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Abstract

The bubbles method is a recently developed variant of reverse correlation methods that have been used in psychophysics and

physiology. We show mathematically that for the broad and important class of noisy linear observers, the bubbles method recovers

much less information about how observers process stimuli than reverse correlation does. We also show experimentally that the

unusual type of noise used in the bubbles method can drastically change human observers’ strategies in psychophysical tasks, which

reduces the value of the information that is obtained from a bubbles experiment. We conclude that reverse correlation is generally

preferable to the bubbles method in its present form, but we also give suggestions as to how the bubbles method could be modified to

avoid the problems we discuss.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

We can learn a great deal about a signal processing

system, be it a single neuron or a human observer, by

observing how the system responds to stimuli in noise.

In a typical application of reverse correlation methods,

the input to the system under study is one of two signals

in additive Gaussian white noise, the response of the
system is an attempt to identify the signal, and the result

of the experiment is a classification image, which shows

the correlation between the noise contrast at each

stimulus location and the system’s responses. In effect, a

classification image shows how each spatial location of

the stimulus contributes to the system’s attempts to

identify the signal. Several types of reverse correlation

methods have been developed for use in psychophysics
and physiology (Ahumada & Lovell, 1971; Marmarelis

& Marmarelis, 1978).

The bubbles method is a recently developed variant

of reverse correlation, which differs from previous

methods in two ways (Gosselin & Schyns, 2001). First,

in a typical bubbles experiment, the input to the system

is one of two signals windowed through a noise field that

consists of a number of randomly placed Gaussian
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blobs. That is, the input is just a few small fragments of

a signal, rather than the whole signal. Second, the result

of the experiment is a bubbles image, which is propor-

tional to the expected value of the windowing noise on

trials where the system gives the correct response. Thus,

a bubbles image shows which stimulus locations help the

system to identify the signal correctly.

The bubbles method is an interesting variation on
reverse correlation that addresses the question of what

stimulus regions help a system to give the correct re-

sponse, as opposed to the question of what regions

influence the system’s responses in any way at all.

However, in its present form it has two serious short-

comings. First, the bubbles method has never been de-

scribed or analyzed in any sort of rigorous signal

processing framework, and consequently many impor-
tant properties of bubbles images are simply not known.

How does a bubbles image depend on response bias, or

on the proportion of correct responses? What are the

statistics of bubbles images? Indeed, how is a bubbles

image even related to the parameters of any class of

models that we might wish to use to study a system? At

present, we do not know the answers to these questions,

so it is difficult to use the bubbles method to test
hypotheses quantitatively. In Section 2, we make a first

step towards remedying these problems, by showing

what information a bubbles image recovers about a

broad and important class of systems, namely noisy

linear amplifiers. A second problem with the bubbles
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method is that showing small, isolated fragments of a

stimulus will often change a system’s behaviour com-

pared to when the stimulus is shown intact, and this

greatly reduces the value of the information learned

from a bubbles experiment. In Section 3, we report an

example of a psychophysical task where the bubbles

method drastically changes human observers’ strategies.

We suggest that using a different kind of windowing
noise may make the bubbles method less likely to change

observers’ strategies.
2. Troubles in theory

The linear amplifier model (LAM) embodies a simple

theory as to how observers perform shape discrimina-

tion tasks. The LAM is a useful first-order approxima-

tion that accounts for many aspects of human

performance, and serves as a starting point for more
complex models (Burgess, Wagner, Jennings, & Barlow,

1981; Green & Swets, 1974). In this section, we will

compare the information that reverse correlation and

bubbles methods recover about LAM observers.

Consider a task where the observer views one of two

signals, IX or IY , and reports which signal was shown.

According to the LAM, an observer identifies the signal

by cross-correlating the stimulus with a template T ,
adding an internal noise Z, and responding �X ’ when the

resulting decision variable s meets or exceeds a criterion

a, and responding �Y ’ otherwise. If we represent the

observer’s responses as a random variable R that takes

value +1 when the observer responds �X ’ and )1 when

the observer responds �Y ’, then we can describe a LAM

observer with the following equations:

s ¼ IfX ;Y g � T þ Z ð1Þ
R ¼ sgnðs� aÞ ¼ þ1 if sP a
�1 if s < a

�

Here � is cross-correlation (i.e., for matrices F and G,
F � G ¼

P
ij FijGij). Cross-correlation is a linear opera-

tion, so the LAM states that the observer’s responses are

based on a linear function of the stimulus, contaminated

by noise. 1

In a typical reverse correlation experiment, signals are
shown in Gaussian white noise, so the stimuli are IX þ N
and IY þ N , where N is a noise field. With two signals

and two responses, there are four stimulus–response

classes of trials: XX , XY , YX , and YY . The classification

image C is defined as:
1 In some formulations of the LAM, the internal noise is added

before the cross-correlation. This modification makes no difference to

the conclusions in this paper, and adding the noise after the cross-

correlation simplifies the derivation in Appendix A.
C ¼ ðNXX þ NYX Þ � ðNXY þ NYY Þ ð2Þ

