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Why Do We SLIP to the Basic Level?
Computational Constraints and Their Implementation

Frédéric Gosselin and Philippe G. Schyns

University of Glasgow

The authors introduce a new measure of basic-level performance (strategy length and internal practicability;
SLIP). SLIP implements 2 computational constraints on the organization of categories in a taxonomy: the
minimum number of feature tests required to place the input in a category (strategy length) and the ease with
which these tests are performed (internal practicability). The predictive power of SLIP is compared with that
of 4 other basic-level measures: context model, category feature possession, category utility, and compression
measure, drawing data from other empirical work, and 3 new experiments testing the validity of the
computational constraints of SLIP using computer-synthesized 3-dimensional artificial objects.

In the 20-question game, one of two players chooses the name
of a real-world category. The other player must guess the name
after having asked as few yes—no questions as possible. For ex-
ample, one could ask whether the name begins with a letter prior
to n in the alphabet, whether it has more than two vowels, whether
it sounds like the mating call of a moose, or any other binary
query. The usual strategy, however, consists of asking questions
that reveal certain relations between the target category and other
categories. Suppose that “silver Speedster” was the target. It could
be reached after the following sequence of questions (and appro-
priate answers): “Is it an animate object?” “Is it a vehicle?” “Is it
a car?”’ “A Porsche?” “Is it a Speedster?” and “Is it silver like
James Dean’s?” If you already knew that the target was a car, you
could eliminate a few branches of this search tree and ask more
direct questions about the specific features of the target. Your
questions would focus on shape (to distinguish Speedster from
other cars) and color (to distinguish silver Speedsters from other
Speedsters). Strategies of this sort are the most efficient in discov-
ering the name of a category among a set of possibilities.

Humans who must discover the proper categorization of an, as
yet, unknown stimulus face a similar situation. Context provides
answers to the most general questions, and checking for the pres-
ence of specific features is a powerful strategy to categorize the
input in a hierarchy. In this article, we present a new model of
basic-level performance called strategy length and internal prac-
ticability (SLIP), in which the categorization strategies predict the
time of access to the different categories of a hierarchy. Two
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factors determine these strategies: strategy length (SL) and inter-
nal practicability (IP); they arise from the organization of category
information in a taxonomy.

Simply put, and relating this to the 20-question game, the length
of a strategy in SLIP is the number of questions necessary to
access a category. In the previous example, one question on shape
and one separate question on color were necessary to identify a
silver Speedster. We show later that strategy length depends on the
overlap of information between the categories of a hierarchy (e.g.,
many other cars than Speedster are silver). Internal practicability is
the ease with which one can obtain information about a category.
In the game, more practicable categories are those for which many
different questions can provide the same category information (to
the enthusiast, a Speedster can be identified from many different
shape features, including its silhouette, characteristic hood, wind-
screen, and so forth). Thus, internal practicability measures the
redundancy of information for a categorization.

This article is organized as follows: We first review the evi-
dence that different levels of a taxonomy can be accessed at
different speeds. We then examine taxonomies, isolate the two
essential principles on the organization of their features, and im-
plement them in SLIP. Next, we compare the predictive power of
SLIP with that of four other measures at the basic level of a
database based on 22 classic experiments. Finally, three new
experiments test the empirical validity of the two computational
constraints implemented in SLIP.

Basic-Level Phenomenology

In Rosch, Mervis, Gray, Johnson, and Boyes-Braem (1976,
Experiment 7), participants were taught the names of 18 objects at
three levels of categorization: the subordinate (e.g., Levis, Macln-
tosh), basic (e.g., pants, apple), and superordinate (e.g., clothes,
fruit).! These objects belonged to one of six possible nonanimal
taxonomies: musical instruments, fruits, tools, clothes, vehicles,

! Henceforth, the basic levelness of a category denotes a measure of
performance. Whenever possible, we refer to the levels of abstraction as
the subordinate, basic, and superordinate. Otherwise, we use a set of
unambiguous level descriptors (e.g., low, middle, and high).
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and furniture. In a verification task, participants were shown a
category name followed by a stimulus picture, and had to deter-
mine whether they matched. Categories at the basic level were the
fastest to verify, and categories at the subordinate level the slowest
(see also Hoffmann & Ziessler. 1983; Jolicoeur, Gluck, & Koss-
lyn, 1984; Murphy, 1991: Murphy & Brownell, 1985; Murphy &
Smith, 1982; Tanaka & Taylor. 1991).

The basic level is superior in many other respects: (a) Objects
are named more quickly at this level than at any other level of
abstraction (Hoffmann & Ziessler, 1983: Jolicoeur et al., 1984;
Murphy. 1991; Murphy & Brownell, 1985; Murphy & Smith,
1982; Rosch et al., 1976; Tanaka & Taylor, 1991); (b) objects are
described preferentially with their basic-level names (Berlin, 1992;
Brown. 1958; Rosch et al., 1976; Tanaka & Taylor, 1991,
Wisniewski & Murphy. 1989). (c¢) more features, especially
shapes. are listed at the basic level than at the superordinate level
(Rosch et al., 1976: Tversky & Hemenway. 1984); (d) throughout
development, basic-level names are learned before those of other
categorization levels (Anglin, 1977; Brown, 1958; Horton &
Markman. 1980; Markman. 1989; Markman & Hutchinson, 1984,
Mervis & Crisafi, 1982; Rosch et al., 1976); and (e) basic names
tend to be shorter (Brown, 1958: Rosch et al., 1976). Convergence
of all these performance measures is crucial to establish a preferred
categorization level, even though verification speed is the most
commonly used.

There is considerable evidence that a basic-level superiority
holds across cultures for living things (for extensive reviews, see
Berlin, 1992; Malt, 1995). Basic-level phenomenology also seems
to hold across domains (for a review, see Murphy & Lassaline,
1997). This is true for computer programs (Adelson, 1985), events
(Morris & Murphy, 1990: Rifkin, 1985; Rosch, 1978), personality
types (Cantor & Mischel, 1979), sign language (Newport & Bel-
lugi. 1978). environmental scenes (Tversky & Hemenway, 1983),
clinical diagnosis (Cantor, Smith, French. & Mezzich, 1980), and
emotions (Shaver, Schwarz, Kirson, & O’Connor, 1987).

In sharp contrast to this wealth of empirical studies, formal
analyses of the basic level have received considerably less atten-
tion. In the next sections we develop a new formalism for the basic
levelness of categories. We first examine taxonomies and derive
two essential principles of the organization of categorical infor-
mation. We then implement the principles in an ideal model that
distinguishes categories at different levels of a taxonomy.

Two Principles for Organizing Information in Hierarchies

To study the computational determinants of basic-level perfor-
mance. we first consider the typical artificial taxonomies that have
elicited the basic-level advantage (see the top taxonomy of Fig-
ure |, from Murphy & Smith, 1982, Experiment 1). Below the
category names (e.g.. hob, bot, com), letters correspond to the
features that define the categories. For example, feature a defines
the higher level category hob, three features (c, d, e) define the
middle level bot, and the feature o defines the lower level com.
These features specify the information that must be represented to
place any object X in the taxonomy (exemplars of such inputs are
represented in italics below the taxonomies). For example, if
feature a represents X, then the object is a hob at the highest level
of the taxonomy. It o describes X, then it is a com at the lowest
level. Observe the mid-level bor category: X is a bot if it possesses
any of the features ¢, d, or e. Technically, features ¢, d, and e are
redundant tor hor; any one of them is singly sufficient to access the

category—redundant features are therefore interchangeable. Fea-
ture redundancy is known to be an important factor of basic-level
category selection (Murphy & Smith, 1982; Rosch et al., 1976). It
is the first principle for organizing features in taxonomies.

A second important principle emerges from the hierarchical
nesting of categories. In the bottom taxonomy of Figure 1 (from
Hoffmann & Ziessler, 1983, Hierarchy I), X is a ril if it possesses
feature a, a kas if it has feature ¢, but it can only be a lun if it
possesses both feature a and feature g. This occurs because a is
present in the definitions of not one, but four different low-level
categories; that is, a is shared between lun, fuk, tuz, and zut. This
feature overlap is a common property of object taxonomies; think,
for example, of the number of objects that have the same color,
wheels, or legs, and so forth. Feature overlap is our second
principle for organizing features in taxonomies.

Feature redundancy and feature overlap are two unavoidable
principles of feature organization in taxonomies, even if the basic-
level literature has neglected overlap (but see Hoffman & Ziessler,
1983). The functional role of redundancy and overlap in taxono-
mies differs markedly: Although several redundant features pro-
vide as many singly sufficient, interchangeable ways of accessing
one category, one overlapping feature is not singly sufficient to
isolate a category (i.e., overlapping features are singly necessary
but only jointly sufficient to identify the category). In the next
section, we implement feature redundancy and feature overlap in a
formal model that predicts the basic levelness of the categories of
a taxonomy.

SLIP: An Ideal Categorizer

Imagine SLIP, a formal categorizer that knows perfectly the top
taxonomy of Figure 1. Assume further that this knowledge can
guide an active search for the features of the as yet uncategorized
input object X. For example, knowing that feature a defines X as a
hob, SLIP will seek this feature in the input to verify that the input
is a hob. Figure 1 illustrates the mapping between taxonomic
knowledge and optimal categorization strategies. For example,
strat(X, hob) = [{“Does X possess a?’}]—or strat(X, hob) =
[{a}], for short®—is the categorization strategy that searches fea-
ture a in the input representation of X to verify that it is a hob. In
a slightly more complicated example, strat(X, bot) = [{“Does X
possess ¢?” “Does X possess d?” “Does X possess ¢?’}]—or
strat(X, bor) = [{c, d, e}]—searches for feature ¢, feature d, or
feature ¢, given that the three features are redundant (i.e., inter-
changeable) for this categorization.

Although hob and bor require different categorization strategies
of the same input, they share one essential property: Both comprise
only one set of redundant features, even though the number of
features per set varies (i.e., one for hob and com and three for hob).
It is important to draw the reader’s attention to the set of redundant
features (henceforth called rf-ser). In SLIP, the rf-set is the basic
unit of a categorization strategy. It is essential to remember that the
features of a rf-set are always interchangeable (or redundant) for
the categorization considered.

We rank categorization strategies according to the number of
rf-sets they comprise. For example, Length 1 strategies (those
examined so far) make up only one set of redundant features.

2 In our notation, braces enclose sets of redundant feature tests, whereas
brackets enclose strategies.



COMPUTATIONAL MODEL OF BASIC-LEVEL PERFORMANCE 737

Adapted from Murphy & Smith, 1982, Experiment 1
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Adapted from Hoffmann & Ziessler, 1982, Hierarchy I
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Figure 1. The top taxonomy is that of Murphy and Smith (1982, Experiment 1), and the bottom taxonomy is

that of Hoffmann and Ziessler (1983, Hierarchy I). Below the category names are the optimal computational
strategies of the strategy length and internal practicability model. The features defining each exemplar are
provided at the bottom of the taxonomies. An index for these abstract features is given in Appendix B. Strat =

strategy.

Length » strategies comprise n distinct rf-sets. For ease of presen-
tation, we first formally develop Length 1 categorization strategies
and then generalize to length n strategies.

In a Length 1 strategy, the successful completion of its single
rf-set fully determines the behavior of SLIP. We say that, for any
rf-set j, it is successfully completed whenever one of its inter-
changeable features is successfully tested. For example, j = (“Does X
possess ¢?” “Does X possess d?7” and “Does X possess e?”) is com-
pleted whenever c, d, or ¢ are found in the input. When j succeeds,
Length 1 strat(X, bor) is verified and X is indeed a bor.

Note that a categorization strategy does specify which features
to test, but not how to test them. To move from a logical account
to a model, we implement the process of testing one rf-set. Arguably,
features are optimally searched in parallel. Thus, we implement the
optimal completion of one rf-set j as a parallel search for its features.’

