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Casual observers glancing at Figure 1 would have little difficulty identifying two faces.  Faces

comprise parts such as a mouth, two eyes, a nose, eyebrows, and so forth, organized in a typical spatial

configuration. Even if the observer did not know the particular individuals, s/he should nevertheless

identify the stimuli at a general level as male and female faces.  Were the identity known, the stimuli

might be categorized at a specific level as John and Mary.  In yet another context, they might be

categorized as neutral and happy faces.

It is clear that people can categorize objects at different levels of a taxonomy, but it is much less

clear how these categorizations influence the perception of the object itself, if at all!  Few would doubt

that perception must influence categorization, but the opposite is still questioned (e.g. Pylyshyn, 1999).

This chapter examines the hypothesis that people differently utilize and perceive the information of an

object if they have learned to categorize it differently—e.g., at different levels of specificity.  We consider

the implications of the hypothesis in the domains of face, object and scene categorization and recognition,

and examine how it forces us to reconsider the role of similarity in categorization.

--------------------------------------------------------------------------

Insert Figure 1 about here

--------------------------------------------------------------------------

Object recognition and categorization research are both concerned with the general question of

“what is this object?”  To recognize an object as a face or a computer is not very different from assigning it

to the face or the computer category.  The problem is to understand how information available in the visual

array matches the information representing categories in memory.  Both categorization and object

recognition research therefore address the same fundamental issues of “what is the organization of

information in memory?” “what is the information available in the input?” and “how do memory and input

information interact to explain behavior?” (Schyns, 1998).

Despite these fundamental similarities, object recognition and categorization have evolved

independently, without much dialogue.  This could stem from a difference in focus:  Categorization studies

typically seek to unravel the rules governing the formation of categories (the idea that the visual attributes

feathers, wings, legs, beak, black, but also functional attributes such as fly, lay eggs, lives in the trees

represent a crow which is also a bird, an animal and a living thing), whereas researchers in recognition have
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mostly sought to understand the perceptual attributes of the recognition process (e.g., the visual properties

of a crow such as its biological motion, size, ratio of its wings, color of its feathers, and so forth that

authorize its initial recognition as a member of the bird category).  

However, it has been recently suggested that the principles governing the formation of visual

categories should be more tightly coupled with the perceptual aspects of recognition (Schyns, Goldstone &

Thibaut, 1998).  Instead of assuming that categorization operates on an already perceived input (see

Pylyshyn, 1999, for discussions), it is proposed that categorization being executed can itself determine (at

least partially) what the perception of the stimulus will be.  More powerful, integrated theories of

categorization, visual cognition and perception could emerge from these interactions.  It is the purpose of

this chapter to illustrate this point.

Diagnostic recognition: An overview.

It is worth remembering that in categorizing the visual input one seeks to obtain a close match

between a category representation and a representation of the object in the input.  This match between

memory and input information is what we will call a task for the observer.  We will here characterize a task

as a strategy, as a means of directing an active search of information in the input for resolving a specific

classification.

Generally speaking tasks or strategies are not rigid.  Instead, different categorizations of an

identical object tend to change the information requirements of the task at hand.  For example, the

information necessary to assign a visual event to the Porsche, collie, sparrow, Mary, or New York category

might be comparatively more specific than that necessary for categorizing the same event  as a car, dog,

bird, human face or city.  We will here examine the information required to place the input in a taxonomy,

which is a sequence of progressively more inclusive categories such as robin, bird, animal.  Within this

hierarchy, we will concentrate on the so-called “perceptual” classifications (e.g., robin or bird), instead of

the abstract functional classifications (e.g., animal) which tend to be less perceptual in nature.  Henceforth,

task constraints will denote the information that is required to place the visual input into one category of a

hierarchy. Task constraints have traditionally been the main focus of categorization research, but they are an

irreducible factor of any recognition task, and the first factor of the diagnostic recognition framework

outlined here. Recognition can be viewed simply as the successful resolution of task constraints on a given

input (Schyns, 1998).
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The second factor  governing diagnostic recognition is the a priori structure of perceptual

information available to construct hierarchically organized categories.  We group objects into perceptual

categories because they “look alike” (see Ahn & Dennis, 2000;  Hampton, 2000)–i.e., they share cues such

as a similar silhouette or global shape, distinctive sets of parts similarly organized (e.g., nose, mouth,

eyes, ears, hair and their relationships), typical surface properties (e.g., smooth vs. discontinuous,

symmetric vs. asymmetric, and textural, color and illumination cues), or biological motion.  Generally

speaking, not all image cues are equally available; there are perceptual limitations on their extraction from

the image. The structure and perceptual availability of object information has traditionally been the concern

of perceptually-oriented object recognition researchers.  However, perceptual cues are an irreducible factor of

any object categorization, and the second factor of diagnostic recognition.

In the diagnostic recognition framework these two factors ---task constraints and persceptual

cues--- interact:  When the information required to assign an object to a category matches with input

information, a subset of object cues become particularly useful (i.e., diagnostic) for the task at hand.

Diagnosticity is the key component of recognition performance.  However, perceptual limitations on the

extraction of diagnostic cues should also affect performance.  Thus, diagnostic recognition frames

explanations of performance as interactions between cue diagnosticity and cue availability (Schyns, 1998).

It is our view that the nature and the implications of these interactions has been largely neglected both in

object recognition and in object categorization research.  We will review some of these implications here,

in part to demonstrate that these interactions are not just a theoretical construct, but instead lead to

powerful and new phenomena which could force us to consider bridging what is traditionally independent:

cognition and perception.

Specifically, this chapter is organized as follows.  We first review recent evidence that

constraints arising from a categorization task can both transiently modify the perception of common

faces, objects and scenes, and more permanently affect the perception of expert object categories.  While

these results illustrate the phenomenology to be explained, it is difficult to derive specific predictions

from them.  To this end, we will present SLIP, a formalization of task constraints.  In a nutshell, SLIP

predicts (1) the successive steps of information acquisition prescribed in a categorization task, and (2) the

perception that arises as a side-effect of (1).

Evidence that Categorization Changes the Perception of Objects



5

Studies in our laboratory have already provided evidence of flexible, task dependent perceptions.

For example, in Schyns and Oliva's (1999) Experiment 1, three subject groups were instructed to each

perform a different categorization (male vs. female, expressive vs. non expressive, happy vs. angry vs.

neutral) on an identical set of hybrid faces presented tachystocopically on the computer monitor for 50

ms.. Hybrid faces associate a different perceptual content with a different spatial scale.  For example, in

the top face of Figure 1, the fine spatial scale (in fact, high spatial frequencies) represents a nonexpressive

man.  If you squint, blink, or step back from the picture you will perceive a smiling woman, represented

at a coarse spatial scale (i.e. low spatial frequencies). We found that the categorization task modified the

spatial scale that the observer used in a given hybrid face.  Specifically, subjects in one task (expressive

vs. nonexpressive judgments) would judge that the top picture was not expressive (using fine scale cues)

whereas subjects in another task (which asks to identify the expression of the faces) saw the same face as

happy (using coarse scale cues). These results reveal that scale perception is flexibly dependent on the

information demands of different categorizations, an implication of diagnostic recognition (see also Oliva

& Schyns, 1997, for other recent evidence).  It also suggested that people can use different spaces

composed of different visual cues (e.g., coarse blobs, vs. fine scale edges) spaces for the encoding of an

identical stimulus.