Here NSR denotes the average of the noise fields over a

stimulus–response class of trials, e.g., NXY is the average

noise field over all trials where the signal was IX and the

observer responded �Y ’. For a LAM observer, the ex-
pected value of a classification image can be shown to be

proportional to the observer’s template T :

E½C� ¼ kT ð3Þ

Thus a classification image completely characterizes

how a LAM observer combines information from dif-

ferent spatial locations of a stimulus to decide on a re-

sponse (Ahumada, 1996; Murray, Bennett, & Sekuler,

2002; Richards & Zhu, 1994). That is, a classification
image tells us everything there is to know about a LAM

observer, apart from the power of the internal noise.

In a bubbles experiment, signals are multiplied

pointwise by a windowing noise that consists of a

number of randomly placed Gaussian blobs (bubbles),

so the stimuli are IX � W and IY � W , where W is the

windowing noise and � is pointwise multiplication (i.e.,

ðF � GÞij ¼ FijGij). The bubbles image is defined as the
sum of the windowing noise W over all trials where the

observer gives the correct response (i.e., trial types XX
and YY ), divided by the sum of W over all trials:

B ¼
P

XX ;YY WP
XX ;XY ;YX ;YY W

ð4Þ

Here the division is pointwise (i.e., ðF =GÞij ¼ Fij=Gij). In

Appendix A we show that for an unbiased LAM ob-

server, the expected value of a bubbles image recovers

the observer’s template T , multiplied pointwise by the

difference image of the two signals, IX � IY , blurred twice

by the bubble b that is used to create the windowing
noise:

E½B� ¼ uþ v � b � b � ðT � ðIX � IY ÞÞ ð5Þ

Here u and v are constants that are determined by such

factors as the observer’s proportion correct and internal

noise power, * is two-dimensional convolution, and � is

pointwise multiplication. The constants u and v are of

secondary interest, and the key result is that the bubbles

image essentially recovers b � b � ðT � ðIX � IY ÞÞ.
Eq. (5) confirms a number of properties that we

would intuitively expect of a bubbles image. First, the

equation shows that a bubbles image has larger values at

locations where the pointwise product of the observer’s

template and the difference image IX � IY are positive

than at locations where the pointwise product is nega-

tive. This is sensible, because the difference image IX � IY
is the ideal template for the task of discriminating be-

tween IX and IY in Gaussian white noise (Green & Swets,
1974). A bubbles image is greater at stimulus locations

that help the observer to give the correct response, and

for a LAM observer these are the locations where the
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observer’s template is similar to the ideal template, e.g.,

has a pointwise product that is positive, not negative.

Second, Eq. (5) shows that the expected value of the

bubbles image involves a double-convolution with the

bubble b used to generate the windowing noise, from

which it follows that the size of the bubble determines

the level of detail that can be resolved in the bubbles

image. This also makes sense intuitively, although
without a careful analysis one might not realize that the

level of detail is determined by a double-convolution

with the bubble. 2

Most importantly, Eq. (5) shows that a bubbles im-

age does not completely recover an observer’s template,

but only the parts that correspond to nonzero locations

in the ideal template. On the other hand, a classification

image does completely recover the template, and fur-
thermore the windowing bubble and the ideal template

are known exactly, so from a classification image we

can calculate the bubbles image corresponding to any

given bubble, using Eq. (5). That is, a reverse correla-

tion experiment recovers all the information about a

LAM observer that a bubbles experiment does, and

more.

Gosselin and Schyns (2002) discuss the fact that re-
verse correlation and bubbles methods recover different

information about an observer, and argue that the two

methods are complementary. They give the name rep-

resented information (R) to template features recovered

by a classification image, potent information (P ) to fea-

tures recovered by a bubbles image, and available

information (A) to stimulus features that objectively

contain information as to the correct response (i.e.,
features that are used by the ideal observer). They sug-

gest that potent information is the intersection of rep-

resented information and available information,

R� A � P . (Here the symbol � does not mean cross-

correlation, but some type of intersection operation that

is not clearly defined.) This conceptual relationship is

made precise by our finding that, apart from double-

blurring by the bubble, the bubbles image recovers the
pointwise product of the observer’s template and the

ideal template, B � T � ðIX � IY Þ.
At this point, the advantages of understanding these

methods in terms of a rigorous signal processing

framework become clear. On the one hand, if the LAM

is a valid model of the system under study, then it is

always preferable to carry out a reverse correlation

experiment rather than a bubbles experiment, because
Eq. (5) shows that from a classification image we can

easily determine the result of any bubbles experiment.
2 It has been noted that the bubbles method seems to require fewer

trials than reverse correlation, but this may simply be due to the very

low spatial resolution of bubbles images that results from this double-

blurring effect. With lowpass-filtered noise, reverse correlation may

require just as few trials.
On the other hand, if the LAM is not a valid model, then