Assume that each rf-set can initiate the parallel search for its
own features. For example, in strat(X, bot), rf-set j = (“Does X
possess ¢?” “Does X possess d?” and “Does X possess €?”) will
launch in parallel three independent searches for features ¢, d, and
e in the input X. Suppose that X = acdeow. To search for a feature

(e.g., ), a dedicated feature agent (i.e., f-agent ) will be called on.
This agent knows (a) which information channel® to scan (here, the
second position of the input string) and (b) how to use information
from this channel to successfully detect the feature (here, ¢). Thus,
the f-agents of a feature search scan their information channels in
parallel until they detect their own feature. For example, to apply
strat(X, bot) to X = acdeow, f-agent ¢, f-agent d, and f-agent e scan
in parallel the Positions 2, 3, and 4 of the input string, respectively.

* Appendix A presents a serial implementation of SLIP. It is important
to stress that the parallel and serial implementations make similar ordinal
predictions of basic levelness. Their predictions diverge on only one
disjunctive case (Lassaline, 1990, Experiment 3, 4D; see Simple Disjunc-
tions section for a discussion).

“ Information channel is here loosely defined. It can be equated with the
classical channels of luminance, color, motion and depth, with different
spatial frequency channels, or with the dimensions of shape, color and
texture, and so forth. Information channels are useful in Experiment 3,
where each possible position of features in a string becomes a different
information channel.
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So far, the parallel implementation is ideal: rf-set j elicits a
parallel search for its own features. Specialized f-agents carry out
the search in the appropriate information channel by scanning for
a specific feature. Uncertainty. however, permeates any psycho-
logical task. Here, we assume that f-agents can slip from their
dedicated information channel. When they slip. f-agents scan a
randomly chosen channel. To illustrate. f-agent ¢ could slip from
the channel for ¢ (Position 2 in the string) to scan any position of
the string X = acdeow. All the ingredients are in place to formalize
the completion of Length 1 categorization strategies: Starting from
the notion of a slip, we progressively formalize the completion of
one rf-set.

When one f-agent slips from its information channel, it can
either slip to another channel (and miss the detection of its feature)
or, strictly by chance, slip right back to its dedicated channel (and
detect its feature). Thus, a feature will be detected whenever the
f-agent either does not slip, or slips right back to its dedicated
channel. We summarize these two classes of events into ¢, the
probability of detecting a target feature in one trial-—for example,
feature ¢ in strat(X, bor). To derive ¢, we start with the probability
Q that a slip does reveal the target feature by chance. It is 1 divided
by the number of possible information channels (e.g., 6 in X =
acdeow, and so Q = ). If the f-agent slips with a probability S,
SQ combines the probability S of a stip with the probability Q that
the target feature (i.e., ¢) is nevertheless detected. The probability
that the slip does not reveal the target feature is therefore § — SQ.
The complement of this event, | — (S — SQ). is ¢, the probability
that one f-agent detects its target feature in one trial.

From ¢, the probability of detecting one feature, we can derive
dr, the probability that any one of the m; interchangeable features
of rf-sct set j is detected, leading to its successful completion.
Working a contrario. we start from (§ — SQ), the probability that
one feature is not detected by its f-agent (which slipped to the
wrong channel): (§ — SO)"" is, therefore, the probability that none
of the m, features of rf-set j is detected. The complement ¢, = | —
(S — SO)"" is the probability of detecting one of the interchange-
able features of rf-set j in one trial of a parallel feature search.

So far, we have derived the probability y; of the successful
completion of one rf-set j in one trial. Concretely, the f-agents have
been sent to detect their features in their information channels and
we have examined what happens after one trial. Some f-agents
might have failed (because they slipped to the wrong channel) and
some might have succeeded (because they either slipped to the
right channel or did not slip at all). However, t-agents are persis-
tent. When they slip to the wrong channel on their first trial (and
fail to detect their feature), they keep trying on subsequent trials.
We therefore need to develop y; to account for the possibility of
several unsuccessful trials, followed by one successful feature test.
(1 — )" is the probability of ¢ successive failures over the first ¢
trials. The probability that a Length 1 categorization strategy
succeeds in ¢ trials or less is therefore®

= (1= ¢) (D
Note that when ¢, is large, the probability of a failure (1 — 1) is
small, and Equation | increases rapidly with increasing . In other
words, a large s, implies that a long series of failed feature tests is
unlikely. i; is large whenever rf-set j comprises many redundant
features. ¢, implements the computational constraint of feature
redundancy discussed earlier. That is, l!lj measures the internal

practicability of a category, the ease with which it can be accessed
from its defining features. SLIP predicts that basic-level categories
have, on average, a higher internal practicability.® Consequently,
fewer feature tests should be required, on average, to access bor
compared with hob and com in the top taxonomy of Figure 1.

We have so far developed SLIP for strategies composed of only
one rf-set j. In these, feature redundancy solely determines the
number of feature tests to access the category. In general, SLIP
strategies comprise n rf-sets. For example, in the bottom taxonomy
of Figure 1, the input is a [un whenever the following strategy is
completed: strat(X, lun) = [{*Does X possess a?”} and {“Does X
possess g7”}].

We now generalize Equation 1 to the case of length n strategies.
This implements feature overlap, the second computational con-
straint discussed earlier. In processing terms, the rf-sets of a
strategy are handled like the features of one rf-set: A parallel
process also drives their testing. Although the completion of one
rf-set implies the successful testing of only one of its features, the
completion of a strategy requires the successful testing of all of its
rf-sets.

The logical dependency of rf-sets in a strategy has performance
implications. Although the testing of one rf-set must be as fast as
its fastest feature detection, the testing of a strategy is as slow as
the completion of its slowest rf-set. Consequently, SLIP predicts
that the fastest categorization strategy comprises only one rf-set j
(i.e., a Length 1 strategy, no feature overlap) with many redundant
features (i.e., a high ¢), and the slowest strategy comprises many
rf-sets (i.e., length n strategies, high feature overlap), each com-
posed of a single feature (i.e., a low ).

To generalize to length n strategies, we start with Equation 1,
the cumulative probability that one rf-set j is completed in at most
t trials. The cumulative probability that the » rf-sets of a length n
strategy are completed in trial ¢ or before becomes

[TI=a =y )

j=1

To compute the probability of a completion in exactly ¢ feature
tests, we subtract two cumulative probabilities: the probability that
the length »n strategy is completed in most ¢ trials minus the
probability that it is completed in at most # — 1 trials. Equation 3
expresses the likelihood that length n strategy is completed in
exactly ¢ feature tests:

* Technically, Equation 1 describes the cumulative geometric distribu-
tion.

© The internal practicability of a category does not always reduce to the
redundancy of its features. Instead, internal practicability can implement
sophisticated assumptions about the internal structure of the features them-
selves (e.g., whether they are independent or form configurations, have
graded salience, and so forth). For ease of presentation, we have not
included any such assumptions in our examples, so internal practicability
reduces here to feature redundancy. However, to model the data of our
Experiment 3, we modify SLIP to account for feature configurations.

" The advantage of redundant features arises from the fact that the
likelihood of the event S = (a is true or b is true) is superior or equal to the
likelihood of the single event S = (a is true), whereas nonoverlapping
features (i.e., shorter strategies) are advantageous because the event § = (a
is true) is more likely than § = (a is true and b is true).
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n n

M= 101 -=y)1-TI1-0-9)". @

j=1 j=1

To derive the basic levelness of a category in SLIP, we consider

each possible number of feature tests (from 1,2, 3, ... t0 infinity),

multiply each one of them with the likelihood that it leads to a
successful completion of a length n strategy (cf. Equation 3), and
add the partial results. That is,

DX My (4)
=1

To illustrate, we apply Equation 4 to the two taxonomies of
Figure 1. We first derive i, for each category. We start with 0, the
probability that a slip reveals by chance the target feature. It is one
divided by the total number of features in the input; that is, one
sixth for the top taxonomy and one fourth for the bottom taxon-
omy. If the probability of a slip is § = .50, , = 1 — (§ — SQ)™
is 1 — (.50 — .50 X .25) = .625, for all categories of the bottom
taxonomy, irrespective of level. In the top taxonomy, the compu-
tations yield ; values of .583, .927, and .583 for the high, middle,
and low levels, respectively.

To compute basic levelness, consider bot and com in the top
taxonomy of Figure 1. Using Equations 2 and 3, we find that the
likelihood of a completion of bor in one trial is (1 — (1 — 9271
~ [1 — (1 — .927)°] = .927. Turning to Equation 4, the first term
of the weighted sum is 1 X .927. The likelihood of a completion
in two trials is [1 — (1 — .927)%] — [1 — (1 — .927)'] = .995 —
.927 = .068. In Equation 4, the second term is therefore 2 X .068.
So far, Equation 4 equals (I X .927) + (2 X .068) = 1.063. The
likelihood of a completion in three trials is .9996 — .9946 = .0039.
Equation 4 becomes (I X .927) + (2 X .068) + (3 X
.0039) = 1.074. If we pursued this computation for all possible
values of ¢, we would find that the average basic levelness of bot
is 1.078 feature tests. For com, we find that the first three terms of
Equation 4 are (1 X .583) + (2 X .243) + (3 X .102) = 1.375
(with average basic levelness of 1.714 feature tests). The basic
levelness of bot is higher than that of com. The explanation lies in
the terms of Equation 4: A categorization in few feature-test
attempts is more likely for bor than for com (e.g., .927 vs. .583 for
one feature test), and it decreases more rapidly with increasing
numbers of feature tests (e.g., .0039 vs. .102 for three feature
tests). Remember that bor is more practicable (i.e., has more
interchangeable features) than com. The difference in basic level-
ness is a direct reflection of the effect of ;.

Bot and com are both Length | strategies; they involve only one
set of redundant features. When a strategy comprises n sets of
redundant features, the principles just discussed are simply ex-
tended. The only difference is the nature of the cumulative prob-
abilities used in Equation 3. Instead of describing the successful
resolution of only one set of redundant features (Length 1 strategy,
see Equation 1), they involve the resolution of n feature sets
(length n strategy, see Equation 2).

In general, to compute the basic levelness of one level of
abstraction, we average the basic levelness of its categories. To
illustrate, in the top taxonomy of Figure 1, the middle level
requires fewer feature tests (1.078) than the top and bottom levels
(1.714 for both), isolating the effect of category practicability.

Turning to the bottom taxonomy of Figure I, the high- and
mid-level categorizations require, on average, fewer feature tests
(1.6) than the low-level categorization (2.03), isolating the effect
of strategy length on basic levelness.

Summary

We have developed a computational analysis of basic-level
categorization in the spirit of Marr (1982). Starting from two
fundamental constraints on the organization of information in a
taxonomy (the overlap of features between categories and the
redundancy of features within categories), we have seen how the
constraints determine different feature testing strategies to catego-
rize the input. Each strategy specifies (a) the features to test and (b)
whether they are redundant or overlapped for the categorization
considered. In general, greater feature overlap augments the length
of a strategy, and higher feature redundancy augments its
accessibility.

To implement these constraints, two main philosophies of mod-
eling were available. The first philosophy has been by far the most
productive in the categorization literature. It consists of fitting a
posteriori the parameters of a model to human data (e.g., Lamberts,
1994; Medin & Schaffer, 1978; Nosofsky, 1986; Tversky, 1977).
The main aim is to mimic human performance, and the quality of
fit measures the success of the model. In the second philosophy,
one constructs a priori an “ideal” model to serve as a benchmark
against human performance (see Anderson, 1990, 1991; Kersten,
1990). The ideal model is perfect for the task at hand: It is
omniscient and uses all of the information available in the task.
The aim is not so much to fit data, but to understand how human
performance diverges from the ideal implementation.

Our modeling adheres to the second philosophy. We opted for
an ideal implementation of feature redundancy and overlap: SLIP
has perfect knowledge of all parameters of the categorization tasks
(the possible categorizations and the associated strategies and their
features). It also operates in parallel, arguably the better mode for
our tasks. SLIP frames categorization as the resolution of a cate-
gorization strategy. A categorization strategy comprises n sets of
redundant (i.e., interchangeable) features. Equation | implements
the computational constraint of feature redundancy; Equation 2
implements feature overlap. Equations 3 and 4 coordinate these
factors to predict the basic levelness of a category. It is the average
number of feature tests that resolves its categorization strategy. We
now turn to the competitors of SLIP.