Other evidence stems from the Change Detection literature (see Simons & Levin, 1997, for a

review) which has often reported that people do not always perceive all features of a distal object.  In a

typical experiment, one feature of a real-world scene changes between successive presentations separated

by a blank.  For example, a particular object can change location, color, texture, or even disappear.

Subjects tend to be blind to these straightforward changes, even though they that know there is a change.

Rensink, O'Reagan and Clark (1997) showed that a change in a scene location of higher interest was

detected faster than a change in a location of low interest, suggesting that visual information with little

relevance for representing an object (Friedman, 1979) or a scene (Rensink et al., 1997), tends to be

unnoticed (Simons & Levin, 1997; see also Dennett, 1991; Hochberg, 1982).

One of the authors recalls a particularly striking demonstration of change blindness (see the

special issue of Visual Cognition for others) that appeared in the seventies on French television.  An

actor would stand on a Parisian sidewalk and ask a passerby for directions. During this conversation, two

men holding a large mirror would walk between the actor and the passerby, in effect interrupting their
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conversation, and disrupting the situation.  Behind the mirror was a second actor who would substitute for

the first.  The striking (and in this case funny) effect was that the passerby would resume giving

directions when the mirror had gone without realizing that he was now talking to another, and often

markedly different, person.

The evidence just reviewed suggests that the perception of an object is not exhaustive, but

instead partial and contingent on a given task.  Aside from these transient effects, expertise with objects is

also known to give rise to sustained perceptual changes in restricted contexts.  For example, experts

categorizing X-rays (Christensen, Murry, Holland, Reynolds, Landay & Moore, 1981), dermatosis

(Norman, Brooks, Coblentz & Babcock, 1992) or sexing chickens (Biederman & Shiffrar, 1987) can often

perceive important differences that novices just do not see.  Schyns and Murphy (1994; Schyns & Rodet,

1997) suggested that this could highlight a pervasive principle of category learning which creates new

features for new object categorizations.  In a typical experiment  (see Schyns and Rodet, 1997), used three

categories of unknown stimuli called “Martian cells” called X, Y and XY .  Categories were defined by

specific blobs common to all category members to which irrelevant blobs were added (to simulate various

cell bodies).  The main goal of Schyns and Rodet’s experiment was to demonstrate that different

categorization constraints could induce orthogonal perceptions of the defining xy component–i.e.,

perceptions of xy as an x&y feature conjunction, or as an xy unitary feature.  One group of subjects was

asked to learn X  before Y  before XY  (X->Y->XY); the other group learned the same categories in a

different order (XY->X->Y).  Reliable classifications of X , Y  and XY stimuli in the testing phase

indicated, without any doubt, that all subjects saw and attended to the components x and y.  X-Y cells

were used to understand the perceptual analysis of XY.  X-Y cells were XY exemplars in which the x and

y components were not adjacent to each other.  The reasoning was that subjects should categorize X-Y

cells as XY  members if they perceived and represented XY  as conjunction of two individuated features.

Results revealed that only one group (X->Y->XY) performed this categorization while the perception of

XY in the other group prompted X or Y classifications of X-Y.  In sum, orthogonal classifications of X-

Y , when its component features were both clearly perceived and used in the experimental groups,

suggested that different features were acquired to perceptually analyze and represent XY  (see also Gauthier

& Tarr, 1997, for evidence of perceptual expertise inducing enhanced sensitivity to the configurations of

"face-like" abstract objects).   
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Effects of category expertise can also be found in simpler tasks, using much simpler stimuli,

confirming the pervasiveness of the principles.  For example, Goldstone (1994) trained humans to

categorize squares varying in size or brightness.  After prolonged training, subjects were tested in a

same/different task.  When a dimension had been relevant for categorization, same/different judgments

along this dimension were more accurate than those of subjects for whom the dimension had been

irrelevant, or of control subjects who had not undergone categorization training.  The greatest acuity

increase along the categorization-relevant dimension was found between those points that had served as the

boundaries between the learned categories.  This sensitization of the relevant dimension also extended to

other values along that dimension. Dimensions that were irrelevant for categorization became less accurate

than those of control subjects.

Using a related approach, Archambault and Schyns (1999) found that the perception of an entire

object dimension (its texture, not just the trained textural values) could be enhanced when it became

diagnostic via category training.  In contrast to Goldstone (1994), the same/different task involved

simultaneous, not sequential presentations of objects.  That is, subjects saw two objects (e.g. computer-

synthesized 3D fruits) appearing simultaneously on the screen and their goal was to judge whether the

stimuli were physically identical.  Even with this kind of stimulus display, and even though all subjects

knew that the two stimuli could only differ in texture (i.e., their shape and color were identical), the

subjects for whom this dimension was diagnostic during training perceived the difference with a

significantly greater accuracy.  Furthermore, they were better able to use this information in a subsequent

categorization task.

In sum, the data reviewed so far suggest that the perception of faces, objects and scenes can either

change transiently depending on the specific demands of a categorization task, or more permanently when

expert categorizations require the creation of new distinct cues, or a new category distinction along a

continuum.  If an object can be differently perceived when the information requirements of its

categorization change (either because people want to categorize this object at different levels of specificity,

or because they become expert with it), it becomes crucial to predict the information requirements of a

categorization to predict the visual information that must be perceived.  SLIP was designed to this end.
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SLIP:  A Formal Model of Task Constraints

SLIP (for Strategy Length & Internal Practicability) is an ideal categorizer in the sense that it

applies an optimal feature testing strategy to determine the category membership of an object in a

taxonomy.  To illustrate, SLIP would test that the stimulus presented in Figure 2 possesses a cube and a

wedge to place it in the specific PIM category in the taxonomy of Figure 3a.  It would verify that the

same input possesses only a cube to assign it to the more general LAR category.  SLIP uses one strategy

(e.g., for the PIM category of Figure 3a it could be Strat(X, PIM) = [{“does X  possess cube?”} & {“does

X  possess wedge"}]) to drive its perceptual systems to make an ordered series of feature tests (see

Woodman & Luck, 1999, for a recent defense of serialism).

--------------------------------------------------------------------------

Insert Figure 2 about here

--------------------------------------------------------------------------

The behavior of SLIP is fully determined by two independent factors, the length and the internal

practicability of strategies, themselves dependent on the organization of featural information in

taxonomies.  The length of a strategy is the minimal number of feature tests required for its completion.