there is no reason to expect the simple relationship

R� A � P (or more formally, B � T � ðIX � IY Þ) to hold

between a bubbles image, the observer’s template, and

the ideal template. For instance, in a two-alternative

discrimination task where landmarks that appear in the

same location in both signals actually help the observer

to perform the task, the landmarks will function as
�potent’ information, and hence appear in the bubbles

image, even though there is no �available’ information at

the landmarks, because they do not appear in the ideal

template. This might happen, say, in a vernier alignment

task where one of the vernier lines appears at the same

location in all stimuli, and so by itself provides no

information as to the correct response, but helps the

observer to judge the location of the other line, whose
location varies from trial to trial (Beard & Ahumada,

1998). Thus in cases where the LAM is correct, the

bubbles method is superfluous, and in cases where the

LAM is incorrect, intuition is a poor guide as to what

the bubbles method actually measures, as demonstrated

by the probable failure of Gosselin and Schyns’

R� A � P law in a vernier alignment task.

Our derivation showing what information a bubbles
image recovers about a LAM observer is just a first step

in understanding what the bubbles method reveals

about human observers. Human observers do not al-

ways fit the LAM model, although this model does give

a good first-order description of many aspects of per-

formance. However, understanding what information a

method recovers about a simple and well-defined class of

observers is not only useful for understanding the
method in relation to observers that fit the model, but

also for interpreting departures from the model (e.g.,

Ahumada & Beard, 1999). Furthermore, the question of

how to use reverse correlation to investigate nonlinear

systems has been studied extensively (Nabet & Pinter,

1992; Wiener, 1958), and it should also be possible

to determine what information the bubbles method

recovers about more complex classes of observers. In
any case, it is certainly better to investigate how a

novel method is related even to simple and tractable

models, rather than to forego rigorous analysis alto-

gether, and to rely on intuition alone to guide our use of

the method.
3. Troubles in practice

A second and more serious problem with the bubbles

method is that showing only small fragments of a

stimulus will often change an observer’s behaviour

compared to when the stimulus is shown intact. Previous
studies have documented such effects, e.g., Schwartz,

Bayer, and Pelli (1998) found that observers used dif-

ferent stimulus regions to identify faces, depending on
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which regions were covered by Gaussian white noise. 3

Thus a bubbles image, which is calculated from re-

sponses to small fragments of a stimulus, may not only

provide an incomplete characterization of a system’s

behaviour, but a misleading one.

Gosselin and Schyns (2001) acknowledged this pos-

sibility, and addressed it in a control experiment. In their

main experiment, they used the bubbles method to
determine what stimulus regions helped observers to

correctly identify faces. In their control experiment, they

compared face identification performance in three con-

ditions: the ORIGINAL condition, where the stimuli

were whole faces; the DIAGNOSTIC condition, where

the stimuli were faces windowed to show only the parts

that the main experiment had found to be helpful to

observers; and the NONDIAGNOSTIC condition,
where the stimuli were faces windowed to show only the

parts that the main experiment had found to be

unhelpful. The results were that over a range of stimulus

durations, proportion correct was approximately the

same in the DIAGNOSTIC and ORIGINAL condi-

tions, and much lower in the NONDIAGNOSTIC

condition. Gosselin and Schyns concluded that observ-

ers that the DIAGNOSTIC stimulus showed precisely
the stimulus regions that observers used to identify the

intact faces in the ORIGINAL condition.

Unfortunately, the results of this experiment are

inconclusive. One technical problem is that the stimuli in

the three conditions were normalized to have the same

total contrast energy. As a result, in the DIAGNOSTIC

condition all contrast energy was concentrated in helpful

image regions, whereas in the ORIGINAL condition it
was distributed over both helpful and unhelpful regions.

Gosselin and Schyns pointed out that this was probably

why performance was actually slightly but consistently

better in the DIAGNOSTIC condition than in the

ORIGINAL condition. This suggests that if the stimuli

had been designed so that the helpful image regions had

the same local contrast in the DIAGNOSTIC and

ORIGINAL conditions, then performance would have
been worse in the DIAGNOSTIC condition, and per-

haps much worse. This would certainly undermine the

claim that only the image regions shown in the DIAG-

NOSTIC condition helped observers to identify intact

faces.
3 Gosselin and Schyns (2001) have also suggested a variant of the

bubbles method in which only narrow spatial frequency bands of a

stimulus are presented on any given trial, rather than small spatial

regions. Thus it is worth noting observers’ strategies can also be

changed by presenting only small ranges of spatial frequencies. In

letter identification experiments, Gold, Bennett, and Sekuler (1999)

found that when only a narrow band of spatial frequencies were

presented on any given trial, observers could use whichever frequency

range was presented to identify the letter, whereas Solomon and Pelli

(1994) found that when intact letters were presented, observers used

only a narrow band of the broad range of available frequencies.
A second, more crucial problem is that even if per-

formance was similar in the DIAGNOSTIC and ORI-

GINAL conditions with appropriately matched

contrasts, this would still be weak evidence that the

DIAGNOSTIC stimulus showed precisely the stimulus

regions that observers normally use to identify intact

faces. One can imagine several plausible alternative

explanations. For example, in a stimulus with several
redundant, informative features, it may be that observ-

ers normally use only one or two of these features,

whereas the bubbles method forces observers to use

different features on different trials, because only small

fragments of the stimulus are shown on any given trial.