Other Models of Basic Levelness

The competitors of SLIP implement one of two main ideas:

. utility or similarity. According to category utility, the most useful

level of a taxonomy is the basic level (see Brown, 1958, level of
usual utility, and Rosch, 1978; Rosch & Mervis, 1975; Rosch et
al., 1976). Models that implement a version of category utility are
Rosch et al.’s cue validity, Jones’s (1983) category feature pos-
session, Corter and Gluck’s (1992) category utility, Fisher’s (1987,
1988) COBWEB, Anderson’s (1990) rational analysis, and Pothos
and Chater’s (1998) compression. In other models, the basic level
maximizes a measure of similarity between exemplars: Rosch et
al.’s (1976) differentiation model and Medin and Schaffer’s (197§;
modified by Estes, 1994) context model.



740 GOSSELIN AND SCHYNS

We do not review all of SLIP’s competitors here. We have left
aside Rosch et al.’s (1976) cue validiry because it cannot predict
the classic advantage for an intermediate level (Murphy, 1982), a
minimum requirement of any model of the basic level. We have
also discarded Fisher’s (1987, 1988) COBWEB because it makes
predictions similar to Corter and Gluck’s (1992} category utility,
on which COBWERB is based. Finally, we have excluded Ander-
son’s (1990, 1991) rational analvsis categorization model because
it does not provide a metric of basic levelness. Whenever possible,
we examined the likely behavior of each competitor to variations
of the two computational constraints of SLIP: internal practicabil-
ity and strategy length.

Utlity and Category Cue Validity

Brown (1958) suggested that “things are first named so as to
categorize them in a maximally useful way” (p. 20). For example,
a dime is a dime, instead of a metal object because this is what is
mostly relevant about it. Several models built on this idea.

Category Feature Possession

Jones (1983) proposed that the basic level maximizes the aver-
age category feature possession, a measure of category utility.
Category feature possession starts with P(c,-|f), the probability of
membership to category ¢, given feature f,. It also considers the
probability that the object possesses f, given that it belongs to ¢,
P( f]e;). The conjunction of these two events, K, = P(c,| [)P(flc)),
is called the collocation of category c; and feature f,. Collocations
are computed for all categories and features. For each category, the
largest feature collocations are counted. This sum—weighed by a
constant k is the feature possession of a category, following Corter
and Gluck. 1992—we set k to | in our simulations. Feature
possession reflects the number of strong bidirectional links be-
tween a category and its features (i.e., their mutual predictability).
The category feature possession of a level of categorization is the
average category feature possession of its categories.

In the bottom taxonomy of Figure I, category feature possession
predicts a faster access at the highest level (feature possession =
3) and equally slower accesses to the middle and low levels
(feature possession = ). In the top taxonomy, the model predicts
taster access to both the high and middle levels (feature posses-
sion = 3) and slower access to the bottom level (feature posses-
ston = ).

How does category feature possession compare with SLIP?
Category feature possession is a good measure of internal practi-
cability for the following reasons: A feature that is not shared
between categories predicts only one category, and this category,
in turn, predicts the feature: K, = P(c|f)P(f]c;) = 1. Categories
with many such features score high in collocation® and internal
practicability. However, category feature possession does not
make specific predictions for variations of strategy length. Numer-
ical simulations reveal that the measure is biased toward higher
level categorizations.

Corter and Gluck’s (1992) Category Utility Measure

Corter and Gluck {1992; see also Fisher, 1987, 1988) proposed
another measure called category utiliry. A useful category better

predicts the features of its members. Starting from P( )j|c,-), the
probability of feature f; given knowledge of category ¢;, the prob-
ability of a correct guess is P(j}|c,-)2. When the category is useful,
an informed feature guess should outperform an uninformed guess
P(f). TIf P( f,-)2 is the probability of guessing the feature correctly,
then the category utility of ¢, for feature f; is P(c)[P(f]c)? —
P( ];-)2], the subtraction of informed and uninformed feature
guesses, given P(c,), the probability that the object belongs to ¢,
Summed across all input features, the category utility (or basic
levelness) of ¢, becomes

P(c) D [P(fle)® = P(£)2). (5)

j=1

The basic levelness of a level of abstraction is the average basic
levelness of its categories.

In the bottom taxonomy of Figure 1, category utility predicts
faster accesses to both the high and mid-levels (utility = .38), and
a smaller utility of .25 predicts a slower access to the lower level.
In the top taxonomy of Figure 1, the predictions are middle
(utility = .78), high (utility = .69), and low level (utility = .45).

Category utility is also biased to the higher levels of categori-
zation. If we distribute the summation over the two terms of
category utility, we obtain

m

P(o)| 2 P(fle)* = X P, (6)

k=1

where 27, P( jj-)2 is constant across levels, and the two remaining
variable terms are biased to the higher levels. The probability P(c;)
that an object belongs to category ¢; decreases exponentially with
increasing category specificity, reducing utility. At the same time,
37| P(f]c)? increases almost linearly with increasing specificity
and can only compensate the exponential reduction of P(c,) with
an exponential addition of redundant features at lower levels.
Thus, category utility predicts an advantage for the higher levels of
taxonomies.

How does category utility compare with SLIP? The models are
similar in their sensitivity to redundant features. However, cate-
gory utility requires an exponential addition of redundant features
to compensate for the exponential decrease in the likelihood of
lower level categories. When the added features overlap between
categories, category utility and SLIP tend to diverge in their
predictions.

Compression

Our last reviewed measure of utility is minimum description
length (MDL). MDL is a method that partitions data to compress
them (Pothos & Chater, 1998). Each level of a taxonomy repre-
sents a different partition of the same data set, and MDL measures
the amount of compression that each taxonomic level achieves.

8 This only holds when few nondiagnostic features are present. For
nondiagnostic features (those with equal probability of occurring in all
low-level categories), collocation is always greater at the higher levels.
This is because P(c,.| fj), equal to P(c;) in this case, is maximum at the
highest level, and because P(f]c,) is constant for nondiagnostic features.
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Pothos and Chater (1998) suggested that compression is maximal
for the basic-level partition.

In a data set of r objects, there are s= [r(r — 1)]/2 possible
object pairs and, therefore, s possible pairwise similarities between
the objects. A = [s(s — 1)}/2 is the number of possible binary
relationships (inequalities) between these pairwise similarities.
They are encoded on A bits of information (one bit per similarity
relationship). A bits describe the data set before any category
partitioning. Assume D), is the number of bits required to describe
the same data after one partitioning. A — D, is then a measure of
the compression efficiency of the partition. Pothos and Chater
(1998) proposed that this difference is maximal for the basic-level
partition. MDL is technical, and the reader can skip to the final
paragraph of this section (after Equation 8) without loss of
continuity.

To derive D, we start from the number of possible partitions of
r items into n clusters, part(r, n),

(n—v)"

> (—l)vm- (7
v=0

To encode this partitioning, we need log,[part(r, n)] bits of
information. We then compute u, the combinatorics of all within-
cluster pairwise similarities with all between-cluster pairwise sim-
ilarities. The scheme assumes that within-cluster pairwise similar-
ities s(i, j) are all greater than any between-cluster pairwise
similarities, s(k, [). However, this does not always hold, and e
counts the number of times the assumption is violated (e can vary
between O and u and can thus be encoded on a maximum of
log,(u + 1) bits). There are C; = u!/[(u — e)le!] possible ways of
selecting e errors among the combinatorics of relationships u. A
total of log,(u + 1) + log,(C%) bits encode the errors.

Remember that A bits specify all possible binary relationships
between objects, whereas u specifies those constrained by the
clustering. A — u counts the relationships left outside the cluster-
ing; A — u bits are necessary to encode these.

The compression of information offered by one partitioning of
the data is A — D, where D; = log,[part(r, n)] + [log,(u + 1) +
log,(C*)] + (A — u). Hence A — D, is equal to

u — {log,{ part(r, n)] + log,(u + 1) + log,(C)}. (®)

How does compression compare with SLIP? If we compare the
compression achieved at all levels, we find the following for the
bottom taxonomy of Figure 1: high = 2,759 bits, middle = 2,277
bits, and low = 865 bits, predicting a preference for the high level.
In the top taxonomy, compressions are high = 3,569 bits, mid-
dle = 2,274 bits, and low = 865 bits, predicting again an advan-
tage for the high level. This bias for the high level occurs because
when there is little feature overlap, MDL is only dependent on #,
the combinatorics of within and between category similarities.
This combinatorics grows with level of generality, and so com-
pression is greater when fewer categories are considered, itrespec-
tive of how redundant the features are within the categories.
Variations of strategy length create overlap between features and
add errors to the MDL description. However, these tend to be
insufficient to counterbalance the bias for the high level.

Similarity and the Differentiation Model

The models reviewed so far have equated the basic level with
highest usefulness. Another principle is that of differentiation, or
dissimilarity. As Rosch et al. (1976) put it, categories at the basic
level *have the most attributes common to members of the cate-
gory and the least attributes shared with members of other [con-
trasting] categories” (p. 435). The first component of this defini-
tion has been called the specificity (Murphy & Brownell, 1985), or
the informativeness (Murphy, 1991) of a category, and the second
component, the distinctiveness of a category (Murphy, 1991; Mur-
phy & Brownell, 1985). However, category differentiation is not
sufficiently specified to be refuted (Medin, 1983).

The two determinants of SLIP can be loosely mapped onto the
two determinants of category differentiation (Schyns, 1998). In
general, more specific representations tend to be more informative,
but they are also less distinctive from other representations (Mur-
phy, 1991). Subordinate categories tend to score high on informa-
tiveness (e.g., two brands of cars convey detailed information), but
low on distinctiveness (e.g., two brands of car are similar in overall
appearance, at least more so than a brand of car and a type of shoe).
In contrast, superordinate categories score low on informativeness,
but high on distinctiveness (e.g., vehicle and furniture have dif-
ferent functions, shapes, parts, colors, textures, and so forth). Thus,
strategy length is related to informativeness: It also increases with
category specificity. Internal practicability is related to distinctive-
ness: It also increases with more general categories.

Medin and Schaffer’s (1978) influential exemplar model of
categorization (see Nosofsky, 1986, and Lamberts, 1994, for fur-
ther developments) can also be construed as a similarity model of
basic level performance. A multiplicative rule computes the sim-
ilarity S{a, b) between any two exemplars of a category. A match
between corresponding attributes is assigned a value of 1, and a
mismatch a value of «j, a dissimilarity parameter—a,, varies
between 0 and 1 to assign different weights to the attributes. The
matches and mismatches are then multiplied to measure the sim-
ilarity of the exemplars.

To compute the basic levelness of a category (e.g., Ford), Estes
(1994) proposed to consider one category exemplar (e.g., a Ford
Mustang) and compute the ratio between the similarity of this
target exemplar with all exemplars from this category (e.g., all
Fords) and the similarity of the target with exemplars from its
superordinate category (e.g., all cars). The basic levelness of a
category is the average ratio of all its exemplars; the basic level-
ness of a taxonomic level is the average basic levelness of its
categories.

In the bottom taxonomy of Figure 1, the index predicts (with
a = .3, which follows Estes, 1994) a faster access to the top level
(.90), the middle level (.88), and finally the lower level (.77). For
the top taxonomy of Figure 1, the model predicts equal accessi-
bility to the top and middle levels (.99) and slower access to the
lower level (.77).

The context model also has a bias for the higher taxonomic
levels. It computes a ratio between two polynomials that approach
one with increasing levels of taxonomic generality. The bias for
the high level can be overcome by increasing the similarity be-
tween the target exemplars and the exemplars of lower level
contrast categories. The numerical simulations show that the con-
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text model is neither sensitive to internal practicability nor to
strategy length, the two factors of SLIP.

