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Abstract—Neuronal activity associated with visual process-

ing of an unfamiliar face gradually diminishes when it is

viewed repeatedly. This process, known as repetition sup-

pression (RS), is involved in the acquisition of familiarity.

Current models suggest that RS results from interactions

between visual information processing areas located in the

occipito-temporal cortex and higher order areas, such as

the dorsolateral prefrontal cortex (DLPFC). Brain signal

complexity, which reflects information dynamics of cortical

networks, has been shown to increase as unfamiliar faces

become familiar. However, the complementarity of RS and

increases in brain signal complexity have yet to be demon-

strated within the same measurements. We hypothesized

that RS and brain signal complexity increase occur simulta-

neously during learning of unfamiliar faces. Further, we

expected alteration of DLPFC function by transcranial direct

current stimulation (tDCS) to modulate RS and brain signal

complexity over the occipito-temporal cortex. Participants

underwent three tDCS conditions in random order: right

anodal/left cathodal, right cathodal/left anodal and sham.

Following tDCS, participants learned unfamiliar faces, while

an electroencephalogram (EEG) was recorded. Results

revealed RS over occipito-temporal electrode sites during

learning, reflected by a decrease in signal energy, a measure

of amplitude. Simultaneously, as signal energy decreased,

brain signal complexity, as estimated with multiscale

entropy (MSE), increased. In addition, prefrontal tDCS mod-

ulated brain signal complexity over the right occipito-
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temporal cortex during the first presentation of faces. These

results suggest that although RS may reflect a brain mecha-

nism essential to learning, complementary processes

reflected by increases in brain signal complexity, may be

instrumental in the acquisition of novel visual information.

Such processes likely involve long-range coordinated

activity between prefrontal and lower order visual areas.

� 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
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INTRODUCTION

The surrounding environment provides a continuous

wealth of visual information, which we must learn to use

efficiently. Foremost, this requires neurophysiological

mechanisms that allow the discrimination of novel and

noteworthy items from familiar ones. Inherent to this

ability is the need to become familiar with previously

encountered stimuli (i.e.: encode visual information). A

brain response strongly associated with the process of

familiarization, known as repetition suppression (RS),

entails a diminished neuronal response for previously

presented stimuli relative to novel ones (Desimone,

1996; Grill-Spector et al., 2006; Sayres and

Grill-Spector, 2006). RS has been associated with basic

learning behaviors, notably, perceptual priming (Dobbins

et al., 2004; Schacter et al., 2004) and visual habituation

(Snyder and Keil, 2008; Turk-Browne et al., 2008; Rankin

et al., 2009). RS has also been observed in more complex

learning paradigms and declarative memory formation

(Heisz et al., 2006; Schiltz et al., 2006; Williams et al.,

2007; Vizioli et al., 2010; Caharel et al., 2011;

Pihlajamaki et al., 2011). This suggests that RS is a

mechanism embedded in the encoding process of visual

information.

Many theoretical models have been proposed to

account for the suppression of neuronal activity

associated with visual encoding (e.g.: Grill-Spector

et al., 2006). In particular, a mounting body of evidence

supports a dynamic neuronal interaction model which pro-

poses that higher order regions of the cortex modulate the

processing activity of sensory regions (Friston, 2005).

This model suggests that through experience (i.e.: repeti-

tion), higher order areas come to expect the presentation

of certain stimuli. In short, as the difference between what

is expected and what is presented diminishes through

http://dx.doi.org/10.1016/j.neuroscience.2016.03.059
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repetition (i.e.: reduction of prediction error), visual pro-

cessing in sensory cortical areas becomes more efficient,

leading to decreased brain signal amplitude (Summerfield

and Egner, 2009). An interpretation of the expectancy-

driven model of RS called predictive coding conceptual-

izes RS as a mechanism that begins with the presentation

of an unknown or unexpected stimulus. In this framework,

novel or unexpected stimuli require extensive updating,

which causes high initial neuronal activity, manifesting

as high amplitudes in an electroencephalogram (EEG).

This activity diminishes along with the EEG signal’s ampli-

tude, as the stimulus is repeated and becomes familiar.

This acquisition of familiarity allows higher cortical areas

to expect the later reappearance of the stimulus

(Summerfield and Egner, 2009; Apps and Tsakiris,

2013; Clark, 2013). The substantial involvement of the

dorsolateral prefrontal cortex (DLPFC) in modulating

occipito-temporal cortical function during various visual

encoding tasks (e.g.: Barcelò et al., 2000; Ishai, 2008;

Miller et al., 2011; Zanto et al., 2011) makes it a prominent

higher order area that would be involved in a network

model of RS. However, in order to build expectations

about incoming visual information, previous visual infor-

mation must be allowed to build up or accumulate, a point

that has largely been unaddressed in previous accounts

of the predictive coding model. If less updating is required

as a stimulus is presented, as manifested by RS, then

more information must become available in the brain

about the visual features of this stimulus. This available

information or representation then becomes the basis

(i.e.: expectation) against which incoming stimuli are com-

pared. It is unclear whether RS reflects this process of

information acquisition.