For example, two feature tests are required to identify a PIM in the taxonomy of Figure 3a.    Thus, a

strategy comprises sets of features and SLIP tests their presence, one set at a time, in a specific order. We

suppose that response time is a function (typically linear) of the total number of features tested when

SLIP executes a strategy.  Since the higher level in Figure 3a comprises only one feature test whereas the

lower level comprises two feature tests, SLIP predicts a slower access the lower level.  A glance at the

taxonomy of Figure 3a will indicate that the overlap of features between the categories of a taxonomy

determine the length of categorization strategies (e.g. cube overlaps between several subordinate

categories).

The second factor is the ease with which SLIP executes a particular test in a strategy.  Figure 3b

illustrates this idea.  To categorize an object as a LAR, at the high level, the strategy is Strat(X, LAR) =

[{“does X possess macaroni?”, “does X possess cube", "does X possess pinched cube"}].  That is, any one

of these feature tests convey the same information about the category membership, and together they form

an exhaustive set of redundant feature tests to access the category.  A high level of redundancy in a

strategy will elicit shorter categorization times.  This occurs because the processes of SLIP are noisy and
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sometimes slip off the ideal track to test random object features.  In general, slippage will increase the

number of feature tests attempts and the time taken to reach a category decision.  However, slippage to a

diagnostic feature is more likely for categories with many redundant features than for those with fewer

features.  Thus, SLIP predicts a faster access to the more redundant higher level of Figure 3b.

--------------------------------------------------------------------------

Insert Figure 3 about here

--------------------------------------------------------------------------

It is useful to contrast SLIP to another, and very different processing model of categorization:

Lamberts’ (1994) EGCM (Extended Generalized Context Model).  SLIP is uses a task-dependant rule to

represent a category, whereas EGCM represents a category with all its stored exemplars.  SLIP

accumulates features in tine, whereas EGCM compares them in parallel.  SLIP categorizes and object

whenever the collected features match the representation of a category in memory.  In contrast, the

probability that EGCM places an object in a category is a function of the distances (i.e., similarities), in

a multi-dimensional psychological space, between this object and all the exemplars of memorized

categories.  Finally, SLIP has a single free parameter (i.e., the probability of a slip), whereas EGCM has

several (i.e., one inclusion rate and one utility value for every dimensions).

In sum, SLIP predicts that an object should be categorized faster in category X  than in category

Y (1) if  the length of the optimal strategy that identifies the object as X is smaller than the length of the

optimal strategy that identifies the same object as Y  and (2) if the optimal strategy associated with

category X comprises more redundant attributes than that of category Y   (see Gosselin & Schyns, 1999a

and the Appendix for a formal presentation).

SLIP incorporates the two critical aspects of diagnostic recognition discussed earlier:  task

constraints and information availability.  Task constraints correspond here to the different strategies

associated with a vertical organization of categories–i.e., the idea that different categorization strategies

can be applied to the same object.  From these, we can ask different sorts of questions.  For example, we

can examine whether the two determinants of SLIP just discussed (i.e., strategy length and internal

practicability) determine the speed of access to the different levels of a taxonomy.  However, speed of

access per se is not sufficiently powerful to reveal the locus of processing at which strategies influence

categorization speed.  Strategies could tap into the perception of the input, the memory retrieval of



10

category information, the access to category names, the decision between different category names, or a

combination of these factors.  Nevertheless, the object categorization literature makes a number of

specific predictions for the speed of access to the categories of a hierarchy.  As a safeguard to the empirical

validity of SLIP, we must verify that its principles make similar predictions.  The section below will

investigate these in detail.  SLIP also allows a more precise study of the interactions between the specific

requests of information associated with different categorizations and the perception of the input itself.  We

will examine these later in the chapter.

Effects of taxonomy on categorization:  basic-level performance

It has long been established that speed of access varies with the level of categorization considered.

In Rosch, Mervis, Gray, Johnson and Boyes-Braem’s (1976, Experiment 7) seminal paper, participants

were taught the name of 18 objects at three levels of categorization–the subordinate (e.g., Levis,

Macintosh), basic (e.g., pants, apple) and superordinate (e.g., clothes, fruit)1.  These objects belonged to

one of six possible non-biological taxonomies:  musical instruments, fruit, tools, clothing, vehicles, and

furniture.  In a verification task, subjects were shown a category name followed by a stimulus picture, and

had to determine whether they matched.  Categories at the basic-level were fastest to verify, and categories

at the subordinate level slowest (see also Hoffmann & Ziessler, 1983;  Jolicoeur, Gluck & Kosslyn,

1984;  Murphy, 1991;  Murphy & Smith, 1982;  Murphy & Brownell, 1985;  Tanaka & Taylor, 1991).

The basic level is superior in many other respects:  (1) objects are named quicker at this level

than at any other level of abstraction (Hoffmann & Ziessler, 1983;  Jolicoeur, Gluck & Kosslyn, 1984;

Murphy, 1991;  Murphy & Smith, 1982;  Murphy & Brownell, 1985;  Rosch et al., 1976;  Tanaka &

Taylor, 1991);  (2) objects are designated preferentially with their basic-level names (Berlin, 1992;

Brown, 1958;  Rosch et al., 1976;  Tanaka & Taylor, 1991;  Wisniewski & Murphy, 1989);  (3) many

                                    
1It is worth pointing out that the usage of "basic level" is ambiguous.  It can refer to the middle-level of

a three-level hierarchy (with the level above called "superordinate" and the one bellow "subordinate"–e.g.,

Markman, 1989;  Tanaka & Taylor, 1991), to an index of performance (the fastest level, or the one most

often used to name things, and so forth–e.g., Corter and Gluck, 1992;  Anderson, 1990, 1991), or to both

the level of categorization and the index of performance (e.g., Rosch et al., 1976;  Mervis & Crisafi,

1982).  Henceforth, the basic-levelness of a category will denote a measure of performance.  Whenever

possible, we will refer to the levels of abstraction as the subordinate, basic, and superordinate.  Otherwise,

we will use a set of unambiguous level descriptors–e.g., low, middle and high.  The subordinate-basic-

superordinate trio has the advantage of having a phase known to most psychologists.
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more features–especially shapes–are listed at the basic level than at the superordinate level, with only a

slight increase at the subordinate level (Rosch et al., 1976;  Tversky and Hemenway, 1984);  (4)

throughout development, basic level names are learned before those of other categorization levels (Anglin,

1977;  Brown, 1958;  Rosch et al., 1976;  Horton & Markman, 1980;  Markman, 1989;  Markman and

Hutchinson, 1984;  Mervis and Crisafi, 1982);  and (5) basic names tend to be shorter (Brown, 1956;

Rosch et al., 1976).  Convergence of these performance measures is crucial to establish a preferred

categorization level, even though verification speed is the most commonly used.

To recapitulate, the behavior of a SLIP observer is fully determined by the length and internal

practicability of the strategies it uses.  We will first review experiments that involve only the internal

practicability of SLIP.  These include experiments with artificial (Murphy & Smith, 1982;  Murphy,

1991;  Gosselin & Schyns, 1999a) and natural taxonomies (Rosch et al., 1976;  Tanaka & Taylor, 1992).