Numerical Simulations of Classic
Basic-Level Experiments

In the next sections, we compare the predictive performance of
SLIP with that of the four models of basic levelness that we
presented: Jones's (1983) category feature possession, Corter and
Gluck’s (1992) category utility, Pothos and Chater’s (1998) com-
pression, and Medin and Schaffer’s (1978) context model. To
compare human performance with the predictions of the models,
we compiled a database of 22 classic basic-level experiments. In
the following section, we present the experiments according to the
factor of SLIP they tested (i.e., internal practicability vs. strategy
length). From the outset, it is worth pointing out that SLIP did a
good job of predicting the experiments, particularly when these
tested taxonomies with overlapping features.

Variations of Internal Practicability
Determine Basic Levelness

Fuaster Access at an Intermediate Level

One of the most influential experiments on the basic level is that
of Murphy and Smith (1982, Experiment 1). It is influential
because most subsequent basic-level experiments used the same
procedure. Their participants were initially taught the artificial
taxonomy represented at the top of Figure 1 (see also Figure 2, top
taxonomy).” In a testing phase. they were shown a category name
followed by a stimulus. The participants’ task was to verify as
quickly as possible whether the name and stimulus matched. As
shown in Figure 1. mid-level categories have the highest practi-
cability. Table 1 illustrates that they were also verified faster (see
Murphy & Smith, 1982, Experiment 1). Using the same taxonomic
organization of category attributes, Murphy (1991, Experiment 4,
Simple) replicated these results. In fact, the highest practicability
of the middle level is also responsible for its faster access in
Mervis and Crisafi (1982) and Murphy (1991, Experiment 4,
Enhanced: see Figure 2).

Aside from these experiments with artificial categories, the
database also comprises experiments with natural taxonomies.
With these, we assumed that the features participants listed re-
flected their internal representations of categories (see Rosch &
Mervis, 1975). In addition, following Tversky and Hemenway
(1984) and Tanaka and Taylor (1991), we assumed that the same
teature could not be listed for two contrasting categories. Follow-
ing these principles, five natural taxonomies had a greater feature
redundancy at the intermediate level: Rosch et al. (1976, Experi-
ment 7).'° Tanaka and Taylor (1991, Novice),'' and Johnson and
Mervis (1997, advanced songbird expert, intermediate songbird
expert, and novice).'? and the, or an, intermediate level was
accessed faster, see Table 1.

Faster Access at the Lower Level

In Murphy and Smith (1982, Experiment 3), a unique set of
attributes was added at the lower level of Murphy and Smith’s
artificial tools. Figure 3 illustrates that the addition of redundant
attributes enhanced the practicability of the lower level categories,

and Table 2 reveals that these categories were accessed faster.
Tanaka and Taylor’s (1991, Expert)'* experiment is a variation on
this theme: In the expertise category, they added new singly
diagnostic features at the lower level (i.e., redundant features), and
thus sped up its access. In fact, basic and subordinate categories
were equally fast, and superordinate categories were slower
(see the mean response times [RTs] for bird and dog experts in
Table 2).

Faster Access at the Higher Level

In his Experiment 5, Murphy (1991) added a set of singly
sufficient values to the high-level categories of Murphy and
Smith’s (1982) artificial tools. Figure 4 shows that this level
became more practicable, and Table 3 confirms that it was indeed
accessed faster.

Variations of Strategy Length Determine Basic Levelness

In the experiments reviewed so far, the length of categorization
strategies was held constant, even though the experimenters never
mentioned this explicitly. In SLIP terms, categorization strategies
comprised only one rf-set. We now turn to the few experiments
that tested the effect of strategy length on basic levelness. Hoffmann
and Ziessler (1983, Hierarchy I) used artificial objects organized as
described in the bottom taxonomy of Figure 5. We explained earlier
that strategy length was one at the high and middle levels, but two at
the lower level (see the strategies in Figure 1). Table 4 confirms that
participants accessed the high- and mid-level categories equally fast
and were slower for the low-level categories.

In Gosselin and Schyns (1998), participants learned the taxon-
omy of Figure 5 applied to artificially textured and colored geo-
metric primitives (similar to Biederman’s, 1987, geometric prim-
itives, called geons). This taxonomy ascribes strategies of different
lengths to the different taxonomic levels: from top to bottom,

2 To facilitate comparison of taxonomies, we have normalized the no-
tation of information, substituting letters of the alphabet for the actual
features. Appendix C lists the mapping between letters and actual features
(whenever relevant or possible).

'% In Rosch et al. (1976, Table 2, nonbiological taxonomies, raw tallies),
the mean number of added redundant features was of 1.85, 5.55, and 3.5 for
subordinate, basic, and superordinate, respectively.

'"'In Tanaka and Taylor (1991, novice, bird, and dog novices con-
founded), participants listed approximately 8, 12, and 7 new redundant
features for the superordinate, basic, and subordinate levels of categoriza-
tion, respectively.

12 Johnson and Mervis (1997, Experiment 1, songbirds condition) used
four-level natural taxonomies in a verification task. Their advanced song-
bird experts listed 1.75, 5.00, 6.02, and 3.75 for the superordinate, basic,
subordinate, and subsubordinate levels, respectively. For the intermediate
songbird experts, these numbers were 1.00, 4.87, 4.28, and 2.47 for the
same levels. For the novices and the tropical freshwater fish experts, the
numbers were 1.08, 2.47, 0.23, and 0.02.

'3 Their experts (bird and dog experts confounded) listed approxi-
mately 8, 10, and 10 new features for the superordinate, basic, and
subordinate levels of categorization, respectively. Compare this with 8, 12,
and 7 for the superordinate, basic, and subordinate levels, respectively, in
their condition novice in the previous section.
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Adapted from Murphy & Smith, 1982, Experiment 1

hob som
a b
bot rel pim nop
cde Jgh ijk Imn
com vad lar zZim  wam tis  mul Jfac
0 P 9 r s t  u v

Adapted from Mervis & Crisafi, 1982

efgh ijkl mnop qrst

Adapted from Murphy, 1991, Experiment 4, Enhanced

hob som
a b
bot rel pim nop
cdec"d“ fghell 1 l:]'k I|hl| Imnill'll
com vad lar zim  wam tis  mul fac
o 4 q r s t  u v

Figure 2. Taxonomies of all experiments that exhibited an advantage for an intermediate level of categorization
arising from variations of feature redundancy. From top to bottom: Murphy and Smith (1982, Experiment 1; see
also Murphy. 1991, Experiment 4, Simple, for a replication); Mervis and Crisafi (1982); Murphy (1991,
Experiment 4, Enhanced). Underneath the category names are the optimal computational strategies of the
strategy length and internal practicability model. An index for these abstract features is given in Appendix B.
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Table ]
Variations of Internal Practicability Produce Fuster Access at an Intermediate Level: Numerical Predictions and Observations

Level
Source/mode] H_, H_, H_, H
Murphy & Smith (1982, Exp. 1)
Observation* 723 678 879
Context 0.544 0.554 0.516
SLIpP® 1.714 1.078 1714
Possession 1 3 3
Utility 0.453 0.725 0.688
Compression* 865 2,277 3,569
Murphy (1982, Exp. 4, Simple)
Observation* 862 811 980
Context 0.544 0.554 0.516
SLIP" 1.714 1.078 1714
Possession 1 3 3
Utility 0.453 0.725 0.688
Compression® 865 2,277 3,569
Mervis & Crisafi (1982, Exp. 1)
Observation* 3rd Ist 2nd
Possession 1 4 2
SLIP" 1.778 1.038 1.237
Utility 0.609 1.094 1.063
Context 0.569 0.572 0.521
Compression® 5,992 12,916.59 18,985.00
Murphy (1982, Exp. 4. Enhanced)
Observation® 1,132 854 955
Utility 0.640 1.100 0.938
Possession 1 5 1
SLIP" 1.778 1.016 1.778
Compression® 865 2,277 3,569
Context 0.561 0.584 0.516
Rosch et al. (1976, Exp. 7)
Observation® 659 535 591
Possession 2 6 4
SLIP® 1.266 1.009 1.046
Compression® 0 85 185
Utility 1.030 1.701 1.874
Context 0.620 0.607 0.531
Tanaka & Taylor (1991, Novice)
Observation* 777.5 677.5 745.5
Possession 7 12 8
SLIPP 1.802 1.333 1.658
Compression® 0 85 185
Utility 2.387 3.517 3.934
Context 0.751 0.728 0.607
Johnson & Mervis (1997, Songbird, Novice)
Observation® ~2,100 ~1,950 ~1,600 ~1,900
Possession 2 23 247 108
SLIP® 13.889 1.735 1.000 1.018
Utility 16.323 32,519 60.778 59.429
Compression® 0 865 2,277 3,569
Context 4th 3rd 2nd Ist
Johnson & Mervis (1997, Songbird, Intermediate)
Observation® ~1,725 ~1,600 ~1,550 ~1,800
Possession 247 428 487 100
SLIP® 1.173 1.038 1.023 1.853
Utility 65.551 115.417 137.706 128.219
Compression” 0 865 2,277 3,569
Context 2nd 3rd 4th Ist
Johnson & Mervis (1997, Songbird, Advanced)
Observation* ~1,600 ~1,625 ~1,500 ~1,750
Context 2nd 3rd 4th Ist
Possession 375 602 500 175
SLIP® 1.063 1.011 1.023 1.363
Compression® 0 865 2,277 3,569
Utility 86.434 149.056 165.302 167.574

Note. The cells under Level are ordered from left to right according to increasing generality. The number of levels varies across taxonomies; some
taxonomies do not have an H_; level. For each taxonomy, models are ranked from best to worst and ties are ordered alphabetically. H = highest; negative
subscript numbers following H = the distance away from the H level of generality; Exp. = experiment; SLIP = strategy length and internal practicability.
“ Data in milliseconds. ° Data in attempts. © Data in bits.
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Adapted from Murphy & Smith, 1982, Experiment 3

hob
w

bot rel

NN

zim wam
delff g'h'i' JkU  cde g

1:]' imn a'bc

som
X

A
AN

tis mul

Figure 3. Taxonomy of Murphy and Smith (1982, Experiment 3), the only experiment with varying redun-
dancy that exhibited an advantage for lower level categorizations. Below the category names are the optimal
computational strategies of the strategy length and internal practicability model. An index for these abstract

features is given in Appendix B.

Lengths 1, 2, and 3, respectively. Faster categorization was found
for the high, middle, then low categorization levels (see Table 4).

Disjunctions and Mixtures

In developing SLIP, we have so far assumed that a conjunction
of several attributes defines categories. As Smith and Medin
(1981) put it: “If we rely on intuitions (our own and those pub-
lished by semanticists) and restrict ourselves to concepts about
naturally occurring objects (flora and fauna) . . . we can think of no
obvious disjunctive concepts” (p. 28). Even though we generally
share this view, some concepts can be disjunctive. For example, a
strike in baseball is either a called or a swinging strike. Research-
ers in several basic-level experiments examined disjunctive cate-

Table 2
Variations of Internal Practicability Produce Faster Access at
the Lower Level: Numerical Predictions and Observations

Level
Source/model H_, H_, H
Murphy & Smith (1982, Exp. 3, Size)
Observation® 574 882 666
Possession 3 1 1
SLIP® 1.078 1.714 1.714
Utility 0.483 0.428 0.561
Compression® 865 2,277 3,569
Context 0.538 0.544 0.554
Tanaka & Taylor (1991, Expert)
Observation® 621.5 623.0 728.5
Possession 10 10 8
SLIP® 1.474 1.474 1.676
Context 0.750 0.726 0.650
Compression® 0 85 185
Utility 2.526 3.258 3.870

Note. The cells under Level are ordered from left to right according to
increasing generality. For each taxonomy, models are ranked from best to
worst and ties are ordered alphabetically. H = highest; negative subscript
numbers following H = the distance away from the H level of generality:
Exp. = experiment; SLIP = strategy length and internal practicability.

4 Data in milliseconds. ® Data in attempts. € Data in bits.

gories. To model these, SLIP must be slightly modified (see
Appendix C for details).

Simple Disjunctions

Figure 6 illustrates the Hierarchy II of Hoffmann and Ziessler
(1983). At the highest level, feature disjunctions define the cate-
gories, whereas feature conjunctions define the lower level. It was
found that mid-level categories were accessed fastest, and high-
and low-level categories equally slowly (see RT in Table 5; see
also Corter, Gluck, & Bower, 1988, for a replication using cate-
gories of artificial diseases and conceptual features).