In recent years, a measure of EEG signal complexity

known as multiscale entropy (MSE) developed by Costa

(2005), has proved useful in the study of nonlinear

dynamics of neuronal networks. Broadly, MSE estimates

the amount of novel information progressively contained

in an electrical signal generated by an area of the cortex

over multiple timescales. Decreased EEG signal com-

plexity has been repeatedly found to be associated with

loss of brain function (e.g.: psychopathology, traumatic

brain injury) (Protzner et al., 2010; Catarino et al., 2011;

Beharelle et al., 2012), while increased complexity has

been associated with brain development (Lippe et al.,

2009; Vakorin et al., 2011) and learning (Misic et al.,

2010; Deco et al., 2011). It has been proposed that brain

signal complexity increases as more information about a

stimulus (i.e.: learning) becomes available. Thus, a neu-

ronal network containing more information would produce

a signal also containing more information, as measured

by MSE (Misic et al., 2010; Deco et al., 2011). In the con-

text of learning, a functional network would form to

accommodate increasing amounts of visual and semantic

information, which would in turn produce an increasingly

complex signal. Support for this hypothesis was found

by Heisz et al. (2012) who have shown that EEG signal

complexity is higher for familiar faces and increases as

unfamiliar faces become familiar. These results suggest

that MSE may provide valuable insight into the informa-

tion acquisition capabilities of the brain.
Transcranial direct current stimulation (tDCS) is a

non-invasive brain stimulation method that allows

transient modulations of cortical excitability. Such effects

are engendered by inducing a weak electrical current

flowing from a positively charged anode to a negatively

charged cathode placed on the scalp, over cortical

areas of interest. Cortical excitability modulation

depends on the polarity of the electrode: anodal

stimulation increases excitability of the underlying

cortex, whereas cathodal stimulation decreases it

(Nitsche and Paulus, 2000). tDCS modulates excitability

of neuronal populations not by inducing action potentials

but rather by changing the threshold for discharge.

Depending on polarity, this results in either an increase

or a decrease in the probability of discharge of the stimu-

lated cortical area when it is called upon during a specific

task (Fritsch et al., 2010). In recent years, many studies

using tDCS over the DLPFC have reported effects on a

wide range of cognitive functions such as planning

(Dockery et al., 2009) and decision-making (Boggio

et al., 2010). Such studies suggest that tDCS is a safe

and relevant method to investigate the involvement of cor-

tical areas in cognitive functions.

Based on the association between familiarity

acquisition, RS and increasing brain signal complexity,

we hypothesize that EEG signals recorded during

repeated presentations of unfamiliar faces will

simultaneously present RS and complexity increase.

Specifically, signal amplitude over occipito-temporal

areas associated with the second presentation of a face

would be significantly lower than the amplitude

associated with the first presentation (i.e.: RS), while

signal complexity associated with the second

presentation would be significantly higher than

complexity associated with the first presentation.

Moreover, because RS and information acquisition

ostensibly rely on cortical network interactions between

prefrontal and occipito-temporal areas, alteration of

DLPFC function by tDCS should modulate RS and

complexity augmentation effects over face processing

areas.
EXPERIMENTAL PROCEDURES

Procedures were previously reported (see Lafontaine

et al., 2013).
Participants

Fourteen healthy young adults were recruited for this

study (8 males and 6 females, range: 21–31 years;

mean ± standard deviation: 23.5 ± 2.37 years). All

participants were students at Université de Montréal.
EEG data of one participant were excluded from

analyses because of excessive artefacts. Data from two

more participants were rejected from analysis because

of concerns they were not sufficiently attentive during

the encoding task (recognition accuracy 6 50%). Thus,

reported analyses include data from 11 participants. The

study was reviewed and approved by the Comité
d’éthique de la recherche de la Faculté des arts et des
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sciences (CÉRFAS) of the University of Montreal and all

participants gave written informed consent prior to

taking part in the study.
Stimuli and procedure

Grayscale images of 270 different unfamiliar human faces

were used. All faces showed a neutral expression and no

beards, earrings or glasses. As one of our objectives was

to determine the contribution of the DLPFC, or top-down

processes, all stimuli were controlled for low-level image

properties to avoid any confounding bottom-up variability.