If so, the DIAGNOSTIC stimulus would show many

such features, and give a misleading impression of the

observer’s strategy, but proportion correct would quite
plausibly be the same in the DIAGNOSTIC and ORI-

GINAL conditions, because both would show several of

the redundant image features that observers could use.

Another alternative explanation is that observers might

use broader image regions in the ORIGINAL condition,

but integrate across space less efficiently. Or, observers

might benefit in some ways from the additional infor-

mation available in the ORIGINAL stimuli, but suffer
in other ways from masking and lateral interactions

between neighbouring image regions in the ORIGINAL

stimuli. These scenarios are all consistent with similar

performance in the DIAGNOSTIC and ORIGINAL

conditions, and in fact, this is the very reason why re-

verse correlation and related methods are so appealing:

it is often difficult to make very general conclusions

about how observers perform a task, from just a few
measurements of proportion correct.

To demonstrate that the bubbles method can drasti-

cally change observers’ strategies in some tasks, we

measured bubbles images in a task that has recently

been studied with reverse correlation (Gold, Murray,

Bennett, & Sekuler, 2000). The stimuli were Kanizsa-

square like patterns (Fig. 1, first two rows). Two con-

ditions, the illusory condition and the fragmented

condition, were run in separate blocks. In the illusory

condition, the Kanizsa inducers (i.e., the clipped circles)

faced inwards so as to produce illusory contours, and in

the fragmented condition, they all faced downwards and

to the right. In both conditions, the inducers were ro-

tated slightly from horizontal–vertical, to produce �fat’
and �thin’ patterns, and on each trial the observer judged

whether the pattern was fat or thin. The ideal templates
for these fat–thin discrimination tasks (Fig. 1, row 3) are

the difference images between the fat and thin stimuli

(Green & Swets, 1974), and they show that the infor-

mative stimulus regions lie along the straight edges of

the Kanizsa inducers. Gold et al.’s classification images

(Fig. 1, row 4) showed that to discriminate between fat

and thin illusory Kanizsa squares, observers used one or

two whole vertical sides of the square, including the



Fig. 1. Rows 1 and 2: stimuli from the fat–thin Kanizsa square dis-

crimination task. Row 3: ideal templates for discriminating between fat

and thin stimuli. Row 4: average classification images for the fat–thin

task, from Gold et al. (2000).
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straight edges of the Kanizsa inducers and the illusory

contours connecting them. To discriminate between fat
and thin fragmented Kanizsa squares, observers used

the edges of only a single inducer. We suspected that

using the bubbles method to study observers’ strategies

in this task would lead to very different results. If only

small pieces of the stimulus are shown at a time,

observers will not perceive strong illusory contours, and

this may weaken their tendency to use whole sides of the

square in the illusory condition. Furthermore, when
only small pieces of the stimulus are shown, observers

may use whichever piece appears on a given trial, and in

the fragmented condition several inducers may appear in

the bubbles image, rather than just one.

3.1. Method

3.1.1. Participants

Three undergraduate students at the University of

Texas at Austin participated for payment. All had nor-

mal or corrected-to-normal Snellen acuity, and none

were aware of the purpose of the experiment.

3.1.2. Stimuli

The stimuli were fat and thin, illusory and fragmented

Kanizsa squares (Fig. 1). The Kanizsa inducer radius
was 0.50� of visual angle (deg), and the inducers were

spaced 2.0� apart, vertex-to-vertex. The inducers were

rotated ±10� from horizontal–vertical. Peak Weber
contrast, before windowing through the bubbles, was

30%. The stimuli were windowed through a number of

randomly placed Gaussian blobs with a peak value of 1.0

and a standard deviation of 0.1�. (That is, the contrast at
each location was multiplied pointwise by a field of unit-

amplitude Gaussian blobs.) Stimuli were shown on a

grey background of luminance 40 cd/m2, on a Trinitron

Multiscan E540 monitor (pixel size 0.478 mm, resolution
800 · 600 pixels, refresh rate 120 Hz). Observers viewed

the stimuli binocularly from a distance of 1 m.