Second, we will report experiments that varied the length of strategies, the second determinant of SLIP

(Hoffmann & Ziessler, 1983;  Gosselin & Schyns, 1998, 1999a).  All used artificial taxonomies.

Finally, we will discuss the only experiment that integrates the two determinants of SLIP (Gosselin &

Schyns, 1999a).

Practicability determines speed of access

Faster access at an intermediate level.  One of the most influential experiment on the basic-level

is that of Murphy & Smith (1982, Experiment 1).  It is influential because most subsequent basic level

experiments have used the same procedure.  Their participants were initially taught the artificial taxonomy

represented at the top of Figure 4.  In a later testing phase, they were shown a category name followed by

a stimulus.  Subjects' task was to verify as quickly as possible whether the name and stimulus matched.

As shown in Figure 4, mid-level categories have the highest practicability.  Table 1 illustrates that they

were verified faster, and the high-level categories slowest.  Using the same taxonomic organization of

category attributes, Murphy (1991, Experiment 4, Simple) replicated these results.  In fact, the highest

practicability of the middle level is also responsible for its faster access in the artificial taxonomies of

Mervis & Crasifi (1982) and Murphy (1991, Experiment 4, Enhanced) (see Figure 4 and Table 1).

----------------------------------------------------------------------------

Insert Figure 4 about here

----------------------------------------------------------------------------
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Moreover five natural taxonomies had a greater redundancy at the intermediate level:  Rosch et al. (1976,

Experiment 72), Tanaka & Taylor (1991, Novice3), and Johnson & Mervis (1997, advanced songbird

expert, intermediate songbird expert, and novice4).  For these, we assumed that the features subjects listed

reflected their representations (see Rosch & Mervis, 1975).  In addition, following Tversky and

Hemenway (1984) and Tanaka and Taylor (1991) we assumed that one feature was never listed for two

contrasting categories.  Table 1 reveals that, as predicted in SLIP, basic-levelness was a direct function of

average number of redundant attributes at each level.

---------------------------------------------------------------------------

Insert Table 1 about here

---------------------------------------------------------------------------

Faster access at the lower level.  Murphy and Smith (1982, Experiment 3) added a unique set of

attributes to Murphy and Smith’s (1982) artificial tools at the lower-level.  Figure 5 illustrates the

abstract organization of the features. It also shows that the lower-level categories were more practicable

because they had more redundant attributes. As predicted in SLIP, Table 1 reveals that these categories

were accessed faster than categories at the other levels.  Tanaka & Taylor's (1992, Expert5) is a variation

on this theme:  they used expertise to "add" redundant features at the lower level and thus speed up its

access.  They found that the basic and subordinate categories were equally fast and the superordinate

                                    
2In Rosch et al. (Rosch et al., 1976, Table 2, non biological taxonomies, raw tallies), the mean number

of added redundant features was of 1.85, 5.55 and 3.5 for subordinate, basic, and superordinate,

respectively.
3In Tanaka and Taylor's (1991, Novice) subjects listed approximately 8, 12, and 7 new redundant features

for the superordinate, basic, and subordinate levels of categorization, respectively.  The basic-level

categories were the fastest, and the subordinate-level categories were the slowest (in Table 1 we give the

mean RTs of bird novices and of dog novices).
4Johnson and Mervis's (1997, Experiment 1, Songbirds condition) used four-level natural taxonomies in

a verification task.  Their advanced songbird experts listed 1.75, 5, 6.02, and 3.75 for the superordinate,

basic, subordinate and sub-subordinate levels, respectively.  For the intermediate songbird experts, these

numbers were 1, 4.87, 4.28, and 2.47, for the same levels.  For the novices and the tropical freshwater

fish experts, the numbers were 1.08, 2.47, 0.23, and 0.02.
5Their subjects listed approximately 8, 10, and 10 new features for the superordinate, basic, and

subordinate levels of categorization, respectively (compare this with 8, 12, and 7 for the superordinate,

basic, and subordinate levels in their Novice condition in the previous section).
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categories the slowest (Table 1 gives the mean RTs of bird and dog experts).  Gosselin & Schyns' (1999a,

Experiment 2, LOW_FAST) inserted computer-synthesized four-geon chains similar to the one in Figure

2 in the two-level taxonomy illustrated in Figure 5.  All strategies had length 1 but the high and low

levels differed in practicability.  Low-level strategies had greater practicability than high-level ones, and

were verified faster (see Table 1).

---------------------------------------------------------------------------

Insert Figure 5 about here

----------------------------------------------------------------------------

Faster access at the higher level.  In his Experiment 5, Murphy (1991) added a set of unique

values to the high-level categorizations of Murphy and Smith’s (1982) artificial tools.  Figure 6 shows

that this level becomes more practicable and Table 1 reveals that it was indeed accessed faster, as predicted

in SLIP.

----------------------------------------------------------------------------

Insert Figure 6 about here

----------------------------------------------------------------------------

Gosselin & Schyns (1999a, Experiment 2, HIGH_FAST) inserted computer-synthesized four-geon

(Biederman, 1987) chains (see Figure 2) in the two-level taxonomy illustrated in Figure 6 (see also Figure

3b).  All strategies had length 1 but the high and low levels differed in practicability;  high-level

strategies had greater practicability than high-level ones, and Table 1 shows that they were verified faster.

Strategy Length determines speed of access.

In all the experiments reviewed so far, the length of the categorization strategies was held

constant.  Variations of strategy lengths were first tested in Hoffmann and Ziessler (1983, Hierarchy I).

They used "PacMan ghosts" artificial objects organized in the top taxonomy of Figure 7.  Strategy length

was 1 at the high- and middle- levels, but 2 at the low-level.  Participants accessed the high- and mid-

levels categories equally fast, and were slower for low-level categories (see Table 1).

In Gosselin and Schyns (1998) participants learned the taxonomy of Figure 7 applied to

artificially textured and colored geons.  This taxonomy ascribes strategies of different lengths to the

different levels of abstraction: length 1 for the high-level, length 2 for mid-level, and length 3 for low-
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level categories.  Categorization was fastest at the higher level, and slowest at the lower level (see Table

1).

Gosselin and Schyns' (1999a, Experiment 1, HIGH_FAST and LOW_FAST) isolated strategy

length using a set of computer-synthesized four-geon chains (see Figure 2) inserted in the two two-level

taxonomies illustrated in Figure 7 (see also Figure 3a for HIGH_FAST condition).  These taxonomies

were designed to induce orthogonal patterns of categorization speed across conditions.  Participants

systematically verified length 1 strategies faster than length 2 strategies, irrespective of the considered

level (low vs. high).

---------------------------------------------------------------------------

Insert Figure 7 about here

----------------------------------------------------------------------------

Interactions between Strategy Length and Internal Practicability determine speed of access.