Stimuli were first equated for size and spatial location by

aligning the internal attributes of faces (i.e.: eyes and

mouths) using Matlab functions (available at http://www.

mapageweb.umontreal.ca/gosselif/alignTools/) and a

procedure similar to that described by Taschereau-

Dumouchel et al. (2010). An elliptical mask was then

placed around each facial stimulus (252 � 323 pixels)

leaving only the internal attributes of faces visible. Addition-

ally, luminance (13.3 cd/m2), contrast and spatial

frequency of all stimuli were equated using the spectrum,

histogram and intensity normalization and equalization

(SHINE) toolbox for Matlab (available at http://www.

mapageweb.umontreal.ca/gosselif/SHINE/), designed by

Willenbockel et al. (2010).

In a repeated measures experimental design,

participants underwent three separate encoding tasks at

�72-h intervals. During each of these tasks, 45 different

unfamiliar faces (i.e.: 135 faces total across all tasks)

were presented in consecutive sequences of 15 trials

each (675 total trials per task). Encoding tasks lasted

approximately 30 min. Participants were asked to

attentively observe the faces and that they would

subsequently be asked to recognize them. Presentation

of each stimulus lasted 2000 ms with a 600-ms intertrial

interval. The EEG cap was installed upon arrival at the

laboratory and EEG was recorded during all encoding

tasks. Although analyses presented here focus on EEG

data acquired during encoding tasks only, it is relevant

to mention that after a delay of �72 h, a recognition

task was administered where the 45 previously encoded

faces were presented among 45 novel faces. Trial order

was randomized and for each trial, participants were

asked to determine whether the presented face was

known (right mouse button) or novel (left mouse button).

Behavioral measures included accuracy and reaction

times, which were recorded at each trial. During all

testing procedures, participants were comfortably seated

in a sound-attenuated, electrically shielded room, at

70 cm viewing distance from centrally displayed stimuli

subtending 10.3 � 15.7� visual angle, presented using

E-Prime 2.0 software on a 1900, 1280 � 1024-pixel-

resolution monitor.
Transcranial direct current stimulation

Prior to the start of each encoding task, participants

underwent tDCS. The 35-cm2 rubber electrodes (one

anode, one cathode) were coated by sponges soaked in

sodium chloride solution and installed on the scalp in a

bifrontal montage over electrode sites F3 and F4. Using
these sites as references to position the tDCS

electrodes ensured proper and consistent targeting of

the DLPFC over both hemispheres across participants

and conditions. Three conditions were administered to

participants in random order: right (F4) anodal/left (F3)

cathodal, right cathodal/left anodal and sham. During

active tDCS conditions (i.e.: right anodal/left cathodal

and right cathodal/left anodal), current was delivered for

15 min at 1.5 mA using a neuroConn DC-Stimulator

(GmbH). The current intensity and duration parameters

were chosen for their reported ability to limit side-effects

while effectively inducing cortical excitability modulation

(Nitsche and Paulus, 2001; Brunoni et al., 2011). Installa-

tion was identical in the single-blind sham condition, with

the exception that the current was only maintained for the

first 30 s of the 15-min condition, giving the impression of

an active tDCS condition (Gandiga et al., 2006).
Electroencephalography

Shortly after (�5 min) removal of tDCS electrodes, an

EEG was recorded during each encoding task from 32

Ag/AgCl-sintered electrodes (10/20 system) mounted in

a Quik-cap (Compumedics, Abbotsford, Australia). Data

were acquired at 500-Hz sampling rate and high-pass

filtered at 0.1 Hz with NeuroScan 4.5 (Compumedics,

Abbotsford, Australia). Linked mastoids were used as

reference and impedances were kept below 5 kX.
Vertical and horizontal eye movements were monitored

by EOG with four additional bipolar electrodes

positioned on the outer canthus of each eye as well as

above and under the orbit of the left eye.

Offline signal processing was done first using

BrainVision Analyzer 2 software (Brain Vision LLC,

Morrisville, NC, USA). For each condition, participant

and channel, EEG raw data were first segmented based

on the encoding task’s stimulus onset markers, thus

creating 675 trials lasting 2200 ms each (200-ms

baseline). Digital high-pass filtering was applied at

0.5 Hz with additional low-pass filtering set to 50 Hz

(24 dB/octave), and a 60-Hz notch filter. Eye movement

artifacts were corrected by algorithm (Gratton et al.,

1983) and trials containing segments exceeding

±125 lV were discarded. Trials were corrected relative

to the �100-ms pre-stimulus baseline. Data were then

converted for use in Matlab for subsequent signal energy

and MSE analyses.
Signal energy

In this study, signal energy (E) was used as a measure of

signal amplitude to detect RS. Defined as E ¼ P jampj2
where amp is the amplitude value (lV) of the 2000 ms

EEG time series of a trial, energy is a global

measurement of amplitude that is not time-locked.