3.1.3. Procedure

Observers participated in two or three one-hour ses-

sions. Each session had 1200–1500 trials, divided into

300-trial blocks that showed either illusory or frag-
mented stimuli. Each trial began with a 400 ms fixation

interval, followed by the 200 ms stimulus, followed by a

response interval in which the observer pressed one of

two keys to indicate whether the stimulus was fat or

thin. Auditory feedback indicated whether the response

was correct. The number of bubbles varied across trials

according to a one-up, two-down staircase in order to

maintain approximately 71% correct performance, and
the mean± standard deviation was 30± 12 bubbles.

For the sake of completeness, we will point out some

differences between the stimuli in this experiment and in

Gold et al.’s experiment. In this experiment the inducers

were white, had a radius of 0.50�, and had an inducer

angle of ±10� from horizontal–vertical, whereas in Gold

et al.’s experiment the inducers were black, had a radius

of 0.35�, and had an inducer angle of ±1.75�. We have
replicated Gold et al.’s results with stimuli in which the

inducers were white, had a radius of 0.50�, and had in-

ducer angles of up to ±8�, so we do not believe that these

are crucial differences between the two experiments

(Murray, 2002). In this experiment we maintained

threshold performance by varying the number of bub-

bles from trial to trial according to a staircase, so task

difficulty varied slightly from trial to trial. In Gold
et al.’s experiment, threshold performance was main-

tained by varying the signal contrast from trial to

trial, and the QUEST procedure that was used to set

the contrast quickly converged to the observer’s 75%

threshold, so task difficulty typically did not vary much

from trial to trial (Watson & Pelli, 1983). Again, we do

not believe that this is a crucial difference between the

two experiments.

3.2. Results and discussion

The first three rows of Fig. 2 show individual

observers’ bubbles images. Note that in the fragmented

condition, all the bubbles images peaked at the locations
of two or three Kanizsa inducers, indicating that all

observers used two or three inducers to perform the

task. In contrast, Gold et al. (2000) found that all three



Fig. 2. Rows 1, 2, and 3: bubbles images for individual observers. Row

4: Hypothetical bubbles images obtained by applying Eq. (5) to the

Gold et al.’s classification images (Fig. 1, row 4).
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of their observers used only a single inducer in the

fragmented condition, and Murray (2002) confirmed

this result with five more observers. Thus the bubbles

method seems to have led observers to use a very dif-

ferent strategy than they would use with the intact

stimulus: when the inducers were shown in small pieces,

observers used whichever piece happened to appear on
any given trial. The resulting bubbles images give the

misleading impression that observers normally use sev-

eral inducers to perform the fat–thin task in the frag-

mented condition.

The bubbles images from the illusory condition give

further evidence that the bubbles method can change

observers’ strategies: observer IAS used only a single

inducer in the illusory condition, whereas all observers in
the reverse correlation experiments used one or two

whole sides of the illusory square, i.e., one or two pairs of

aligned inducer edges. When only a few small pieces of

the stimulus are presented at a time, observers do not

perceive strong illusory contours or a coherent percep-

tual organization, so it is understandable that their

strategies might differ from when the whole stimulus is

shown.
The bubbles images from the illusory condition also

illustrate the fact that the bubbles method does not

completely recover observers’ templates. The most

interesting aspect of Gold et al.’s classification images in
the illusory condition was that they showed that

observers actually used the empty regions between the

inducers, along the illusory contours, to perform the

fat–thin task. Bubbles images from the illusory condi-

tion are necessarily empty between the inducers, because

zero-contrast stimulus locations windowed through

bubbles can obviously neither help nor hinder observers

in giving a correct response. From the bubbles images,
we would never guess that observers used illusory con-

tours to judge the shapes of Kanizsa squares.

As another way of comparing our bubbles images to

Gold et al.’s classification images, we took the classifi-

cation images in Fig. 1 as estimates of Gold et al.’s

observers’ templates, and we used Eq. (5) to calculate

the corresponding bubbles images. Specifically, we cal-

culated b � b � ðT � ðIX � IY ÞÞ, where b was the Gaussian
bubble we used in our experiments, T was a classifica-

tion image from the fourth row of Fig. 1, and IX � IY
was the corresponding ideal template from the third row

of Fig. 1. The results (Fig. 2, bottom row) are the

bubbles images that one would expect from Gold et al.’s

observers in a bubbles experiment, assuming that the

bubbles method would not disrupt their strategies, and

assuming the LAM as a framework for translating
classification images into bubbles images. These hypo-

thetical bubbles images show that the informative parts

of the stimulus that observers used were the vertical

edges in the illusory condition, and both edges of the top

left inducer in the fragmented condition. Again, this

strategy is very different from the strategies revealed by

the bubbles images that we measured in the present

experiments, indicating that the practice of showing
small pieces of stimuli in the bubbles experiment dis-

rupted observers’ usual strategies.