Lassaline (1990; reported in Lassaline, Wisniewski, & Medin,
1992) constructed a disjunctive, two-level taxonomy in which
artificial tools similar to those of Murphy and Smith (1982) were
used. In two conditions of her Experiment 3 (one dimension and
four dimension), two-feature disjunctions defined the high-level
categories, and a single feature defined each low-level category. In
the four-dimension condition, low-level features were one value of
four different stimulus dimensions (e.g., hammer head, pizza cut-
ter handle, dotted texture, and a square internal shape). In the
one-dimension condition, low-level features were four different
values of the same dimension (e.g., hammer, brick, knife, and pizza
cutter head). We did not distinguish between features and dimen-
sions in our figures, so the bottom taxonomy of Figure 6 illustrates
the taxonomy used in both conditions.'* In a verification task, an
advantage was found for the low-level categories in the one-
dimension condition, but the advantage was at the high level in the
four-dimensions condition (see Table 5). Note that SLIP is the only
model that predicts a difference between these two conditions,
even if it does not explain the data completely (see Table 5;
Lassaline et al., 1992).

In a taxonomy similar to that of Murphy and Smith (1982,
Experiment 1), Murphy (1991, Experiment 3) used 16 artificial

' In Appendix C, we explain how SLIP can be made sensitive to the
distinction between features and dimensional values. With this distinction,
a disjunction of features becomes longer to complete than individual
features, but only if these features are different values of the same
dimension.
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Adapted from Murphy, 1991, Experiment 5

hob

som
axil:,‘llkll bwclldﬂlll
bot rel pim nop
cde fgh ijk Imn
/\ /\ / /\ A
com vad lar zim wam tis  mul Jfac
o P q r s t u v

Figure 4. Taxonomy of Murphy (1991, Experiment 5), the only experiment with varying redundancy that exhibited
an advantage for higher level categorizations. Below the category names are the optimal computational strategies of
the strategy length and internal practicability model. An index for these abstract features is given in Appendix B.

abstract stamps of various colors, textures, types of edge, and
sizes, organized as featural disjunctions at the high level (see
Figure 6). Access was faster at the middle level, with the other two
levels being equally slow (see Table 5).

Mixtures of Disjunctions and Conjunctions

In their Hierarchy III, Hoffmann and Ziessler (1983) rearranged
the objects of their Hierarchy I: Conjunctions of two features
defined the lowest level, disjunctions of two two-feature conjunc-
tions the middle level, and disjunctions of four two-feature con-
junctions the high level (see Figure 7). In this taxonomy, faster
access was reported for the high-level categories (see RT estima-
tions in Table 6).

In Lassaline (1990, Experiment 1, see Figure 7), two-feature
disjunctions defined categories at the high level, and a conjunction
of a feature with a disjunction of features defined the low level.
The high level was accessed faster (see Table 6). Figure 7 also
illustrates the taxonomy of Lassaline’s second experiment. A com-
pound of the form [{X}] AND {Y}] OR [{X} AND (Z}] defined

Table 3

Variations of Internal Practicability Produce Faster Access at
the Higher Level: Numerical Predictions and Observations in
Murphy (1982, Experiment 5)

Level

Model H_, H_, H
Observation® 1,072 881 854
Compression® 0 85 185
Possession I 3 5
SLIP* 1.8 1.096 1.018
Utility 703 1.281 1.688
Context 0.604 0.554 0.516

Note.  The cells under Level are ordered from left to right according to
increasing generality. Models are ranked from best to worst and ties are
ordered alphabetically. H = highest: negative subscript numbers following
H = the distance away from the H level of generality; SLIP = strategy
length and internal practicability.

#Data in milliseconds. " Data in bits. © Data in attempts.

low-level categories. A disjunction of two such compounds de-
fined the high level. The low level was faster to verify (see Table 6).

Comparison of the Models for the Published Experiments

The presentation of the database of 22 basic-level experiments
has been organized according to the factor of SLIP. We now
examine the correlation between the database and the predictions
of the models (i.e., SLIP, category feature possession, category
utility, compression, and context model).

To give the best possible chance to each competitor, whenever
possible, we best fitted its free parameters to the database of
experimental results. The only free parameter of SLIP, §, was set
to .5 (that the ordinal predictions of SLIP are invariant for values
of S comprised between .1 and .9). Jones’s (1983) category feature
possession comprises a single free parameter k. Following Corter
and Gluck (1992), we set it to one, but the ordinal predictions of
category feature possession are invariant to changes of k. Follow-
ing Estes (1994), we used a single dissimilarity parameter « for
Medin and Schaffer’s (1978) context model. It was best fitted to
a = .94. Corter and Gluck’s (1992) category utility and Pothos and
Chater’s (1998) compression have no free parameter.

Overall, SLIP predicted 85% of the experimental results, clearly
winning the competition. Second best were Jones’s (1983) category
feature possession and Corter and Gluck’s (1992) category utility with
63%, then came Pothos and Chater’s (1998) compression measure
with 40%, and, finally, Medin and Schaffer’s (1978) context model
with 37%. It is instructive to examine the models specitically for their
predictions of variations of internal practicability, strategy length, and
mixture experiments. Table 7 summarizes this.

When the researchers varied only the internal practicability of
categories in the experiments, SLIP accounted for 82% of the avail-
able data, feature possession with 77%, category utility with 51%,
context model with 38%, and compression with 23%. When the
experiments only varied strategy length, SLIP accounted for 100% of
the available data, compression and category utility with 83%, feature
possession with 50%, and context model with 33%. When experi-
ments comprised mixtures, SLIP was first with a score of 85%,
category utility with 80%, compression with 60%, category feature
possession with 40%, and context model with 35%.
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Adapted from Hoffmann & Ziessler (1983, Hierarchy I)
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Figure 5. Abstract taxonomies of all experiments with varying strategy length. From top to bottom: Hoffmann
and Ziessler (1983, Hierarchy I); Gosselin and Schyns (1998). Below the category names are the optimal
computational strategies of the strategy length and internal practicability model. An index for these abstract

features is given in Appendix B.

In summary, SLIP is the best predictor with 85% of the data of 22
published basic-level experiments predicted. It performed particularly
well on taxonomies with feature overlap. Thus, it would seem that the
two computational constraints of SLIP approximate those underlying
the basic levelness of categories in humans.

Empirical Testing of SLIP

In the following sections we further examine how the compe-
tence of SLIP (feature redundancy and overlap) predicts human
categorization at different levels of abstraction. So far, in these
experiments on the basic level, we have mainly been motivated by
empirical considerations instead of an ideal model like ours. As
pointed out earlier, strategy length has never been tested as such. In
both Hoffmann and Ziessler (1983, Hierarchy I) and Gosselin and
Schyns (1998, Overall), strategy length is confounded with level of
abstraction: The most inclusive level always has the shortest catego-
rization strategy, and the least inclusive level has the longest strategy.
From an empirical standpoint, the effect of strategy length remains to

be explicitly demonstrated. A similar problem affects feature redun-
dancy. Even though we showed earlier that many basic-level exper-
iments modulated feature redundancy, no systematic study of this
factor has been carried out so far.

The following experiments were designed to overcome these
two shortcomings. In these, researchers all used computer-
synthesized artificial three-dimensional (3D) objects, to tightly
control feature composition. In Experiment 1 the effect of strategy
length on basic levelness was isolated; in Experiment 2 the effect
of internal practicability was tested; in Experiment 3, the interac-
tions between the two factors were examined.

Experiment 1

In Experiment 1, we isolated strategy length and examined how
a variation of this factor at different levels of a hierarchy influ-
ences their basic levelness. As pointed out earlier, strategy length
was shown to influence basic levelness in Hoffmann and Ziessler
(1983, Hierarchy I) and Gosselin and Schyns (1998, Overall).
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Table 4
Variations of Strategy Length: Numerical Predictions
and Observations

Level
Source/model H_, H_, H
Hoffmann & Ziessler (1983, Hier. I)
Observation® ~700 ~500 ~500
SLIP® 2.036 1.6 1.6
Utility 0.25 0.375 0.375
Compression® 865 2,277 2,759
Context 0.524 0.523 0.516
Possession 1 1 3
Gosselin & Schyns (1998, Overall)
Observation® 1.184 1,012 819
Compression® 0 73 149
SLiP" 2.164 1.875 1.5
Possession 1 1 3
Utility 0.188 0.25 0.25
Context 0.516 0.516 0.516

Note. The cells under Level are ordered from left to right according to
increasing generality. For each taxonomy, models are ranked from best to
worst and ties are ordered alphabetically. H = highest: negative subscript
numbers following H = the distance away from the H level of generality:
Hier. = hierarchy: SLIP = strategy length and internal practicability.
 Data in milliseconds. " Data in attempts. * Data in bits.

However, these two experiments did not dissociate strategy length
from level of abstraction. Experiment | was designed to dissociate
level of categorization and speed of access. In the HIGH_FAST
taxonomy. shorter strategies should lead to a faster access at the
higher level. In LOW_FAST, the opposite applies: shorter strate-
gies should access the low-level categories faster. In both condi-
tions. the longer strategies arose from overlap between the at-
tributes of categories (volumetric primitives; Biederman, 1987).
SLIP predicts that shorter strategies are completed faster, irrespec-
tive of categorization levels (i.e., a faster access to the high level
of HIGH_FAST, and to the low level of LOW_FAST).

Method

Participants. Twenty University of Glasgow students with normal or
corrected vision were paid to take part in the experiment.

Stimuli.  Stimuli were computer-synthesized chains of four geometric
primitives similar to those of Tarr, Biilthoff, Zabinski, and Blanz ( 1997). We
designed the stimuli with a 3D modeling software on a Macintosh computer.
Five geometric elements defined the categories of the HIGH_FAST taxonomy.
One different geon defined each one of three high-level categories. Each one
of six possible low-level categories was further specified by one of the two
remaining geons. The top taxonomy of Figure 8 illustrates this.

In HIGH_FAST, strategy length equals one for the higher level catego-
ries. This means that only one feature must be tested to access these
categories. Strategy length equals two at the lower levels, because these
categorizations require two feature tests. The overlap of features across
lower level categories produced the longer conjunctive strategies.

To create the experimental stimuli, we substituted the letters in Figure 8
with their corresponding geometric elements. To these two geons, we
added two supplementary geons that served as fillers. Fillers were identical
across objects and so could not be used to distinguish them. We created two
exemplars per low-level category by changing the location of the diagnos-
tic geons in the chain (see Figure 9 for examples).

Nine geons defined the LOW_FAST taxonomy. A unique combination
of two geons, sampled from a set of three, defined each one of three
top-level categories (sce Figure 8, bottom taxonomy). High-level strategies
had Length 2 because a combination of two geons defined categories at this
level. A unique diagnostic geon further specified the categories at the low
level. However, low-level categories had Length 1 strategies because a
single-feature test on a diagnostic geon determined membership. Figure 8
shows the LOW_FAST taxonomy. One filler was added to generate six
four-geon chains. From these. we created two exemplars per category.

Procedure. The procedure was similar to that of Murphy (1991). In a
learning phase. participants were evenly split between the learning of the
HIGH_FAST and LOW_FAST taxonomies. We instructed participants to learn
the names and the defining geon(s) of nine categories (see the specific names and
corresponding geon combinations in Figure 8). Participants saw their taxonomy on
a sheet of paper; this learning phase was not constrained in time.

We tested participants’” knowledge of the taxonomy by asking them to
list the features associated with each category name. Criterion was reached
when participants could list twice in a row, without any mistake, the
attributes defining each category. Corrective feedback was provided.