Additionally, signal energy can be computed for any

frequency band of interest, as well as for every trial,

thus providing a trial-by-trial resolution estimate of

amplitude. This allows for more integrative detection of

RS, which often relies on averaging and comparing the

amplitudes (ERP) associated with the second stimulus

of a pair when the first stimulus is either identical, or of

http://www.mapageweb.umontreal.ca/gosselif/alignTools/
http://www.mapageweb.umontreal.ca/gosselif/alignTools/
http://www.mapageweb.umontreal.ca/gosselif/SHINE/),
http://www.mapageweb.umontreal.ca/gosselif/SHINE/),
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a different category (e.g.: Kovacs et al., 2006; Caharel

et al., 2011).

Because RS is widely defined as the rapid reduction of

signal amplitude from the first to the second presentation

of a stimulus (Vizioli et al., 2010; Mercure et al., 2011),

only data associated with the first two encoding trials of

faces were analyzed. Once exported to Matlab format,

for each tDCS condition, participant and channel, EEG

data of the first and second trials’ amplitudes were first

normalized relative to the standard deviation amplitude

of the 15 trials of the facial stimulus. Subsequently,

grand-averages of every first and second trial were com-

puted across all 45 different faces contained in each

encoding task. This provided normalized ERPs for the

first and second encoding trials for each condition and

channel. Finally, signal energy was calculated for each

grand-averaged trial using this equation:

En ¼
X

t

1

Ns

X

s

YsnðtÞ
�����

�����

2

where n = trial number (i.e.: 1 and 2), t = time index of

the trial, Ns = number of different faces to encode in

each task (45), s = face index (i.e.: 1 to 45), Ysn(t)
= normalized time series of trial n and face s. These

processing steps were applied to broadband data

(0.5–50 Hz) as well as to individual spectral bands delta

(1–4 Hz), theta (4–8 Hz), alpha (8–14 Hz), low beta

(14–22 Hz), high beta (22–30 Hz) and gamma (30–50 Hz).

This yielded normalized, grand-averaged signal energy

values for each tDCS condition, channel and trial for

both broadband and specific frequency bands.
Table 1. Signal energy and MSE values for all tDCS conditions, left and

right occipito-temporal sites and first and second encoding trials. Data

are presented as mean and standard error

Right occipito-

temporal (TP8)

Left occipito-temporal

(TP7)

T1 T2 T1 T2

1.1. Energy

Sham 81.49

(12.61)

34.30

(4.33)

72.53

(14.98)

34.08

(3.71)

R cathodal/L

anodal

81.50

(12.55)

38.23

(3.2)

64.8

(12.8)

34.12

(3.14)

R anodal/L

cathodal

81.06

(12.44)

39.23

(6.4)

73.97

(11.75)

39.35

(4.29)

1.2. MSE

Sham 0.358

(0.003)

0.369

(0.003)

0.354

(0.005)

0.357

(0.005)

R cathodal/L

anodal

0.351

(0.004)

0.371

(0.004)

0.336

(0.006)

0.343

(0.006)

R anodal/L

cathodal

0.368

(0.003)

0.373

(0.003)

0.356

(0.004)

0.359

(0.004)
Multiscale entropy

We used multiscale entropy (MSE) as a measure of EEG

signal variability. For a complete account of MSE

calculation and its theoretical basis, consult Costa et al.,

(2002, 2005). The algorithm, which can be retrieved from

http://www.physionet.org/physiotools/mse/ first generates

time-series at different time-scales derived from the raw

signal. This is done by re-sampling of the original raw sig-

nal: for each time-scale, consecutive data points included

in a non-overlapping (i.e.: non-sliding) window of a length

corresponding to the time-scale are averaged together.

This process progressively down-samples the original sig-

nal as more consecutive data points are averaged. To

counteract this loss of data at large time scales, a boot-

strapping procedure was implemented. For each partici-

pant and tDCS condition, data from the 45 pairs of first

and second encoding trials were re-sampled 10 times

using bootstrapping with replacement. This yielded, for

each participant, tDCS condition, channel and trial n, 10

re-sampled concatenated time series of 45 trials, on

which MSE was calculated. For every time-scale derived

from the re-sampled time series, the MSE algorithm cal-

culates sample entropy at each scale, which estimates

signal complexity through predictability of spatio-

temporal patterns. For this, the algorithm uses pattern

length (m) and tolerability (r) parameters. In this study,

MSE was calculated using patterns of two consecutive

data points (m= 2) within amplitude ranges of the stan-
dard deviation of the time series (r= 1). Finally, sample

entropy measures of scales 5 through 20 were averaged,

which gave a single MSE estimate for each participant,

tDCS condition, channel and trial n. These scales were

chosen for showing the widest differences in sample

entropy between conditions. Moreover, scales below 5

were highly attenuated by the low-pass filter and scales

above 20 were overly down-sampled to provide reliable

sample entropy measurements.
Statistical analyses

Because visual processing of faces solicits mainly

occipito-temporal areas (Kanwisher and Yovel, 2006),

responses from bilateral occipito-temporal sites TP7 and

TP8 were analyzed. As in Lafontaine et al. (2013), activity

associated with processing of facial stimuli showed max-

imal amplitude over these sites.