Could it be that the Gaussian noise in reverse corre-

lation experiments disrupts observers’ strategies, rather

than the windowing noise in bubbles experiments, so

that bubbles images actually reflect observers’ normal

strategies more accurately? We think this unlikely, for

three reasons. First, it is intuitively clear why windowing
stimuli through bubbles might change observers’ strat-

egies: when only small parts of a stimulus are shown on

any given trial, observers may be forced to use stimulus

features that they would not use if the whole stimulus

was presented. Second, a great deal of psychophysical

and physiological evidence shows that even under

noiseless viewing conditions, observers’ performance in

threshold tasks is limited by internal noise, so by adding
external noise we are probably not presenting observers

with a task that is qualitatively different from a noiseless

threshold task (Green & Swets, 1974). Third, and most

convincingly, observers’ contrast energy thresholds have

been found to be an approximately linear function of

external noise power in practically every task in which

this relationship has been tested, including discrimina-

tion of fat vs. thin Kanizsa squares, and this is strong
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evidence that observers use the same strategy at all levels

of external noise, from negligible levels to high levels of

noise (Murray, 2002; Pelli, 1990).

The result of this experiment should not be a surprise.

In tasks where observers are unable to use several

redundant features simultaneously, we should expect

that they will be able to use the features one at time

when they are shown in isolation, and this simple fact
implies that the bubbles method will often give a mis-

leading impression of observers’ strategies. In fact, it is

easy to contrive tasks where the bubbles method would

change observers’ strategies even more drastically, e.g.,

an identification task in which the stimuli consist of

several redundant letters scattered at locations where

they are difficult to identify simultaneously. We chose

the fat–thin task for this experiment in order to show
how the bubbles method would affect strategies in a task

that had actually been discussed in the literature, rather

than a task that was designed to maximize the disruptive

effect of showing only small fragments of a signal.

There may be a simple remedy for this problem. As it

has been used up to now, the bubbles method windows

signals through a small number of Gaussian blobs.

Another way of saying this is that signals are shown in
multiplicative, Gaussian-blurred, sparse binary noise.

The derivation in Appendix A makes it clear that the

essential feature of the bubbles method that distin-

guishes it from reverse correlation is not this unusual

type of noise, but the fact that the noise is multiplicative

rather than additive. In fact, Eq. (5) is valid for many

types of windowing noise. Blurred sparse binary noise

obliterates all but a few small regions of the stimulus on
any given trial, and this can easily change observers’

strategies. If instead we showed signals windowed

through multiplicative Gaussian noise with a mean of

1.0 and a small standard deviation (e.g., 0.1), then the

entire stimulus would be visible on any given trial, and

the contrast of individual pixels would be slightly in-

creased or decreased by the multiplicative noise. The

effect on the stimulus would be similar to windowing
through Gaussian bubbles, but more subtle. We suspect

that this type of noise is much less likely to change

observers’ strategies. Furthermore, as we discuss in

Appendix A, a bubbles image measured with multipli-

cative Gaussian white noise would recover exactly the

same information about a LAM observer as the usual

bubbles method. We are currently testing this variant of

the bubbles method, to see whether these theoretical
predictions are borne out in practice.
4. Conclusions

The two shortcomings of the bubbles method that we

have discussed can probably be fixed. The first problem

is that until now, almost nothing was known about ex-
actly what information a bubbles image actually recov-

ers about any well-defined class of observers. Obviously,

the solution to this problem is simply to study the

bubbles method more rigorously, to determine what

information it recovers about various types of observers.

Our results in this direction show that in tasks where the

LAM is an adequate model, the bubbles method is en-

tirely superfluous, so if the method is to be at all useful,
it will be in studying tasks where observers’ responses

are based on nonlinear functions of the stimulus. At

present, nothing is known about what information the

bubbles method recovers about such observers.

The second problem is that the windowing noise used

in the bubbles method seems certain to change observ-

ers’ strategies in many tasks, as we demonstrated in the

fat–thin Kanizsa square discrimination experiment.
Fortunately, it may not be necessary to use this unusual

type of noise. By using a less disruptive type of noise,

such as multiplicative unit-mean Gaussian white noise,

we may be able to make the bubbles method less likely

to drastically change observers’ strategies, while recov-

ering exactly the same information about the observer.

If these developments are successful, the bubbles

method may become a useful addition to reverse cor-
relation methods. In principle, the two methods should

be complementary, as reverse correlation shows how

different stimulus locations contribute to an observer’s

responses, and the bubbles method shows which loca-

tions help the observer to give a correct response.

However, in the case of LAM observers, the results of a

reverse correlation experiment allow one to fully predict

the results of a bubbles experiment, but not vice versa,
which suggests that reverse correlation experiments may

generally be more informative. Of course, if one is

interested only in what stimulus locations help an ob-

server give a correct response, then the bubbles method

is perfectly adequate (with the caveat that in its current

form, it may drastically change observers’ strategies).

Normally, though, in psychophysical and physiological

experiments we wish to characterize the system under
study as completely as possible, and for this purpose,

reverse correlation is more appropriate. We conclude

that, until further developments resolve these problems,

reverse correlation is generally preferable to the bubbles

method, as it is better understood theoretically, it

recovers much more information about observers than

the bubbles method does, and it is less likely to disrupt

observers’ strategies.
Appendix A. What does a bubbles image measure?