We have so far shown that the two determinants of SLIP (strategy length and internal

practicability) can independently determine a faster access to any level of a taxonomy.  Gosselin and

Schyns (1999a, Experiment 3) explored how these two factors could interact to determine performance.

Of many possible interactions, they investigated three (EQUAL, SL_DOWN and IP_UP).  In EQUAL,

strategies at the high and low-levels had an equal length of 1 and the same constant practicability (see

Figure 8).  SLIP predicts that categorization speeds should be equal across levels, and this is what they

found.  In SL_DOWN, faster categorizations at the lower level were produced by augmenting the length

of the strategies that access the high-level categories (see Figure 8).  In the IP_UP scenario, the difference

of strategy length just discussed was preserved, but the high-level became fastest because the practicability

of the low level was decreased (see Figure 8).  In sum, starting from an EQUAL access to two levels of a

taxonomy, Gosselin and Schyns manipulated strategy length and internal practicability to modify the

fastest level of a taxonomy.  A change of strategy length in SL_DOWN produced faster categorizations at

the low level.  From this, a decrease in the internal practicability of the low level in IP_UP produced

faster categorization at the high level (see Table 1).

---------------------------------------------------------------------------

Insert Figure 8 about here

----------------------------------------------------------------------------
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Summary

SLIP correctly predicts most results of these experiments on the basic level (see Table 1).  A

Monte-Carlo study showed that the probability of this, or a better fit of the data being due to chance alone

is smaller than .001–in any case, better than the fit obtained with other established basic-level measures

(i.e., Jones', 1983, category feature-possession;  Corter & Gluck's, 1991, category utility;  Pothos &

Chater's, 1998, compression measure;  and Medin & Schaffer's, 1978, context model, modified by Estes,

1994).  Note that none of these measures predicts verification latencies per se;  they predict a superiority

of a measure (i.e., greatest utility in the cases of category feature-possession, category utility, and

compression measure;  and maximum within-category similarity and between-category dissimilarity for

the context model) that is correlated with verification latencies.  To the extent that any model of

categorization implements computational constraints (even if these are not well specified), the conclusion

is that those of SLIP are closest to those underlying the speed of access to the categories of a taxonomy.

At this stage, it is worth remembering that these two constraints are strictly of a categorical nature:  in

SLIP, speed of access is a direct function of the representation of object information in memory.  In other

words, the modeling of task constraints in SLIP accounts for the first aspect of diagnostic recognition.

We now turn to the question of whether these strategies can modify the perception of visual object

information.

Effects of Taxonomies on Perception

It is notoriously difficult to assess that the perception of an object has changed as a result of a

change in categorization (see Pylyshyn, 1999; Schyns et al., 1998 for debates).  SLIP, however, makes

two testable perceptual predictions.  A first prediction is that the features prescribed in a categorization

strategy are only those sampled in the input.  This implies that changing the features of a strategy (e.g.,

via the acquisition of conceptual expertise) could, to some extent, control the features that are (or not)

seen in a given object.  Below, we review studies (Archambault, O'Donnell & Schyns, 1999) that used

Change Blindness to demonstrate that basic and subordinate categorization strategies can induce different

perceptions of an identical object.  A second perceptual prediction of SLIP is that features in a strategy are

tested serially, in a specific order.  Another study reviewed below (Gosselin an Schyns, 1999b) used a

masking technique to determine the order of feature testing.

Representation-Driven Blindness
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In Figure 9a, the mug could either be categorized as simply a mug  at the general level of

categorization, or as Peter’s mug at a more specific level.  If a cylindrical shape and the presence of a

handle would be diagnostic of mug more specific (and relatively independent) information (e.g., the

specific texture on the mug) might be required to classify the input as Peter's mug.  People could

preferentially attend to and represent the visual properties required in their categorization strategies and

differently perceive the same mug.

Archambault, O’Donnell & Schyns (1999) investigated this hypothesis.  In a first experiment,

one group (MUG-computer) learned the mugs at a general level and the computers at a specific level

whereas the other group (mug-COMPUTER) learned the opposite assignment of category level to objects:

mugs as specific and computers as general.  This ensured that subjects learned an identical set of objects at

different levels of categorization.  It was expected that these learning differences would lead to different

categorization strategies in the different groups.

A change detection task (see Simons & Levin, 1997) tested the visual encodings of the objects.

The mugs and computers were inserted in a complex office scene (see the frames of Figure 9b).  In a trial,

two office photographs were successively presented, separated by a blank.  Between the two frames, a

mug could change (be replaced by a different mug) or disappear, a computer could change or disappear, or

other office objects could disappear.  All subjects (i.e., MUG-computer and COMPUTER-mug) were

exposed to the same object changes and disappearances.  Their task was to identify the difference between

the two frames.

Archambault et al. (1999) found that subjects were “blind” (i.e., took longer to perceive) changes

involving objects they learned at a general level, whereas other subjects were aware of the same changes

when they learned these objects at a specific level.  These different perceptions did not simply arise

because subjects looked preferentially at the location of objects learned at a specific level because all

subjects equally fast in perceiving the disappearances of all objects—i.e., those learned at a specific level

and those learned at general level.  In sum, these orthogonal perceptions of identical object changes when

disappearances were detected equally fast isolated the effect of different categorization strategies on

perceived object features.  

A second experiment replicated these results with a within-subjects design that ruled out the

objection that subjects preferentially scanned the image location where subordinate changes appeared.  In
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their Experiment 1, mug and computer were orthogonally assigned to general and specific levels across

groups.  In their Experiment 2, subjects learned to categorize mugs and computers at both the general and

specific levels.  That is, subjects learned a subset of mugs and a subset of computers at a specific level,

and the remaining mugs and computers were learned at a general level.  Consequently, each image

location now embodied either a general- or a specific-level object change.  Attention to the location of a

specific-level change now implied necessarily attention to the general-level object change also occurring

in the same image location.  Different perceptions of general- and specific-level object changes in these

conditions confirmed that the nature of categorization did not affect selective attention to locations, but

selective encodings of the objects present in these locations.

---------------------------------------------------------------------------

Insert Figure 9 about here

----------------------------------------------------------------------------

In SLIP, the features involved in a categorization strategy are those preferentially sampled from

the input.  In the previous experiments, and even though each frame of a sequence appeared for 5 s on the

screen, giving ample time for careful visual encoding, subjects who knew the subordinate categorization

of mugs and computers encoded properties that the others did not.  This elicited different perceptions of

identical objects and so the first perceptual prediction of SLIP is confirmed.  We come back to its

implications in the General Discussion.