For signal energy, broadband data (0.5–50 Hz) were

entered in a three-way repeated measures ANOVA with

hemisphere (right TP8 vs. left TP7), tDCS condition

(right anodal/left cathodal vs. right cathodal/left anodal

vs. sham) and trial (1 vs. 2) as within-subject factors

(i.e.: total of seven tests). Subsequently, to explore

effects found in the broadband energy analysis, the

same analysis was separately carried out on data from

each filtered frequency band. The same analysis was

carried out on MSE data, in order to maximize

comparability between the two measures. Bonferroni

corrections for multiple comparisons were used and

uncorrected degrees of freedom are reported

throughout, along with Greenhouse-Geisser’s epsilon (e)
when the assumption of sphericity was violated.
RESULTS

Signal energy

Energy values associated with the second encoding trial

(i.e.: T2) appear decreased relative to the first (i.e. T1)

http://www.physionet.org/physiotools/mse/
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(Table 1.1). Energy over left occipito-temporal site TP7

appears reduced relative to right TP8 during the first

encoding trial. tDCS appears not to affect signal energy,

as there is very little variation across conditions.

Inferential analysis reveals a significant main effect of

encoding trial on broadband signal energy (F(1,10)
= 23.64, P= 0.001, gp

2 = 0.7). This effect was

expected, as it is consistent with a RS response

(Fig. 1). No main effects of hemisphere (F(1,10) = 1.86,

P= 0.2, gp
2 = 0.16) or tDCS condition (F(2,20) = 0.13,

P= 0.8, gp
2 = 0.01) were found, and all interactions

were non-significant (hemisphere � tDCS F(2,20)
= 1.52, P= 0.2, gp

2 = 0.13; hemisphere � trial F(1,10)
= 1.59, P= 0.2, gp

2 = 0.14; tDCS condition � trial

F(2,20) = 0.2, P= 0.8, gp
2 = 0.02; hemisphere � tDCS

� trial F(2,20) = 0.12, P= 0.9, gp
2 = 0.01). Thus,

regardless of DLPFC activity modulation and

hemisphere, repetition of individual unfamiliar faces

induced RS over the occipito-temporal cortex. When the

broadband EEG was filtered into individual frequency

bands, main effects of encoding trial were found to be

circumscribed to delta (F(1,10) = 59.73, P< 0.001,

gp
2 = 0.86) and theta bands (F(1,10) = 32.46,

P< 0.001, gp
2 = 0.76).
Multiscale entropy

Table 1.2 shows MSE values associated with the second

encoding trial are consistently increased relative to the

first. MSE values are also higher over right occipito-

temporal site TP8 than over left TP7 in all tDCS

conditions and encoding trials. Values associated with

right anodal/left cathodal DLPFC stimulation seem

overall higher than right cathodal/left anodal stimulation.

MSE associated with the sham condition generally lies

in between values associated with both active tDCS

conditions (i.e.: higher than right cathodal/left anodal

and lower than right anodal/left cathodal). Inferential

analysis reveals main effects of hemisphere (F(1,109)
= 38.84, P< 0.001, gp

2 = 0.26), tDCS condition
Fig. 1. Main effects of trial on signal energy and MSE (error bars indicate s

complexity) increases from the first encoding trial to the second across all tD
(F(2,218) = 15.25, P< 0.001, gp
2 = 0.12, e= 0.75) and

encoding trial (F(1,109) = 45.1, P< 0.001, gp
2 = 0.3) on

signal complexity, as estimated by MSE. The effects of

hemisphere and encoding trial confirm higher MSE over

right occipito-temporal site TP8 than over left TP7, as

well as an increase in MSE from the first encoding trial

to the second (Fig. 1). Additionally, the right cathodal/

left anodal condition induced lower complexity than both

the right anodal/left cathodal (t(109) = �4.33,

P< 0.001) and sham conditions (t(109) = �4.05,

P< 0.001). MSE was higher in the right anodal/left

cathodal condition than in the sham condition. However,

this difference did not reach significance (t(109)
= �2.21, P= 0.08). An interaction of hemisphere