A.1. White binary noise

A white binary noise field is a stochastic image in

which each pixel is an independent Bernoulli random
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variable that takes value 1 with probability pN and value

0 with probability 1� pN . Consider a LAM observer

who classifies white binary noise fields N by cross-cor-

relating with a template T , adding an internal noise Z,
and responding �X ’ or �Y ’ depending on whether the

resulting decision variable s exceeds a criterion a. If we
represent the observer’s responses with a random vari-

able R that takes values ±1, we can describe the observer
with the following equations:

s ¼ N � T þ Z ðA:1Þ
R ¼ sgnðs� aÞ ¼ þ1 if sP a
�1 if s < a

�
ðA:2Þ

(Here � is cross-correlation.) On trials where the ob-
server responds �X ’, the expected value of a single noise

pixel Ni is

E½NijR ¼ þ1� ¼ E½NijsP a� ðA:3Þ
¼ 1 � P ðNi ¼ 1jsP aÞ

þ 0 � PðNi ¼ 0jsP aÞ ðA:4Þ

¼ P ðsP ajNi ¼ 1Þ pN
pþ1

ðA:5Þ

¼ P
�
Ti þ

X
j 6¼i

TjNj þ ZP a
�

pN
pþ1

ðA:6Þ

Here pþ1 ¼ P ðR ¼ þ1Þ is the probability that the ob-

server responds �X ’. If we use a normal approximation

to the sum over j in Eq. (A.6), then the first factor in

that equation is the probability of a normal random

variable exceeding a criterion. Introducing the symbol
Gðx; l; rÞ for the normal cumulative distribution func-

tion, we can rewrite (A.6) as:

¼ 1

2
4 �G a;Ti

0
@ þpN

X
j 6¼i

Tj;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pNð1�pN Þ

X
j 6¼i

T 2
j þr2

Z

s 1
A
3
5 pN
pþ1

ðA:7Þ
¼G ð1

0
@ �pN ÞTi;a�pN

X
j

Tj;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pN ð1�pN Þ

X
j6¼i

T 2
j þr2

Z

s 1
A pN
pþ1

ðA:8Þ

If Ti makes only a small contribution to the template,

then
P

j 6¼i T
2
j �

P
j T

2
j , and (A.8) becomes

¼G ð1

0
@ �pN ÞTi;a�pN

X
j

Tj;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pN ð1�pN Þ

X
j

T 2
j þr2

Z

s 1
A pN
pþ1

ðA:9Þ

We will define l ¼ pN
P

j Tj, which is the mean of the

decision variable s over all trials, and r2 ¼
pNð1� pN Þ

P
j T

2
j , which is the contribution of the
external noise to the variance of the decision variable.

Then (A.9) can be simplified to

¼ G ð1
�

� pN ÞTi; a� l;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2

Z

q �
pN
pþ1

ðA:10Þ

When ð1� pN ÞTi is small compared to the square root

term in Eq. (A.10), which will be true when the effect of
the single pixel Ti on the decision variable is small

compared to the standard deviation of the decision

variable, the right-hand side of (A.10) grows approxi-

mately linearly with Ti: E½NijR ¼ þ1� � k0 þ k1Ti. (This
approximation is valid when the template is sufficiently

large that each pixel of the template has only a small

influence on the observer’s responses, which is certainly

true in our experiments and in Gosselin and Schyns’
experiments. In tasks where observers’ responses are

determined by a few very small stimulus elements, a

different formulation will be necessary.) The constants k0
and k1 are the same for all noise pixels Ni, so the ex-

pected value of the entire noise field N over all trials

where the observer responds +1 recovers the template:

E½N jR ¼ þ1� � k0 þ k1T . For later use, we will note that
the Taylor expansion shows that the constant k1 is given
by

k1 ¼ g 0; a
�

� l;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2

Z

q �
pN ð1� pN Þ

pþ1

ðA:11Þ

Here gðx; l; rÞ is the normal probability density func-

tion. A similar derivation shows that on trials where the

observer responds –1, the expected value of N grows
approximately linearly with �T , i.e., E½N jR ¼ �1� �
l0 � l1T , with the constant l1 given by

l1 ¼ g 0; a
�

� l;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2

Z

q �
pN ð1� pN Þ

p�1

ðA:12Þ

The key result that we will use later on is that the
expected value of the noise field N on trials where the

observer responds ±1 is related linearly to 	T (although

there are also some technicalities relating to the con-

stants k1 and l1). Consequently, any type of noise with

this property can be used in the bubbles method.

