 and 22.5 cycles per face (the best
scale for face recognition varies between 8 and 32 cycles per face in
the literature; see Morrison & Schyns, 2001). The preferred scale for

Fig. 2. The effective faces (large faces) and diagnostic information used to resolve the iden-
tity (a), gender (b), and expressiveness (c) tasks. The smaller pictures illustrate the diagnostic
information used to resolve each task at each independent scale, from fine to coarse, respec-
tively. Results are shown for the first four scales only because there was no meaningful (signif-
icant) information at the fifth (coarsest) scale. For each task, the bar graph shows the proportion
of the total face area that was used at each scale.
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the expressiveness task (the discrimination between neutral and
happy) is information between 5.62 and 11.25 cycles per face (the
fourth scale; this result is consistent with Jenkins, Craven, Bruce, &
Akamatsu, 1997, and Bayer, Schwartz, & Pelli, 1998). For the gender
task, the third and fourth scales are most used. Across tasks, there ap-
pears to be a bias for face information between 5.62 and 22.5 cycles
per face (the coarser scales) when information is available from the
entire scale spectrum.

 

Deriving a two-dimensional map of attention

 

We derived a measure of the diagnosticity of each two-dimensional
image location from the measurements of diagnostic information at
the various spatial scales. The histograms in Figure 2 represent the
probability of finding diagnostic information in any of the four diag-
nostic scales. For each task, we normalized the probabilities repre-
sented in each histogram, so that their sum was 1. We then multiplied

these probabilities by their corresponding DiagnosticPlane(scale), and
added together these partial multiplications, on a pixel-by-pixel basis.
This sum represents a gradient of probability of finding diagnostic in-
formation at location 

 

x

 

, 

 

y

 

 in the image plane, for a given task. For ex-
ample, the probability 

 

P

 

(

 

x

 

, 

 

y

 

) equals 1 when diagnostic information is
present at all scales for an image location, and equals 0 when no diag-
nostic information is present at any scale for the same location.

Figure 3 renders in gray scale the gradient of probability (white 

 

�

 

 1,
black 

 

�

 

 0) of finding diagnostic information at any location of the im-
age in each of the three tasks. If attention is allocated (or eye movements
are guided) to the most relevant image locations in a task, the maps of
Figure 3 have a predictive value. Even though testing them is beyond the
scope of this article, there is evidence that the maps are valid. Figure 2
reveals that for the identity task, the regions of the eyes and the mouth
are diagnostic across the entire scale spectrum (see Tanaka & Farah,
1993, for evidence that relationships between these features determine
recognition), and so these locations have highest probability in Figure 3
(see eye movement studies from Yarbus, 1965, to Henderson, Falk,

Fig. 3. The two-dimensional attentional maps for the identity, gender, and expressiveness tasks, respectively, from left to right. The gray scale
represents the gradient of probability (white � 1, black � 0) of finding diagnostic information at any location of the image.

Fig. 4. The face information that discriminated images associated with fast versus slow categorization responses in
each of the three tasks.
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Minut, Dyer, & Mahadevan, 2001). In Figure 3, the map for the gender
task predicts a lateralization to the left side of the image, consistent with
the literature (Burt & Perrett, 1997). In sum, attentional maps could pro-
vide a rational model of eye movement sequences.

There are two main differences between Bubbles

 

 

 

and an eye move-
ment technique. First, Bubbles

 

 

 

can search any 

 

n

 

-dimensional pa-
rameterized image-generation space; it is not restricted to the two-
dimensional image plane, as studies of eye movements are. Second,
there is an immediate link between a measure of performance and
bubbles of information, whereas it is not always clear what observers
actually do with the information they fixate.

 

Reverse-correlating reaction time with Bubbles

 

If faster categorizations are indicative of a closer match between a
category representation and input information, then it is interesting to
visualize the information present when subjects responded rapidly, or
slowly. We worked backward from the reaction time of observers cate-
gorizing sparse faces to the visual information responsible for these
categorizations. We first derived the median response time per task
(identity: 1.84 s; gender: 0.96 s; expressiveness: 0.97s) and then clas-
sified each experimental stimulus according to whether it induced a
fast or a slow categorization response (with respect to the median). To
create 

 

FastPlane(scale)

 

, we added together the bubbles of the stimuli
leading to the fast categorizations; similarly, to create 

 

SlowPlane(scale)

 

,
we added together the bubbles of the stimuli leading to the slow cate-
gorizations. We then derived the discrimination plane

 

2

 

 between fast
and slow categorizations as follows: DiscriminationPlane(scale) 

 

�

 

FastPlane(scale) – SlowPlane(scale). The discrimination image thus
represents the information of the image space that distinguishes the
fast from the slow categorization responses.