� tDCS condition (F(2,218) = 9.05, P< 0.001,

gp
2 = 0.07, e= 0.84, Fig. 2A) revealed that tDCS effects

on MSE varied depending on hemisphere. When

hemispheres were analyzed separately, a main effect of

tDCS condition was found (F(2,218) = 5.37, P= 0.01,

gp
2 = 0.05, e= 0.77) over TP8, where the right anodal/

left cathodal condition induced higher MSE than the

right cathodal/left anodal (t(109) = �2.57, P= 0.03)

and sham (t(109) = �3.23, P= 0.005) conditions (i.e.:

three comparisons). Over TP7, tDCS also influenced

MSE (F(2,218) = 20.69, P< 0.001, gp
2 = 0.16,

e= 0.77) however, the right cathodal/left anodal

condition induced lower MSE than both the reversed

polarity (t(109) = �4.69, P< 0.001) and sham

conditions (t(109) = 6.3, P< 0.001) (i.e.: three

comparisons). Thus, although tDCS conditions

influenced MSE similarly over both hemispheres, MSE

measured following the right anodal/left cathodal

condition is only significantly increased relative to the

sham condition over the right hemisphere. MSE

measured following the right cathodal/left anodal

condition is significantly decreased relative to the sham

condition only over the left hemisphere. Hemisphere

also interacted with encoding trial (F(1,109) = 26.8,

P< 0.001, gp
2 = 0.2). Indeed, the rise in complexity

from the first encoding trial to the second was more
tandard error). Energy decreases and MSE (i.e.: a measure of signal

CS conditions and both hemispheres (***P= 0.001).



Fig. 2. (A) tDCS condition effects on signal complexity followed similar patterns, but varied depending on hemisphere. (B) The increase in signal

complexity from the first encoding trial to the second was amplified over right occipito-temporal site TP8. (C) The effect of tDCS on MSE varied

depending on encoding trial and were more pronounced during the first encoding trial (*P< 0.05; **P< 0.01; ***P< 0.001).
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pronounced at TP8 than TP7 (Fig. 2B). This is reflected in

the stronger encoding trial effect at TP8 (F(1,109) = 90,

P< 0.001, gp
2 = 0.45) than TP7 (F(1,109) = 7.36,

P= 0.008, gp
2 = 0.06). An additional interaction of tDCS

condition � encoding trial was found (F(2,218) = 8.4,

P< 0.001, gp
2 = 0.1, Fig. 2C). Separate analyses for

each encoding trial revealed a stronger tDCS condition

effect within the first encoding trial (F(2,218) = 24.5,

P< 0.001, gp
2 = 0.2, e= 0.72), than within the second

trial (F(2,218) = 4.5, P= 0.01, gp
2 = 0.04, e= 0.88).

Furthermore, all Bonferroni-adjusted comparisons (i.e.:

three) between conditions are significant within the first

encoding trial, where the right anodal/left cathodal

condition induced higher complexity than both the right

cathodal/left anodal (t(109) = 5.4, P< 0.001) and sham

conditions (t(109) = �2.96, P= 0.01). MSE was also

higher in the sham than in the right cathodal/left anodal

condition (t(109) = 5.18, P< 0.001). Within the second

encoding trial however, MSE varied only between active

tDCS conditions, where the right anodal/left cathodal

condition was again higher than the right cathodal/left

anodal (t(109) = 2.52, P< 0.05). This tDCS

condition � encoding trial interaction, which is significant

only at right hemisphere site TP8 (F(2,218) = 14.8,

P< 0.001, gp
2 = 0.12, e= 0.9), suggests that the

DLPFC’s modulation of neuronal network

reconfiguration within the occipito-temporal cortex is

short-lived, lasting only one encoding trial in the right

hemisphere. There was no hemisphere � tDCS

condition � trial interaction (F(2,218) = 2.8, P= 0.06,

gp
2 = 0.03).
DISCUSSION

The purpose of this study was to determine whether RS,

reflected by EEG signal energy decrease, would be

simultaneous to an increase in signal complexity

measured by MSE during learning of unfamiliar faces.

Moreover, we intended to demonstrate whether the

DLPFC is involved in RS and information acquisition.