Gaussian white noise has this property (Murray et al.,

2002), and as we discussed in Section 3, there may be

advantages to using Gaussian white noise in the bubbles
method, as it seems less likely to disrupt observers’

strategies.
A.2. Signals windowed through blurred binary noise

If an observer uses a template T to classify a signal IX
that is windowed through binary noise blurred by a

bubble b, the observer’s decision variable is
s ¼ ððb � NÞ � IX Þ � T þ Z, which can be rewritten as

s ¼ ðb � NÞ � ðT � IX Þ þ Z. (Here * is two-dimensional

convolution, and � is the pointwise product.) If the
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bubble b is symmetric about the origin, the decision

variable can be further rewritten as s ¼ N � ðb �
ðT � IX ÞÞ þ Z. Thus the observer gives the same re-

sponses as an observer who classifies binary white noise

fields using a template T 0 ¼ b � ðT � IX Þ, and by the re-

sults of the previous section, the expected value of N
over trials where the observer responds +1 is therefore

k0 þ k1 � b � ðT � IX Þ, where

k1 ¼ g 0; a
�

� lX ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
X þ r2

Z

q �
pN ð1� pN Þ

pþ1

ðA:13Þ

Here we have added a subscript X to the variables l and

r in Eq. (A.11), to emphasize that in general these values

depend on the signal IX .
Similarly, the expected value of N over trials where

the observer views a signal IY windowed through bub-

bles and responds )1 is l0 � l1 � b � ðT � IY Þ, where

l1 ¼ g 0; a
�

� lY ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
Y þ r2

Z

q �
pN ð1� pNÞ

p�1

ðA:14Þ

We have assumed that the probability of a bubble
occurring at any given location is independent of

whether a bubble appears at any other location, and

consequently the number of bubbles that appear on any

given trial follows a binomial distribution. This differs

from Gosselin and Schyns’ (2001) formulation, in

which one specifies the exact number of bubbles that

appear on any given trial. The independence assump-

tion in our formulation greatly simplifies the analysis,
and because the number of bubbles normally varies

from trial to trial in a staircase anyway, this minor

change should not materially affect the results of a

bubbles experiment.
A.3. The bubbles image

A bubbles image is defined as the sum of blurred

binary noise fields over all trials where the observer gives

the correct response, which we will call WC, divided

pointwise by the sum of blurred binary noise fields over

all trials, which we will call WALL.

Consider the sum over correct trials, WC. By the re-

sults of the previous section, the expected value of b � N
on trials where the observer correctly responds �X ’ or �Y ’
is b � ðk0 þ k1 � b � ðT � IX ÞÞ or b � ðl0 � l1 � b � ðT � IY ÞÞ,
respectively. If the constants k1 and l1 are equal, and if

the observer gives an equal number of �X ’ and �Y ’ re-
sponses, then the expected value of WC is therefore

w1 þ w2 � b � b � ðT � ðIX � IY ÞÞ for some w1 and w2.

Inspection of (A.13) and (A.14) shows that a sufficient

condition for k1 ¼ l1 is that (a) Pþ1 ¼ P�1, (b) r2
X ¼ r2

Y ,

and (c) a� lX ¼ �ða� lY Þ, which can be rewritten as
a ¼ ðlX þ lY Þ=2. Condition (a) requires that the ob-

server gives unbiased responses. Condition (b) requires

that the variance of the decision variable is the same on
signal-X and signal-Y trials, which is often approxi-

mately true, although exceptions have been reported

(Green & Swets, 1974). Condition (c) requires that the

observer’s criterion lies midway between the mean of the

decision variable on signal-X and signal-Y trials, and

whenever an observer gives unbiased responses using a

decision variable that has the same variance on signal-X
and signal-Y trials, this condition will be met. That is,
(a) and (b) imply (c).

Second, note that the expected value of the sum of the

windowing noise over all trials, WALL, is the same at all

spatial locations, because the bubble locations are uni-

formly distributed.

Finally, the bubbles image is WC=WALL, where WC has

an expected value of w1 þ w2 � b � b � ðT � ðIX � IY ÞÞ, and
WALL has an expected value that is constant over all
locations. The central limit theorem ensures that each

pixel of both WC and WALL are approximately normal.

When the means of two normal random variables are

not zero, and when the standard deviations are small

compared to the means, then the expected value of the

ratio of the two random variables is approximately the

ratio of their means. In a bubbles experiment, WC and

WALL meet both these conditions after a reasonably large
number of trials. Thus the expected value of the ratio

WC=WALL is approximately proportional to the expected

value of WC, which is to say that the expected value of

the bubbles image is uþ v � b � b � ðT � ðIX � IY ÞÞ, for

some u and v, as in Eq. (5).

We should note that treating WALL as a constant ne-

glects the fact that dividing by WALL actually helps to

correct for small variations in how many bubbles appear
at different locations over the course of an experiment,

due to random sampling fluctuations. However, the

mathematics is much simpler if we treat WALL as a

constant, and after just a few hundred trials the varia-

tion in WALL from place to place is small, so the cor-

rection of dividing by WALL is also small.
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