When participants knew the taxonomy. a category verification task
measured categorization time at each level. Each trial began with the
presentation of a category name. Participants pressed one keyboard key to
see the list of all learned definitions on the screen (each definition corre-
sponded to a set of geons). Participants had to identify the definition
corresponding to the previously shown category name. With this proce-
dure, we wanted to keep a close control of participants” knowledge of their
taxonomy'® and to minimize the contribution of access time to a strategy
in memory to the overall verification time. After a 200-ms delay. an object
appeared on the screen. Participants had to decide as quickly as possible
whether the named category and object matched by pressing the ves or no
keys on the computer keyboard. We recorded response latencies. Note that
low-level categories are more numerous than high-level categories. We
normalized the number of positive and negative trials with the constraint of
equating the number of trials per level.

Results and Discussion

We performed the analysis of the logarithm of RTs on all correct
positive trials (error rate = 6.5%). Table 8 reports the mean RTs
at the low and high levels for the two taxonomies tested (see
Observations in Table 8).

A two-way (Group X Strategy Length) analysis of variance
(ANOVA) of the logarithm of RTs with repeated measures on one
variable (strategy length) revealed a main effect of strategy length,
F(1, 18) = 91.64, p < .0005, (mean Length | strategies = 2.946
feature tests; mean Length 2 strategies = 3.084 feature tests),
meaning that participants systematically verified Length 1 strate-
gies faster than Length 2 strategies, irrespective of the considered
level (low vs. high). All participants verified the categories asso-
ciated with Length 1 strategies faster. Neither the interaction
between group and strategy length, F(1. 18) = 0.03, ns, nor the
main group effect, F(1, 18) = 0.03, ns, was significant. The error

'S Although this identification was not a feature of Murphy's (1991)
experiment, we believe that the author had the similar intention of ensuring
that participants knew what the categorization strategy was. From Murphy
(1991): “In the learning phase, subjects were given a cover sheet for each
category that gave the category name and explained why all the patterns
were in the same category. That is, it mentioned the features distinctive of
that category. For example the description for the category LAR, a middle-
level category, was: ‘There are LARs, because their edge is serrated, they
have squares inside, and the squares are solid’ ™ (p. 429).
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Figure 6. Taxonomies of all experiments with simple disjunctions. From top to bottom: Hoffmann and Ziessler
(1983, Hierarchy II); Lassaline (1990, Experiments 3, 1D, and 4D); and Murphy (1991, Experiment 3). Below
the category names are the optimal computational strategies of the strategy length and internal practicability
model. The features of each exemplar are given underneath each taxonomy. Even though Lassaline’s one-
dimension and four-dimension taxonomies are identical in terms of strategy length and internal practicability,
they differ in one important respect: In the one-dimension taxonomy, all attributes came from the same
dimension, whereas in the four-dimension taxonomy, none of the attributes came from the same dimension. An
index for these abstract features is given in Appendix B.

rate was low overall and did not correlate with RT (r = —.17, ns),
ruling out a speed—accuracy trade-off.

SLIP predicts that Length 1 strategies should be completed
faster than Length 2 strategies, irrespective of categorization level
(see SLIP in Table 8 for numerical predictions). The data reported
here confirms that strategy length, rather than categorization level,
determines the basic levelness of a category.

Experiment 2

Practicability refers to the ease with which features identify a
category at any level of a taxonomy. A category has high practi-
cability whenever many of its defining features are uniquely di-
agnostic of this category. It has low practicability when a single
feature defines the category. If this variable influences the basic
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Table 5
Simple Disjuncrions: Numerical Predictions and Observations
Level
Source/model H_, H_, H
Hoftmann & Ziessler (1983, Hier. 1)
Observation® ~700 ~500 ~700
Compression” 865 2.277 189
SLIP¢ 2.667 2 4
Utility 0.25 0.375 0.125
Context 0.509 0.539 0.516
Possession 1 2 2
Corter. Gluck. & Bower (1988)
Observation 3,045 2,567 3115
Compression” 865 2.277 189
SLIP* 2.667 2 4
Utility 0.25 0.375 0.125
Context 0.509 0.539 0.516
Possession 1 2 2
Lassaline (1990. Exp. 3. one-dim.)
Observation Ist 2nd
SLIP¢ 2 4
Utility 259 167
Compression” 119 135
Context 0.511 0.521
Possession )] 6
Lassaline (1990. Exp. 3. four-dim.)
Observation 2nd Ist
Context 0.511 0.522
SLIP® 2 2
Compression® 527 389
Possession 9.25 0
Utility 3le .048
Murphy (1982, Exp. 3)
Observation® 776 688 779
SLIP® 2 1.143 4
Possession 1 3 2
Utility 0.531 0.719 0.563
Context 0.536 0.554 0.516
Compression® 865 2277 3.569

Note. The cells under Level are ordered from left to right according to
increasing generality. The number of levels varies across taxonomies; some
taxonomies do not have an H_, level. For each taxonomy. models are
ranked from best to worst and ties are ordered alphabetically. H = highest;
negative subscript numbers following H = the distance away from the H
level of generality: Hier. = hierarchy: SLIP = strategy length and internal
practicability; Exp. = experiment; dim. = dimension.

“ Data in milliseconds. " Data in bits. © Data in attempts.

levelness of a category, then it should apply equally to all levels of
a taxonomy.

In Experiment 2, all strategies had Length 1, but the high and
low levels differed in practicability. In the HIGH_FAST condition,
high-level strategies had greater practicability than low-level strat-
egies. The opposite applied to the LOW_FAST condition, with
low-level strategies having higher practicability. SLIP predicts that
categories with higher practicability will be verified faster, irre-
spective of their level in the taxonomy.

Method

Participants.  Twenty students from University of Glasgow with nor-
mal or corrected vision were paid to take part in the experiment.

Stimuli.  Stimuli were similar to those of Experiment I: four-geon
chains synthesized with a 3D modeling software on a Macintosh computer.

In the HIGH_FAST condition, 10 diagnostic geons were used. Three
different geons detined each one of two high-level categories: one different
geon defined each low-level category (see Figure 10, top taxonomy). We
generated two exemplars per category by changing the location (either
rightmost or leftmost of the chain) of the three geons defining the high-
level categories (see Figure 10. top taxonomy).

The LOW_FAST taxonomy comprised 14 diagnostic geons. One diag-
nostic geon defined each one of two high-level categories. and 3 different
geons defined each one of four low-level categories (see Figure 10. bottom
taxonomy). As before, we created two category exemplars by changing the
location (either far right or far left of the object) of the triplets defining the
low-level categories (see Figure 10. bottom taxonomy). Practicability is
greater for high-level categories in the HIGH_FAST condition and for the
low-level categories in the LOW_FAST condition. These levels have more
unique features associated with them.

Procedure. The procedure foliowed in all respects that of Experi-
ment 1: Participants were randomly assigned to the HIGH_FAST and
LOW_FAST conditions. They were taught their respective taxonomy be-
fore entering a verification task in which we measured speed of access to
the two levels of categorization. Each one of the 280 trials consisted in the
initial presentation of a category name followed by an object. Participants
had to decide as quickly as possible as whether the two matched. We then
recorded response latencies.

Results and Discussion

We performed an ANOVA on the logarithm of RTs of positive
trials (error rate = 5.4%). Table 8 shows the mean RTs at the low
and high levels for HIGH_FAST and LOW_FAST.

A two-way (Group X Practicability) ANOVA on the logarithm
of RTs with repeated measures on one variable (practicability)
revealed a main effect of practicability, F(1, 18) = 24.88, p <
0005 (mean verification time = 2.838 for high practicability
strategies; 2.894 for low practicability strategies). Of the 20 par-
ticipants, only 1 did not respond faster to categories with greater
practicability; a sign test showed that this was significant (p <
.00003). Neither the Group X Practicability interaction, F(1.
18) = 4.15, ns, nor the main group effect, F(1, 18) = 1.50, ns, was
significant. The error rate was low overall and did not correlate
with RTs (r = .05, ns), ruling out a speed—accuracy trade-off.

In summary, SLIP predicted that strategies with greater practi-
cability should yield faster categorization decisions, irrespective of
categorization level (see SLIP in Table 8 for numerical predic-
tions). The results of Experiment 2 confirmed the prediction.

Experiment 3

Experiments 1 and 2 revealed that changing either strategy
length or internal practicability of any level of a taxonomy changes
its basic levelness. In Experiment 3, we explored how these two
variables interact to determine performance. There are many pos-
sible interactions to investigate and we did not investigate them all.
Instead. we examined three main scenarios that changed the fastest
level by modifying either strategy length or internal practicability.

EQUAL was our neutral, baseline scenario. Strategies at the
high and low levels had an equal length of one and the same
constant practicability. SLIP predicts that categorization speeds
should be equal across levels. In the SL_DOWN scenario, we
augmented the length of the strategies that access the high-level
categories to produce faster categorizations at the lower level. In
the IP_UP scenario, we kept the difference of strategy length just
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Figure 7. Taxonomies of all experiments with mixtures of disjunctions and conjunctions. From top to bottom:
Hoffmann & Ziessler (1983, Hierarchy III); Lassaline (1990, Experiment 1); Lassaline (1990, Experiment 2).
Below the category names are the optimal computational strategies of the strategy length and internal practi-
cability model. Whenever possible, an index for these abstract features is given in Appendix B.

discussed, but decreased the practicability of the low level to speed
up access to the high level. In summary, starting from an equal
access to two levels of a taxonomy, a change of strategy length in
the SL_DOWN condition produces faster categorizations at the
low level. From this taxonomy, decreasing the internal practica-
bility of the low level in the IP_UP condition should produce faster
categorization at the high level.

Method

Participants.  Thirty students from University of Glasgow with normal
or corrected vision were paid to take part in the experiment.

Stimuli.  Stimuli were similar to those of Experiments | and 2: geon
chains designed with a 3D-object modeling software. Nine diagnostic
geons entered the composition of categories in the EQUAL, SL_DOWN;
and IP_UP conditions. In the equal condition, one geon defined each one



752 GOSSELIN AND SCHYNS

Table 6
Mixtures of Disjunctions and Conjunctions: Numerical
Predictions and Observations

Level
Source/model H_, H_, H
Hoffman & Ziessler (1983, Hier. III)
Observation® ~700 ~1,050 ~1,475
Compression® 865 2 -22
SLIP® 2.036 4.504 9.329
Utility 0.25 0.125 0
Possession 3 0 3
Context 0.501 0.516 0.546
Lassaline (1990, Exp. 1)
Observation 2nd Ist
Compression® 1,359 1,479
Possession 2.5 3
SLIP® 1.708 1.164
Utility 127 238
Context 0.526 0.523
Lassaline (1990, Exp. 2)
Observation Ist 2nd
Compression® 380 106
SLIP® 1.708 3.882
Utility 209 119
Possession 2 2
Context 0.508 0.521

Note. The cells under Level are ordered from left to right according to
increasing generality. The number of levels varies across taxonomies; some
taxonomies do not have an H_, level. For each taxonomy, models are
ranked from best to worst and ties are ordered alphabetically. H = highest;
negative subscripts following H = the distance away from the H level of
generality; Hier. = hierarchy; Exp. = experiment; SLIP = strategy length
and internal practicability.

2 Data in milliseconds. ° Data in bits. € Data in attempts.

of the nine categories of the taxonomy (see the top taxonomy of Figure 11).
To this defining geon, we added four fillers to form six six-geon chains.
We placed the geons defining the high-level categories at the far left of the
chains, and those defining the low-level categories at the far right (see the
top taxonomy of Figure 11).

In the SL_DOWN condition, a unique combination of two geons taken
from a set of three geons defined each top-level category. The addition of
one different geon further specified each lower level category. We pro-
duced six six-geon chains by adding three fillers. We placed the geon pairs
defining the high-level categories at the far left of the chains, and those

Table 7

Comparison of Models for the Predicted Percentage of Nominal
Data of a Database of 22 Basic-Level Experiments (Basic) and
Experiments 1-3 (New)

Strategy Internal
length practicability Mixture M
Model Basic New Basic New Basic New Basic M
SLIP 100 100 82 100 85 100 8 88
Utility 83 50 51 80 80 65 63 64
Possession 50 50 77 70 40 60 63 62
Compression 83 50 23 50 60 50 40 42
Context 33 40 38 20 35 30 37 35

Note. SLIP = strategy length and internal practicability.