Serial, ordered testing of features and perception

A second perceptual prediction of SLIP is that strategies specify an order of feature testing.  If

this order is respected, then the perceptual appearance of the stimulus could change.  To illustrate, a PIM

in the taxonomy of Figure 3a is represented either by Strat(X, PIM) = [{wedge} & {cube}], or by Strat(X,

PIM) = [{cube} AND {wedge}].  These two strategies have equal speed of access, but the order in which

the two features are tested differs.  Why would one adopt the first or the second strategy?  In the taxonomy

of Figure 3a, one strategy (i.e., Strat(X, PIM) = [{cube} & {wedge}]) is more robust in categorization

under time pressure.  It is more robust because it is more likely to lead to a valid, if approximative,

categorization of the input.  We know that the input is at least a LAR  if it has a cube.  Category

robustness is critical in everyday categorization because unseen features can be inferred from a partial

categorization (e.g., Anderson, 1991).
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Gosselin and Schyns (1999b) tested the prediction that people who categorized an identical scene

could integrate their luminance and color in a reverse order.  To this end, they synthesized four stimuli by

combining two different luminance patterns (that we call flat and hilly) with two different chromatic

patterns (called grassy and sandy).  A learning procedure was devised to induce a different, two-level,

taxonomic knowledge of these four stimuli in two subject groups (called LUMI and CHRO;  see Figure

10).

---------------------------------------------------------------------------

Insert Figure 10 about here

----------------------------------------------------------------------------

At the general  level, LUMI subjects learned to separate the four scenes into “flat” and “hilly”,

on the basis of luminance cues, whereas CHRO subjects learned to separate the same scenes into “grassy”

and “sandy” on the basis of chromatic cues.  At the specific level, LUMI and CHRO subjects all learned

to categorize the stimuli as either “field” (the combination of flat and grassy), “desert” (flat and sandy),

“mountain” (hilly and grassy) or “dune” (hilly and sandy).  Note that the specific categorizations are

strictly identical in the two groups.  The conjunctive nature of the stimuli warrants that the input scene

can only be recognized as, e.g. “field,” when its flat luminance and its grassy chrominance are perceived

and integrated.

This property can be used to ascertain whether subjects are more sensitive to the dimension

defining the general than the specific level of their taxonomy, and therefore perceive the scenes according

to their organization of knowledge.  Suppose that the field picture is briefly presented on the screen,

immediately followed by a mask.  Subjects can make three errors at the lower level, depending on which

information they misperceive;  “dune” implies a misperception of both the flat luminance and the green

chrominance of the field; “mountain” implies a misperception of only the flat luminance, whereas “desert”

implies a misperception of only the green chrominance.

Subjects were only tested on the specific-level categorizations of the four scenes.  Gosselin and

Schyns predicted that the organization of luminance and chromatic information in the LUMI and CHRO

taxonomies would determine different orders of feature testing, in turn leading to different perceptions of

identical stimuli.  They found that subjects placed in an identical condition of stimulation (e.g. seeing a

field) and response (choosing between “field,” “mountain,” “desert” or “dune”) produced opposite patterns
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of categorization errors (i.e. respond more often “desert” than “mountain” in LUMI, but “mountain” than

“desert” in CHRO), revealing a differential sensitivity to luminance and chrominance in the groups (see

Figure 10).  A similar analysis and results applied to all four stimuli of the experiment.

These results have potentially far reaching implications.  It is well established that luminance

and color are two of the main dimensions of visual processing.  If different categorization strategies

applied to strictly identical scenes, in strictly identical conditions of response and stimulus presentation,

can produce a different order of integration of luminance and chromatic cues, then this would constitute

strong evidence that categorization strategies can determine perception.  We come back to this point and

its implications in the General discussion.

General discussion

Diagnostic recognition is a framework that seeks to establish a dialogue between categorization

tasks and object perception.  A categorization task specifies the information that must be obtained from

the visual array to place the input object in a category. The framework proposes that these information

demands can modify the perception of the object itself.  We presented a formal model of task constraints

called SLIP (standing for Strategy Length & Internal Practicability).  In SLIP, task constraints are

implemented as different categorization strategies.  They specify a series of tests on the presence of visual

properties in the input object.  The visual properties tested in a strategy therefore depend on the

categorization considered.  Turning to the organization of categories in memory, we noted that they

formed taxonomies of progressively more inclusive membership–e.g., a Porsche is a car is a vehicle.  In a

taxonomy, categories can share visual properties (e.g., the part wheel will be shared between car,

motorcycle, bus, plane, and so forth).  When a feature is shared between two categories, it does not by

itself isolate one of the categories.  Instead, a combination of features is sometimes necessary to identify

the category.  In SLIP, the number of features entering the combination determines the length of a

strategy.  Longer strategies are slower to verify and so SLIP predicts that categories with overlapping

features are slower to verify.  On the other hand, redundant features provide the same categorization

information (to the enthusiast, a real-life Porsche 911 can be identified from many different shape features,

including its silhouette, characteristic hood, windscreen, and so forth).  That is, testing one, two or all

redundant features of a category does not add any information to the membership decision.  However, the

feature pick-up process of SLIP is noisy–it slips off its ideal track–and the likelihood of randomly
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slipping to a diagnostic feature is higher when the category comprises many redundant features.  Thus,

more redundant categories are recognized faster.  Numerical simulations of SLIP and experimental data

revealed that it provides the closest fit to classical basic-level experiments data.

We argued earlier that a close fit to reaction time is not sufficiently powerful to inform the locus

at which strategies affect behavior–i.e., perception, memory, or decision.  A close behavioral fit

nevertheless licenses further explorations of the perceptual assumptions of SLIP.  We reviewed two of

these.  SLIP assumes that the observer will preferentially perceive the object features tested in a

categorization strategy.  Experiments on Change Blindness (see Archambault et al., 1999) demonstrated

that subordinate categorizations induced the perception of the properties of an object that is basic

categorization did not.  SLIP also predicts that object properties are tested in a specific order.  A scene

categorization experiment revealed that subjects who had to integrate the same luminance and color cues

could selectively respond more accurately to one of the information sources, if their taxonomy was based

on this source (Gosselin & Schyns, 1999b).  Together, the evidence presented suggest that categorization

should be more closely bound to perception, if only because it influences it.  We now turn to limitations

of the framework and future research.

Limitations of Diagnostic Recogition.

Diagnostic recognition is a framework in which the information goals of object categorization

tasks are considered before their perceptual representations.  Although this is a good, generally

recommended approach to theory construction (e.g., Marr, 1982), it nevertheless presents serious

limitations for the study of object representations.

The reason is simply that thinking from task constraints to their perceptual representations could

over-represent the considered information demands in the proposed representation.  For example, if it were

discovered that the information requirements of an object categorization were X, then it would be an easy

step to assume that the representation of this object was effectively that X.  But then, how would we

know whether X represents the object, or the task itself?

Even though we acknowledge that diagnostic recognition is not designed to study issues of face,

object, and scene representation, it is not clear to us that such a framework does exist yet, irrespective of

what researchers want to believe.  We do not yet have the means to study object representations, and when

we think we do, we might only be studying representations of tasks.  What diagnostic recognition does

well is predict which visual information (irrespective of its actual representational format) is required to
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access a category and which information is not.  On this basis, new issues can be explored that attempt to

determine the visual information that is necessarily perceived, irrespective of task demands, and which

information is strictly contingent on the categorization task.  This could constitute a first step towards

resolving the problem of object vs. task representations.