Indeed, if RS reflects a process of predictive coding and

complexity increase is an accurate measure of

information acquisition, they may be modulated by

exogenous excitation or inhibition of cortical areas
known to modulate visual processing (e.g.: Barcelò

et al., 2000; Zanto et al., 2011). In a repeated measures

paradigm, under the effect of three consecutive, randomly

ordered tDCS conditions, healthy young adults learned

unfamiliar faces during EEG recording. Our main findings

reveal a decrease in EEG signal energy (i.e.: a measure

of amplitude) from the first encoding trial to the second

over both cerebral hemispheres and regardless of tDCS

condition over the DLPFC, indicating robust RS. Breaking

down the EEG signal into several spectral frequency

bands revealed that the signal energy decrease was most

significant in delta and theta bands, suggesting that RS,

measured by energy, is mediated by low-frequency

bands. Furthermore, there was a concomitant significant

rise in EEG signal complexity from the first encoding trial

to the second. This rise in complexity was more pro-

nounced over the right hemisphere. The use of tDCS

modulated complexity over the right occipito-temporal

cortex particularly when anodal stimulation was applied

to right DLPFC. This result indicates that anodal stimula-

tion applied to the DLPFC may facilitate learning. RS, sig-

nal complexity findings and their significance regarding

predictive coding theory are discussed in the following

sections.
Complexity rises with learning

As expected, an increase in EEG signal complexity from

the first encoding trial to the second was found. This

supports Heisz et al. (2012) results and extends their

proposition that acquisition of familiarity progressively

engages a broader network of information, which in turn

manifests as higher complexity. Not only was complexity

associated with the first encoding trial higher over right

occipito-temporal site TP8 than over left TP7, the

increase in complexity was also greater between the first

and second encoding trials over that hemisphere

(Fig. 2B). The right hemisphere has been shown to prefer-

entially process facial stimuli (Rossion et al., 2003;

Kanwisher and Yovel, 2006). When the right hemisphere

specialization for face processing and encoding is soli-

cited (Le Grand et al., 2003), a greater functional capacity

for these tasks would be deployed, which results in the

higher starting complexity over TP8. Also, this greater
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capacity for processing faces may be able to better

accommodate a larger amount of new facial information.

Consequently, the more pronounced rise in complexity

from the first encoding trial to the second may be a conse-

quence of greater information processing induced by

familiarity acquisition or greater information content in

the right occipito-temporal network relative to the left.

Hemisphere interacted with tDCS condition, where the

right anodal/left cathodal condition induced higher com-

plexity than all other conditions over the right occipito-

temporal cortex (Fig. 2A). It has been shown that the

DLPFC’s influence over visual processing areas is primar-

ily intrahemispheric (Barcelò et al., 2000). Also, by

increasing the spontaneous firing rate of neurons located

under it, anodal stimulation may induce NMDA receptor

plasticity, provoking mechanisms akin to long-term poten-

tiation (LTP) (Nitsche and Paulus, 2000; Wassermann

and Grafman, 2005). Thus, the anodal stimulation over

the right DLPFC may have potentiated or accentuated

the right hemisphere’s role in facial processing. However,

caution in the interpretation of the underlying effects of

tDCS is needed. Indeed, while it is generally accepted

that anodal stimulation increases cortical excitability, the

interpretation of tDCS results is complicated by the fact

that cathodal stimulation is inherently simultaneous to

anodal stimulation. Therefore, one or the other stimulation

polarity may induce the observed effects, if not a combi-

nation of both (Tremblay et al., 2014).
Repetition suppression and complexity increase

The observation that RS co-occurs with an increase in

complexity (Fig. 1) supports and extends the predictive

coding model. We propose that RS, though essential to

learning, reflects a need for updating mechanism

activated by a divergence from expectation (Schultz and

Dickinson, 2000), but may not be specific to the acquisi-

tion (i.e.: learning) of new information. The process may

go as follows. In a RS paradigm, during the first presenta-

tion of a novel face, temporal visual processing areas and

frontal associative areas coordinate to classify the stimu-

lus as either familiar or unfamiliar. For the frontal-

temporo-occipital network, this classification mechanism

is likely similar to the computations underpinning

expected vs. unexpected classifications or attentional ori-

entation (Friston, 2005; Summerfield and Egner, 2009). A

stimulus classified as unfamiliar is significantly divergent

from all familiar stimuli as little information is associated

with it. This classification would trigger an initial high-

amplitude signal, indicating a need for update or need
for information acquisition. Simultaneously, complexity

would be at its lowest, reflecting the low initial information

content associated with the new stimulus. As the stimulus

repeats, the need for updating lessens as visual informa-

tion is acquired. We propose that these mechanisms may

be reflected by RS and MSE increase respectively. The

action of these concurrent mechanisms results in a new

set of visual information, which ultimately facilitates pro-

cessing of the stimulus in future presentations. The notion

of diminishing need for update through acquisition of infor-

mation is supported by results indicating a lack of RS for
stimuli that are already familiar (Caharel et al., 2002;

Heisz and Shedden, 2008).