Experiment 1, HIGH_FAST
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Figure 8. Taxonomies of Experiments 1, HIGH_FAST and LOW_FAST.
Strategy length is the only varying variable. Below the category names are
the optimal computational strategies of the strategy length and internal
practicability model. An index for these abstract features is given in
Appendix B.

defining the low-level categories at the far right (see the bottom taxonomy
of Figure 11). These chains also served to construct the exemplars of the

IP_UP condition. Here, we generated four exemplars per category by

changing only the location in the chain of the single geon defining the
low-level categories (one of the four rightmost positions in the six-geon
chains; see Appendix D for relevant formal changes of SLIP).
Procedure. The procedure was identical to that of Experiments 1|
and 2. Participants were randomly assigned to one of three conditions
(EQUAL, SL_DOWN, and IP_UP). Following a learning of their taxon-

Figure 9. A sample of computer-synthesized objects used in Experi-
ment 1, HIGH_FAST (one exemplar per low-level category).
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Table 8
Observed Mean Response Times for Positive Trials in
Experiments 1-3 and Numerical Predictions

Level
Model Lowest Highest
Experiment 1
HIGH_FAST
Observation® 1,373 976
Compression® 0 30
Context 0.361 0.531
Possession 2 3
SLIP® 3.692 2.667
Utility 195 222
LOW_FAST
Observation® 1,049 1,329
SLIP® 2.667 3.692
Compression® 0 30
Context 0.376 0.531
Possession 1 3
Utility 25 333
Experiment 2
HIGH_FAST
Observation* 854 708
Compression® 0 5
Possession i 3
SLIP® 2.667 1.323
Utility 375 .500
Context 0.607 0.531
LOW_FAST
Observation® 890 970
Possession 3 1
SLIP® 1.323 2.667
Utility 624 .500
Compression® 0 5
Context 0.581 0.592
Experiment 3
EQUAL
Observation® 733 763
Compression® 0 30
Possession i 5
SLIP® 1.714 1.714
Utility 176 260
Context 0.376 0.531
SL_DOWN
Observation® 1,036 1,192
SLIP® 1.714 2.219
Compression® 0 30
Context 0.376 0.531
Possession 1 5
Utility .250 333
IP_UP
Observation* 1,013 909
Compression® 0 30
Context 0.376 0.531
Possession” 1 5
SLIP 4.8 2219
Utility 250 333

Note. The cells under Level are ordered from left to right according to
increasing generality. For each taxonomy, models are ranked from best to
worst and ties are ordered alphabetically. SLIP = strategy length (SL) and
internal practicability (IP).

4 Data in milliseconds. °® Data in attempts. °© Data in bits.

omy, participants performed 240 verification trials. Each trial consisted in
the presentation of a category name followed by an object. Participants had
to decide whether these matched and we measured response latencies.

Results and Discussion

We performed an ANOVA on the logarithm of the RTs of
correct positive trials (error rate = 2.3%). Table 8 shows the mean
RTs. A two-way (Group X Level) ANOVA with repeated mea-
sures on the level variable revealed a significant interaction be-
tween group and level, F(2, 27) = 5.67, p < .0095, and two
significant main effects of Group (SL_DOWN) X Level, F(1,
27) = 4.25, p < .0495 (mean high-level strategies = 3.001; mean
low-level strategies = 2.953; only 1 participant responded faster
for the high-level categories, p < .011) and Group (IP_UP) X
Level, F(1, 27) = 6.95, p < .0145 (mean high-level strate-
gies = 2.893; mean low-level strategies = 2.955; but 2 partici-
pants responded faster for the low-level categories, ns). The last
main effect was not significant: Group (EQUAL) X Level, F(1,
27) = 0.16, ns. The error rate was low overall and was positively
correlated with RT (r = .31, p < .05), ruling out a speed—accuracy
trade-off.

SLIP predicted all the resuits observed in Experiment 3 (see
SLIP in Table 8 for numerical predictions). Participants catego-
rized equally fast at both levels in the EQUAL condition. Increas-
ing the strategy length of the higher level in the SL_DOWN
condition induced faster categorizations of the lower level. Dimin-
ishing practicability at the lower level then made the high level
faster. The two computational factors of SLIP predicted speed of
categorization in these taxonomies.

Experiment 2, HIGH_FAST
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Experiment 2, LOW_FAST
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Figure 10. Taxonomies of Experiments 2, HIGH_FAST and LOW_
FAST. Internal practicability (redundancy) is the only varying factor.
Below the category names are the optimal computational strategies of the
strategy length and internal practicability model. An index for these ab-
stract features is given in Appendix B.
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Experiment 3, EQUAL
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Figure /1. Taxonomies of Experiment 3, EQUAL, SL_DOWN and

IP_UP. SL._DOWN and IP_UP differ in one important respect: The at-
tributes of SL_DOWN always occupied the same positions, whereas this
was not the case for those of IP_UP. Specifically, the high-level attributes
of IP_UP always occupied the same positions in the input object, whereas
the low-level attributes could occupy one of four possible positions. To
model this, we integrated position in our formalism (see Appendix D).
Below the category names, we provide the optimal strategies of the strategy
length (SL) and internal practicability (IP) model. An index for these
abstract features is given in Appendix D.

Comparison of Models of Basic Levelness for
Experiments 1-3

SLIP predicts all of the qualitative results of these three exper-
iments if it is expanded to take into account feature configurations
(see Appendix D for developments). Category utility follows with
65% of the data explained, followed by category feature posses-
sion with 60%, compression with 50%, and the context model with
30%. The decomposition of these global scores into strategy length
and redundancy scores is as follows: For the conditions in which
only strategy length is tested (Experiment 1: HIGH_FAST and
LOW_FAST; Experiment 3: EQUAL and SL_DOWN), category
feature possession, category utility, and compression each predicts
50% of the data; the context model predicts 40% (see Table 7).
This confirms the argument made earlier that all models have so
far neglected strategy length as a specific factor of basic-level
performance. This is a serious problem because attributes do
overlap between categories in the real world, so strategy length is
an important factor of recognition outside the laboratory.

For the conditions in which only practicability is tested (Exper-
iment 2: HIGH_FAST and LOW_FAST; Experiment 3: EQUAL
and IP_UP), category utility measure predicts 80% of the data,

category feature possession, 70%, compression measure, 50%, and
the context model, 20%. (We included all of the Experiment 3
conditions in both strategy length and internal practicability.)

General Discussion

In this article we presented SLIP, a measure of basic-level
performance that implements two computational constraints on the
organization of information in taxonomies: strategy length, the
number of feature tests necessary to place the input in one cate-
gory, and internal practicability, the ease with which these tests
can be performed. We reviewed 22 published experiments and
examined how the two constraints varied in each one of them. We
tested the empirical validity of the two constraints in three exper-
iments. In Experiment 1 we isolated the effect of strategy length on
basic levelness, in Experiment 2 the effect of internal practicabil-
ity, and in Experiment 3 the interactions of the two constraints. We
compared the predictive power of SLIP with that of four estab-
lished models of basic-level performance: the context model (Es-
tes, 1994; Medin & Schaffer, 1978), category feature possession
(Jones, 1983), category utility (Corter & Gluck, 1992), and com-
pression (Pothos & Chater, 1998). When combining the predic-
tions for 22 published experiments (see Tables 1 to 6) with those
for our three new experiments (see Table 8), it appears that SLIP
predicts 88% of the data, category utility 64%, category feature
possession 62%, the compression measure 42%, and the context
model 35% (see Table 7).

To the extent that any model of categorization implements
computational constraints, even if these are not well specified, the
conclusion is that SLIP’s are closest to those underlying the speed
of access to the hierarchy of categories. It is worth noting that these
two constraints are strictly of a categorical nature: In SLIP, speed
of access is a direct function of the representation of object
information in memory. We purposefully normalized the presen-
tation of taxonomies here to clarify how a change in their struc-
tures modifies the relative speed of access to their levels of
categorization. To our knowledge, this is the first time that such
computational analysis has been performed.

We should be careful to point out that we do not believe that the
two constraints of SLIP completely predict the speed of access to
categories in the real world. As discussed in Schyns (1998), the
phenomenology of recognition, including speed of access, arises
from interactions between the information demands of a categori-
zation task and the availability of object information in distal
stimuli. SLIP formalizes the information demands of categoriza-
tion tasks with different strategies, which are composed of a
number of sets of redundant tests on object attributes. We are
aware that some of these attributes will be more difficult to extract
than others from the input. It will be interesting to study further
how speed of access arises from an interaction between the infor-
mation demands of strategies and the relative availability of this
information in the input. In fact, SLIP enables a study of the
respective contributions of these two sources of influence.

Generalization to Other Correlates of Basic Levelness

We designed SLIP to model category verification. This is by far
the most common method to assess the basic levelness of a
category. However, we pointed out earlier that a critical aspect of
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basic levelness is that it optimizes a number of indexes of perfor-
mance. It is important to show that SLIP is not limited to model
category verification. For example, in a naming task—in response
to “What is this object?”’—SLIP can apply most of its strategies in
parallel, and output the name associated with the first completed
strategy. The formal models for verification and naming are there-
fore strictly identical. Thus, SLIP predicts the same qualitative
order of speed of access in naming and verification. However,
parallel testing of multiple strategies increases the likelihood that
many more f-agents will compete for the same information chan-
nels in naming than in verification (when only one strategy is
resolved at any time; see Appendix C for a discussion of compe-
tition in the context of disjunctions). With this competition, SLIP
predicts that it will take more time on average to name than to
verify (Rosch et al., 1976).

Another correlate of the basic levelness of a category is that
people tend to list many more features, especially shape features,
at this level than at others (Rosch et al., 1976; Tversky & Hemen-
way, 1984). Remember that most features of one basic-level cat-
egory do not overlap with those of contrasting categories (e.g.,
Tversky & Hemenway, 1984, Tanaka & Taylor, 1991). Following
the principles of SLIP, the addition of such diagnostic features in
a category increases its internal practicability, and its basic level-
ness. SLIP therefore predicts a proliferation of listed features at the
basic level. The fact that these features are mostly shape rather
than color and texture could reflect the organization of our per-
ceived world.

A similar reasoning applies to the discovery of Tanaka and
Taylor (1991) and Johnson and Mervis (1997) that expertise in-
duces faster verification times, and number of listed features, for
subordinate categories. It also applies to the observation of Joli-
coeur et al. (1984) and Murphy and Brownell (1985) that atypical
subordinates (e.g., penguin, electric knife) behave more like basic-
level categories than the other subordinate categories (e.g., robin,
Swiss knife). Murphy and Brownell have shown that these atypical
subordinates are more informative (i.e., they have more listed
features) and distinctive (i.e., they share fewer of these listed
features with contrasting categories) than other subordinates. In
other words, atypical subordinate categories have more internal
practicability, are more redundant, than other subordinate catego-
ries. In summary, the computational principles of SLIP can ac-
count for the most important correlates of basic levelness: faster
verification, naming, and number of listed features.

Turning to development, it has been suggested that children
have a comprehension bias (innate or learned) for the basic level.
Because adults show the bias in production, this would enable the
children and adults to resolve the level of categorization ambiguity
and understand each other (Markman, 1989; Markman & Hutchin-
son, 1984). We have argued here that the production bias for basic
names in adults arises from the organization of their taxonomic
knowledge and the resulting strategies that access the categories.
The development literature is unclear about the origin of the bias
for children to comprehend at the basic level. SLIP suggests that
infants acquire concept taxonomies (e.g., Eimas & Quinn, 1994)
and access them following the general principles of SLIP. Adults
would produce basic names because they are first accessed in their
“mental race,” and children would connect these names with basic
concepts because the latter are also first accessed in their mental
race. This does not imply that the taxonomic organizations of

adults and children are identical, only that the same categories are
first accessed. In other words, adults and children can differ
markedly in the number of categories and levels of categorization
they have in memory, but still access the same basic-level
categories.