SLIP and reduction of uncertainty

The take-home message of this chapter is that categorization tasks can determine (at least in part)

the perception of objects via the selective use of diagnostic information.  It is therefore crucial to further

examine the information requirements of different categorization tasks.  Looking at the formal

organization of visual information in taxonomies, we argued that categories are accessed via overlapping

and/or redundant attributes.  We showed that the particular sequence in which feature tests are performed is

of critical importance for perception.  We suggested that category robustness (i.e., the idea that feature

tests are ordered so as to categorize the input as quickly as possible) could be a determinant of this order.

There are other possibilities just as consistent with Gosselin & Schyns' (1999b) results, and it would be

worth exploring them further.  For example, features in a categorization strategy could be tested in an

order that minimizes the uncertainty of the considered categorization.  If the categorizer needs to judge

whether or not the input is , e.g., a dog, he or she would first pick the features that lead to the greatest

reduction of the uncertainty of the categorization.  The categorizer would also optimize a measure of

robustness, but on the information, not the category.

Unravelling features in the input

This proposal assumes that people use visual input features to categorize objects, but it does not

provide the means to isolate what these input features are.  It is notoriously difficult  to ascertain what the

features of an object are (Schyns et al., 1998).  However, in the absence of an efficient empirical

technique to unravel the object features actually used in different categorizations, it is impossible to know

the distribution of information in the categories of a taxonomy (in terms of redundancy and overlap), and

the approach proposed here disintegrates.  It is therefore on our agenda to develop techniques to identify

the visual features involved in different categorizations.  For example, in Schyns and Oliva (1999), the

use of hybrid stimuli similar to those of Figure 1 licensed the conclusion that different categorizations

used different bandwidths of spatial information.  Even though this is not sufficiently specific to know

what features were used, the hybrid techniques narrows down the search for features to a subspace (a
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restricted bandwidth of spatial frequencies) of the original input space (the full spectrum).  This is a useful

starting point to start working on the features of natural images.

We are developing further an existing technique called reverse correlation (Ahumada & Lovell,

1971).  This technique enables the extraction of the features diagnostic of a particular task.  In a nutshell,

the technique introduces noise in the visual input (enough to make several mistakes), and then adds

together the images that lead to hits and false alarms while subtracting those that lead to correct rejections

and misses.  The result is a classification image, a template of the information used in the input to

complete the task.  Again, this technique will not reveal an actual breakdown of the original stimulus

into its psychologically-relevant visual features (i.e., those of a strategy), but it will present a significant

reduction of information in which a more precise search can be conducted.

Implications for similarity

From a logical standpoint, we know that there are an infinite number of ways in which one thing

can be similar to another (e.g., stones A and B could be similar because they both weight less than 1000

pounds, than 1001 pounds, than 1002 pounds, …, than a 1000+n pounds), and thus it is impossible to

ground categorization on similarity (Quine, 1977).  Similarity is too unconstrained to be the basis of

categorization.  Additional constraints are thus needed to specify the respects in which objects are similar if

similarity must be the basic mechanism of categorization.  Diagnostic recognition provides such

constraints:  the respects of similarity are the dimensions that are diagnostic for the task at hand.  We

therefore believe that it is critical to understand the processes that set the appropriate dimensions of the

space of stimulus encoding in different categorization tasks.  A similar view, but applied only to the

similarity of two objects is defended in Medin, Goldstone and Gentner (1993).

Concluding Remarks

Diagnostic recognition is a new approach within which to frame recognition and categorization

problems.  We have here presented SLIP, an implementation of the framework that places a central focus

on the notion that information picking categorization strategies can partially determine perception.  Even

though the framework is still in its infancy, and much groundwork remains to be accomplished to arrive

at any satisfactory theory of categorization, we believe that the framework offers a powerful and integrated

approach to the understanding of face, object and scene categorization and perception.  
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Appendix:  a formal implementation of SLIP

A strategy to categorize an object at a given level of abstraction is defined here as a list of

features. Typically, some of these features are unique to this category and some overlap with the defining

features of other categories. An optimal strategy is the shortest series of tests on the features defining the

category. We posit that SLIP categorizers always use optimal strategies. We call redundant features, or set

of redundant features, the collection of features which, individually, provide exactly the same information

as to the category membership of objects. In other words, testing one, two, or more redundant features

does not provide more information.

Formally, we will say that a strategy is a series of sets of redundant features. It has succeeded

whenever all sets of redundant features have been completed in a specific order. And a set of redundant

features is completed as soon as a test on the presence of one of its redundant features has been performed.

This usually happens after a succession of misses. The probability of having t -1 successive

misses is given by 1 - y j( )t -1
 where y j –when redundancy of sets of features and the number of

possible configurations that these can take in objects are taken into account–is equal to

Cj 1 - S( ) + CjSRj  that is, the practicability of set of redundant features j  or the probability that it will

be completed after a single attempt. S  is the probability of a random slip (it was arbitrarily set to .5

throughout the simulations), and Cj  is the probability that the target features will be in the expected

configuration (1 / number of configurations). Thus the first term of y j  is the probability that the SLIP

categorizer will guess the feature configuration correctly and that it will not slip. Rj  is the probability

that a random slip will result in a diagnostic test ([cardinality of j ] / [number of features in objects]). The

second term of y j  is the probability that the categorizer will slip, but that it will guess the correct

configuration and will perform a diagnostic feature test.

The probability of a hit is 1 minus the probability of a miss. Thus, the probability that the set

of redundant features j  will be completed after t  trials is

1 - y j( )t -1
y j ,

and the probability that a strategy of length n  will have succeeded after t  trials in a certain configuration

of hits and misses is

1- y j( )f
y j

j =1

n

’ ,
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where f  is a function of j  (it will remain unspecified) which gives the number of misses for the j th set

of redundant features for that particular configuration. Usually, more than one such configuration exist. In

fact, the number of possible configurations is easy to compute. The last hit necessarily happens at the

t th trial; the n -1 other hits, however, can happen anywhere in the t -1 trials left, in order. Therefore, the

number of possible configurations is the number of combinations of t -1 items taken n -1 by n -1 that is,

l =
t -1
n -1

Ê 

Ë 
Á ˆ 

¯ 
=

t -1( )!
t - n( )! n -1( )!

.

We can now give the global shape of the probability that a strategy of lengths n  will succeed

after t  trials:

1- y j( )w
y j

j =1

n

’
i =1

l

Â ,

where w  is a function of i  and j  that specifies the number of misses for the j th set of redundant

features for the i th configuration of hits and misses. We call this the Response Time Function (RTF).