The stronger effect of tDCS condition on MSE during

the first encoding trial relative to the second is of

particular interest in this study (Fig. 2C). MSE

measurements were made over occipito-temporal sites

and tDCS was carried out over DLPFC. As such, these

data suggest that long-range or fronto-temporo-occipital

network effects diminish with stimulus repetition. A

diminishing need for coordinated fronto-temporo-

occipital activity is in line with RS and MSE increase.

Indeed, as a stable representation of the stimulus is

built with accumulated information, frontal expectations

become concordant with incoming stimulation. Past a

certain threshold, the reduction in prediction error may

signal a return to default fronto-temporo-occipital

interactions, where the DLPFC becomes less involved,

as updating is no longer required.

In this study, tDCS effects were specific to MSE.

Using signal energy as a measure of RS did not reveal

any effect of tDCS condition or hemisphere on any

frequency band. This was unexpected considering the

DLPFC’s presumed role in RS (Friston, 2005). Our result

contrasts with previously reported ERP analyses of these

data, which highlighted differential effects on RS depend-

ing on tDCS polarity. Indeed, the N170 component asso-

ciated with the presentation of a face during right anodal/

left cathodal stimulation was significantly suppressed rel-

ative to the N170 associated with right cathodal stimula-

tion, suggesting a facilitation of RS induced by right

anodal/left cathodal stimulation (Lafontaine et al., 2013).

The N170 signals visual processing of faces and is a very

time-constrained event (Bentin et al., 1996; Rossion and

Jacques, 2008). Thus, while signal energy has the advan-

tage of trial-by-trial resolution, its sensitivity to more punc-

tually defined information is likely reduced.

Repetition suppression in low-frequency bands

RS, concomitant with complexity increases, occurs

specifically in the low-frequency delta (1–4 Hz) and

theta (4–8 Hz) bands. Much research has shown the

involvement of theta band activity in memory formation

in both animals and humans (e.g.: Lisman and Idiart,

1995; Klimesch, 1999; Buzsaki, 2005; Vertes, 2005).

Indeed, memory formation has long been conceived of

as a distributed process, whose coordination is mediated

through theta oscillations (Kirk and Mackay, 2003). Of

particular relevance, there is considerable support that

theta oscillations underlie interactions between distributed

brain regions such as temporal and prefrontal cortices

during learning (Anderson et al., 2010; Colgin, 2011). As

a mechanism, it has been proposed that coordinated

activity in the theta range between different regions of

the cortex during learning tasks induce synaptic plasticity,

thus increasing potentiation of connections between pre-

frontal and temporal areas, enabling the encoding of

new information (Buzsaki, 2002; Rutishauser et al.,

2010). Similarly, Colgin (2013) has suggested that theta

oscillations may be a mechanism used by sensory pro-

cessing areas to activate downstream targets of the sen-

sory information at hand. In keeping with the interaction
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model of RS presented earlier, if RS results from interac-

tions between temporal and prefrontal cortices, it follows

that a frequency band mediating these interactions would

show RS. The decrease in signal energy may therefore

partly reflect a decreasing need for plasticity-inducing

coordinated action as a face becomes familiar.

Recent studies suggest that delta power increases

with cognitive load, and may serve to inhibit processes

that interfere with or disrupt concentration (Harmony,

2013). For example, in a working memory task,

Harmony and colleagues (1996) have found increased

delta activity correlating with higher task demands. Also,

relative to cognitively unimpaired participants, Alzhei-

mer’s and schizophrenic patients show decreased delta

activity and performance in attentional and executive

tasks (Guntekin and Basar, 2015). This may reflect a rel-

ative incapacity either to direct relevant cognitive pro-

cesses to the task at hand or suppress irrelevant

processes. In this context, RS of delta oscillations may

indicate a decrease in attentional demands as a face

becomes familiar. Indeed, as is seen behaviorally in visual

habituation, attention decreases as a stimulus is repeated

(Rankin et al., 2009). At the neurophysiological level, pro-

cesses irrelevant to the task would have to be suppressed

in the initial stages of encoding. As familiarity is acquired,

suppressed processes may gradually resume their activ-

ity, thus manifesting gradually less delta energy.
Conclusions

In conclusion, the results of this study reveal that during

visual encoding, EEG signal complexity increases

simultaneously with RS, reflecting a neurophysiological

process of significance to learning. To our knowledge,

this is the first time RS and increasing complexity, as

measured by MSE, are observed within the same EEG

signals during a visual encoding task. Although RS has

long been regarded as an essential and primitive form

of learning, our results suggest that nonlinear signal

measures may better account for the acquisition of

information. We have also shown, through the use of

tDCS, that frontal areas coordinate with temporo-

occipital areas in the mechanism reflected by the

increase in complexity. This supports and extends

predictive coding theory by uncovering complexity

increase as a complimentary measure to RS.
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