Concluding Remarks

The two computational principles of SLIP appear to explain a
large proportion of the variance of basic-level experiments. The
model itself has more predictive power than its competitors and it
allows explicit predictions of the sequencing of information intake
in categorization and recognition. For example, if some animal
categories are more equal than others (e.g., in verification tasks,
dog is superior to mammal as well as to Doberman), we would say
that it is because they have shorter strategies or strategies with
greater internal practicability.
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Appendix A

A Serial Version of SLIP

A strategy to categorize an object at a given level of abstraction is
defined here as a series of feature tests. Typically, some of these feature
tests are unique to this category, and some overlap with the defining
features of other categories. An optimal strategy is the shortest series of
tests on the features defining the category. We posit that the strategy length
and internal practicability (SLIP) categorizers always use optimal strate-
gies. We call redundant features, or set of redundant features, the collection
of features that, individually, provide exactly the same information as to
the category membership of objects. In other words, testing one, two, or
more redundant features does not provide more information.

Formally, we say that a strategy is a series of sets of redundant feature
tests. It has succeeded whenever all sets of redundant features tests have
been completed in a specific order. Furthermore, a set of redundant features
is completed as soon as a test on the presence of one of its redundant
features has been performed.

This usually happens after a succession of misses. The probability of
having t — 1 successive misses is given by (1 — 45)"‘, where —when
redundancy of sets of features and the number 6f possible configurations
that these can take in objects are taken into account—is equal to C(1 —
§) + C;SR;; that is, the practicability of set of redundant features j or the
probability that it will be completed after a single attempt. S is the
probability of a random slip (it was arbitrarily set to .5 throughout the
simulations), and C; is the probability that the target features will be in the
expected configuration (one divided by number of configurations). Thus,
the first term of ¢, is the probability that the SLIP categorizer will guess the
feature configuration correctly and that it will not slip. R; is the probability
that a random slip will result in a diagnostic test, (cardinality of j)/(number
of features in objects). The second term of ¢; is the probability that the
categorizer will slip, but that it will guess the correct configuration and will
perform a diagnostic feature test.

The probability of a hit is one minus the probability of a miss. Thus, the
probability that the set of redundant features j will be completed after # trials is

(I =)'y,

and the probability that a strategy of length n will have succeeded after ¢
trials in a certain configuration of hits and misses is

n

[Ta-wes,

J=1

where ¢ is a function of j, it will remain unspecified, which gives the
number of misses for the jth set of redundant features for that particular
configuration. Usually, more than one such configuration exist. In fact, the
number of possible configurations is easy to compute. The last hit neces-
sarily happens at the rth trial; the n — 1 other hits, however, can happen
anywhere in the ¢ ~ 1 trials left, in order. Therefore, the number of possible
configurations is the number of combinations of + — 1 items taken n — 1
by n — 1 that is,

t—1 (r— 1)
A=< n—1 )z(z—n)!(n—m'

We can now give the global shape of the probability that a strategy of
lengths » will succeed after ¢ trials:

n

ST a = wey,

=1 j=1

where w is a function of i, and j specifies the number of misses for the jth
set of redundant features for the ith configuration of hits and misses. We
call this the response time function (RTF). We still have to specify w. We
establish a connection between this function and multinomial expansions.
The multinome (a, + a, + ...+ a,) " expands into A different terms,
and the sum of the n exponents of each term is equal to # — n. It follows
that w gives the jth exponent of the ith term in this multinomial expansion.

As a global measure of basic levelness, we use t_mean, the mean number of
tests required to complete a strategy. When internal practicability is constant
within a strategy (this is true for all experiments reported in this article), the
RTF is a Pascal density function and, thus, t_mean is equal to n/is.

Appendix B

The Figures Attribute Index

Murphy and Smith’s (1982; see Figures 2 and 4) and Murphy’s (1991,
Experiments 4-5; see Figures 2 and 3) artificial tools: @ = pounder, b =
cutter, ¢ = hammer head, d = hammer shaft, ¢ = hammer handle, f = brick
head, g = brick shaft, # = brick handle, i = knife head, j = knife shaft,
k = knife handle, ! = pizza cutter head, m = pizza cutter shaft, n = pizza
cutter handle, 0 = wide hammer head, p = parrow hammer head, ¢ =
one-part brick handle, r = two-part brick handle, s = straight knife edge,
t = serrated knife edge, u = short pizza cutter shaft, v = long pizza cutter
shaft, w = large, x = small, y = stirrer, z = scrapper, a’ = wedge head,
b' = wedge shaft, ¢’ = wedge handle, d’ = carrot head, ¢’ = carrot shaft,
f = carrot handle, g’ = scoop head, h' = scoop shaft, i" = scoop handle,
j' = rake head, kK’ = rake shaft, /' = rake handle, m' — 4" = small
variations, ¢” = red, d” = dot texture, ¢” = yellow, f’ = circle texture, g"
= blue, 4" = solid color, i" = green, j* = stripe texture, k" = broken edges,
and /" = continuous edges. Lassaline (1990) used the same artificial tools
with two added dimensions for her own experiment.

Mervis and Crasifi’s (1982; see Figure 2) artificial objects: a = straight

lines, b = curved lines, ¢ = sharp corners, d = smooth corners, ¢ = overall
square shape, f = interior vertical line, g = interior losange, # = lined
texture, i = overall triangle shape, j = interior oblique line, k¥ = interior
cross, | = shaded texture, m = overall concave cell shape, n = elongated
nucleus, ¢ = interior fat floating body, p = slim excroissance, g = overall
convex cell shape, r = Y-shaped nucleus, s = interior slim floating body,
t = fat excroissance, ¥ — b’ = small configural changes, and ¢’ — 7' =
minor variations.

Hoffmann and Ziessler’s (1983; see Figure 5) PacMan’s ghosts: a =
rectangular shell, » = curved shell, ¢ = interior square, d = interior
triangle, ¢ = interior star, f = interior circle, g = triangular saw teeth
bottom edge, h = broken vertical lines bottom edge, i = rectangular saw
teeth bottom edge, j = circular saw teeth bottom edge, k¥ = shaded texture,
and / = lined texture.

Gosselin and Schyns’s (1998; see Figure 5) three-dimensional artificial
objects in the color, texture, geon (CTG) condition: a = red, b = green,
¢ = smooth, d = rough, e = cone, and f = pyramid; in the geon, color,

(Appendixes continue)



758 GOSSELIN AND SCHYNS

texture (GCT) condition, @ = cone, b = pyramid, ¢ = red, d = green, ¢ =
smooth, and f = rough; and, in the texture, geon, color (TGC) condition,
« = smooth, b = rough, ¢ = cone, d = pyramid, ¢ = red, and f = green.

Murphy’s (1991, Experiment 3; see Figure 6) artificial stamps: a = blue,
b = yellow, ¢ = red, d = green, ¢ = texture squares, / = solid (texture
squares). g = wavy edges. h = texture lines, i = wavy (texture lines), j =
straight edges, & = texture stripes, / = thick (texture stripes), m = no edge,

n = texture circles, 0 = empty (texture circles), p = jagged edge, g =
large, r = small, s = broken edge, r = continuous edge, # = vertical
stripes, v = horizontal stripes, w = large circles, and x = small circles.

Our geon chains (Experiments 1-3; see Figures 8, 10, and 11): ¢ =
wedge, b = sphere, ¢ = cone, d = cube, e = cylinder, f = macaroni, g =
fat cube, & = slim cylinder, i = trumpet, j = magnet, k = fat cylinder, / =
slim cube, m = hook, and n = pyramid.

Appendix C

SLIP and Disjunctions

The strategy length and internal practicability (SLIP) model can handle
disjunctive categories with one additional assumption: Information chan-
nels can only be probed by a single feature agent (f-agent) at a time (this
does not change any of our previous ordinal predictions). As with any other
strategy, each attribute in a disjunctive strategy is assigned an f-agent for
testing. There are two types of disjunctive strategies: In the first type, the
attributes of a disjunction share the same information channel; whereas in
the second type, the attributes scan different information channels. This
difference is important because f-agents will compete for the same infor-
mation channel in the first, but not in the second case. With this assumption
of uniqueness of f-agent per channel at any given time, competing f-agents
in a disjunction will increase the time of its completion compared with one
of its features tested in isolation.

To illustrate, consider the two taxonomies of Lassaline’s (1990) Exper-
iment 3. Remember that two-attribute either-or disjunctions defined the
high-level categories and one different feature defined each low-level
category, in the two taxonomies. In the four-dimension condition, low-
level features were one value of four different stimulus dimensions (e.g.,
hammer head, pizza cutter handle, dotted texture, and square internal
shape). In the one-dimension condition, low-level features were four
different values of the same dimension (e.g., hammer, brick, knife, and
pizza cutter heads).

That is, attributes in the disjunctions of the one-dimension condition
share their information channels, whereas attributes in the four-dimension
do not. Thus one-dimension disjunctions should be verified slower than

their individual attribute (because of competition for the unique informa-
tion channel), whereas four-dimension disjunctions should be as fast to
complete as their individual attributes (because each scans a different
information channel and either one or the other will succeed).

Formally, we need to develop SLIP to account for shared-channel
disjunctions—the other type of disjunctions is formally equivalent to the
set of redundant features. We start with the assumption that the n f-agents
of one disjunction can access the single information channel with equal
probability. Then, /, the probability that one f-agent cannot access the
channel is 1 — 1/n. In Lassaline’s (1990) one-dimension disjunctions, this
probability is equal to one half. With § the probability of a slip, two
independent events can lead to a failure of testing one attribute: (a) The
f-agent does not slip but does not access its information channel. This event
occurs with a probability of (1 — S)/; (b) the f-agent slips on a wrong
information channel (with probability § — SQ), or its information channel,
but its access is blocked (with probability SQI). The probability of a
nonsuccessful slip is therefore (S — SQ) + SQI, where Q is one divided by
the total number of attributes in the input object (i.e., one fourth in the case
of Lassaline). To conclude, ¢, the probability that a f-agent in a shared-
channel disjunction successfully tests its attribute is 1 — [(1 — S$)] + (§ —
SQ) + SQI].

Generalizing to y;; = 1 — (1 — @)™, the equation becomes , = 1 — (/ +
S + SQI — SI — SQ)™. For the high- (the shared-channel disjunctions) and
low-level categories of Lassaline’s (1990) one-dimension condition, with

= .5, we obtain ¢; equals 0.292 and 0.417, respectively.

Appendix D

SLIP and Configurations

To model the data of Experiment 3, we need to develop the strategy
length and internal practicability (SLIP) to take feature configurations into
account. Remember that each f-agent looks for its feature in one informa-
tion channel. So far, information channel was loosely defined, but in
Experiment 3, it can be assigned a specific meaning: a position in an
oriented string of features. SLIP needs to be expanded to account for the
interactions between information channels and features. This is the goal of
this appendix.

The SL_DOWN and IP_UP conditions in Experiment 3 have the same
taxonomy (see bottom taxonomy of Figure 11). The only difference be-
tween them is the number of positions that geons can occupy in the
six-geon strings. In the SL_DOWN condition, geons always occupy the
same position; in the IP_UP condition, however, the two geons of the
conjunction that defines the high-level categories always occupy the same
position, whereas the untique geons that define the low-level categories can
each occupy four positions.

C; is the probability that the f-agent guesses the correct position j, where
its geon should appear. It is one divided by the number of possible

positions of geons (i.e., C; = 1 at the high level of IP_UP, and one fourth
at the low level). If S is the probability of a slip, two independent events
can lead to a successful test of one geon: (a) a right guess of the position
J» with a probability of C,(1 — $)—in the IP_UP example, this probability
becomes (1 — §) at the high level and .25*(1 — §) at the low level; (b) a
slip, by change alone, on the right position j, with probability SQ, where Q
is one divided by the total number of attributes in the input object (i.e., one
sixth in the earlier examples). In sum ¢, the probability that a f-agent
successfully tests its geon is C(1 — §) + SQ. Generalizing to ¢, = 1 —
(1 ~ @)™, the equation becomes §; = 1 — {1 — [C(1 — S) + SQ]}™. With
§ = .5, we have i; equals 0.417 and 0.042, respectively, for the high- and
low-level categories of the IP_UP conditions.
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