We still have to specify w . We will establish a connection between this function and multinomial

expansions. The multinome a1 + a2 +. ..+an( )t - n
 expands into l  different terms, and the sum of the n

exponents of each term is equal to  t -n . It follows that w  gives the j th exponent of the i th term in

this multinomial expansion.

As a global measure of basic-levelness, we use t_mean, the mean number of tests required to

complete a strategy. When internal practicability is constant within a strategy (this is true for all

experiments reported in this chapter), the RTF is a Pascal density function and, thus, t_mean is equal to
n

y .
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Figure 1.  The top picture is a neutral male and the bottom picture a smiling female.  If you squint,

blink, or step away from the pictures, the opposite situation should appear, namely the smiling female at

the top and the neutral male at the bottom.  This occurs because squinting and blinking modify the
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relative availability of high spatial frequencies, which represent the initial perception of the pictures,

whereas low spatial frequencies represent the other one

.
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Figure 2.  An artificial object used in Gosselin & Schyns, 1999a, Experiments 1 and 2.
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Figure 3.  (a)  The HIGH_FAST taxonomy of Gosselin & Schyns, 1999a, Experiment 1.  This

illustrates a variation of strategy length.  (b) The HIGH_FAST taxonomy of Gosselin & Schyns, 1999a,

Experiment 2. This illustrates a change of internal practicability.
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Figure 4.  Taxonomies of all experiments with varying redundancy that exhibited an advantage for an

intermediate level of categorization.  Underneath the category names, we provide the optimal strategies fed
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to SLIP.  The feature constitution of all exemplar is giving underneath each taxonomy.  An index for

these abstract features is also provided.
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Figure 5.  Taxonomies with varying redundancy that exhibited an advantage at the lower level of

categorization.  Underneath the category names, we provide the optimal strategies fed to SLIP.  At the

bottom of the taxonomy, the abstract feature constitution of all exemplars is given.  An index for these

abstract features is provided left of the taxonomy.  The feature constitution of all exemplar is giving

underneath the taxonomy.
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Figure 6.  Taxonomies that exhibited an advantage at the higher level of categorization.  Underneath the

category names, we provide the optimal strategies fed to SLIP.  At the bottom of the taxonomy, the

abstract feature constitution of all exemplars is given.  An index for these abstract features is provided left

of the taxonomy.  The feature constitution of all exemplar is giving underneath the taxonomy.
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Figure 7.  Abstract taxonomies of all experiments with varying strategy length.  Underneath the category

names, we provide the optimal strategies fed to SLIP.  The feature constitution of all exemplar is giving

underneath each taxonomy.  An index for these abstract features is also provided.
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Figure 8.  Taxonomies of Experiment 3, EQUAL, SL_DOWN, and IP_UP (from top to bottom).

Strategy length and internal practicability interacts here.  Underneath the category names, we provide the

optimal strategies fed to SLIP.  The feature constitution of all exemplar is giving underneath each

taxonomy.  An index for these abstract features is also provided.
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Figure 9.  (a)  Object known as Peter's mug to half the subjects and as a mug to the others.  (b)  This

illustrates a trial of the change detection task–a computer change.  Each frame of a two-frame sequence

was presented for 5 sec, separated by a 500 ms blank.  The two-frame sequence was repeated until subjects

perceived the change and correctly identified it.  The number of repetitions was used as an independent

measure of change perception.
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Figure 10.  A the top, the four scenes used in this experiment and the corresponding low-level category

names learned by all participants ("field", "mountain", "desert", and "dune"), sandwiched by the two high-
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level categorizations ("flat" and "hilly") LUMI subjects learned, and those ("grassy" and "sandy") CHRO

subjects learned.
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Table 1.

Mean observed correct positive trials verification reaction times for various category structures and SLIP's

predictions (with S  = .5;  see Appendix).  For each experiment, we summed the absolute values of the

differences between the predicted and actual categorization level ranks (see the rightmost column). The

smaller this distance measure, the better the fit.

Level

Source H - 3 H - 2 H - 1 H (Highest) Distance

Murphy & Smith, Exp. 1 Observation 723 ms 678 ms 879 ms

SLIP 1.667 1.25 1.667 1

Murphy, Exp. 4, Simple Observation 862 ms 811 ms 980 ms

SLIP 1.667 1.25 1.667 1

Mervis & Crasifi Observation 3rd 1st 2nd

SLIP 1.75 1.273 1.556 0

Murphy, Exp. 4, Enhanced Observation 1,132 ms 854 ms 955 ms

SLIP 1.75 1.167 1.75 1

Rosch et al., Exp. 7 Observation 659 ms 535 ms 591 ms

SLIP 1.714 1.333 1.5 0

Tanaka & Taylor, Novice Observation 778 ms 678 ms 746 ms

SLIP 1.588 1.385 1.543 0

Johnson & Mervis, Songbird Observation ~2100 ms ~1950 ms ~1600 ms ~1900 ms

Novice SLIP 1.990 1.886 1.212 1.557 0

Johnson & Mervis, Songbird Observation ~1725 ms ~1600 ms ~1550 ms ~1800 ms

Intermediate SLIP 1.673 1.493 1.443 1.853 0

Johnson & Mervis, Songbird Observation ~1600 ms ~1625 ms ~1500 ms ~1750 ms

Expert SLIP 1.630 1.466 1.535 1.808 4

Murphy & Smith, Exp. 3, Size Observation 574 ms 882 ms 666 ms
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SLIP 1.25 1.667 1.667 1

Gosselin & Schyns, 1999a, Exp. 2, Observation 740 ms 774 ms

LOW_FAST SLIP 2.286 3.2 0

Tanaka & Taylor, Expert Observation 622 ms 623 ms 729 ms

SLIP 1.474 1.474 1.556 0

Murphy, Exp. 5 Observation 1,072 ms 881 ms 854 ms

SLIP 1.8 1.5 1.286 0

Gosselin & Schyns, 1999a, Exp. 2, Observation 788 ms 661 ms

HIGH_FAST SLIP 3.2 2.286 0

Hoffmann & Ziessler, Exp. 1 Observation ~ 700 ms ~ 500 ms ~ 500 ms

SLIP 3.2 1.6 1.6 0

Gosselin & Schyns, 1998, Overall Observation 1,184 ms 1,012 ms 819 ms

SLIP 4.5 3 1.5 0

Gosselin & Schyns, 1999a, Exp. 1, Observation 1256 ms 896 ms

HIGH_FAST SLIP 6.4 3.2 0

Gosselin & Schyns, 1999a, Exp. 1, Observation 948 ms 1240 ms

LOW_FAST SLIP 3.2 6.4 0

Gosselin & Schyns, 1999a, Exp. 3, Observation 672 ms 680 ms

EQUAL SLIP 1.714 1.714 0

Gosselin & Schyns, 1999a, Exp. 3, Observation 920 ms 1058 ms

SL_DOWN SLIP 1.714 3.429 0

Gosselin & Schyns, 1999a, Exp. 3, Observation 928 ms 775 ms

IP_UP SLIP 6.857 3.429 0