Figure 4 illustrates the scale-specific face information that discrim-
inated between fast and slow categorizations of a given face for the
identity, gender, and expressiveness tasks. Note that the images in Fig-
ure 4 correlate highly with the diagnostic masks revealing the potent
faces in Figure 2. This analysis not only has theoretical interest in re-
vealing the high correlation between input information and the infor-
mation required to categorize the stimulus, but also further validates
the diagnostic masks derived earlier.

 

Higher-order use of information

 

Our analysis with Bubbles has so far focused on information of a
strictly componential nature (i.e., each cell of the ProportionPlanes).
However, it is widely accepted that face processing may rely on both
componential information (i.e., local features such as the mouth, nose,
and eyes) and noncomponential information (the spatial relations be-
tween these features), though how these cues are integrated remains
unclear (e.g., Farah, Wilson, Drain, & Tanaka, 1998). Here, we show
how bubbles of information can be analyzed to reveal the use of
higher-order information (i.e., conjunctions of 

 

n

 

 features; here, 

 

n 

 

�

 

 2).
Operationally, a higher-order (i.e., holistic) use of information

leads to better performance when the components are simultaneously

presented in distinct bubbles. We restricted our analysis to the five face
areas believed to be particularly diagnostic (e.g., Tanaka & Sengco,
1997): the left eye, the right eye, the nose, and the left and right por-
tions of the mouth. A symmetric 5 

 

�

 

 5 matrix represents all possible
conjunctions sampling information from these five regions of interest
(see Fig. 5). In each cell of this matrix, we incremented a counter
whenever a categorization was correct and the stimulus comprised at
least one bubble in each of the two regions concerned. We also incre-
mented a separate counter in the same cell every time the conjunction
was presented. We then derived ProportionPlane(scale) by dividing
the former counter by the latter counter in each cell. Each proportion
thus represents the success of a feature conjunction in the given task.
We derived the statistically significant proportions (

 

p 

 

�

 

 .01) to create
DiagnosticPlane(scale) for feature conjunctions (see Fig. 5; the plane
is now a 5 

 

�

 

 5 symmetrical matrix).
DiagnosticPlane(scale) is symmetrical, but to facilitate reading, we

have kept only the upper triangle of each symmetrical matrix in Figure
5. These results are best interpreted in conjunction with the informa-
tion in Figure 2. Remember that the first-order analysis revealed the
importance of the eyes and the mouth to identify faces. Note that the
diagnostic conjunctions for the identity task involve mostly relation-
ships between the two eyes and the mouth. In the gender task, the di-
agnostic relationships involve mostly the left eye and both corners of
the mouth (in the first and second scales), and a recurrent relationship
between the left corner of the mouth and the nose across all scales. For
the expressiveness task, we found an expected relationship between
the two corners of the mouth at the first and third scales, and relation-
ships between the eyes and the corners of the mouth at the first and
second scales. Thus, the second-order analysis confirms a differenti-
ated use of information across tasks—in this case, in the form of diag-
nostic feature conjunctions.

 

CONCLUDING REMARKS

 

Our goal was to illustrate a new approach to study recognition
without directly asking questions about internal representations. Our
analysis established how three face-categorization tasks selectively
used componential and configural information from a three-dimen-
sional input space (the two-dimensional image plane 

 

�

 

 spatial scales).
From this selective use, we derived a gradient of probability of locat-
ing diagnostic information in the image plane. A rational human cate-
gorizer should selectively allocate attention to the regions of the image
that maximize this probability, thus minimizing the uncertainty of lo-
cating diagnostic information.

As we argued earlier, diagnostic information should set an agenda
for further research in low- and high-level vision. Researchers now
have the means of studying the structure of diagnostic information in
scale space, and so studies in low-level vision can be carried out to es-
tablish how attentional mechanisms intervene to extract this informa-
tion (e.g., with scale and orientation selectivity). Diagnostic information
encompasses all the features of a recognition task, and so studies in
high-level vision can be carried out to elucidate what these features
actually are. We believe that our approach goes a long way toward re-
solving the problem of information relevance in visual categorization.
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2. DiscriminationPlane(scale) is the best least squares estimate (Ahumada
& Lovell, 1971) of the face information leading to fast versus slow response
times.
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