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Summary

The study of internal knowledge representations is a corner-
stone of the research agenda in the interdisciplinary study

of cognition. An influential proposal assumes that the
brain uses its internal knowledge of the external world to

constrain, in a top-down manner, high-dimensional sensory
data into a lower-dimensional representation that enables

perceptual decisions and other higher-level cognitive func-
tions [1–9]. This proposal relies on a precise formulation

of the observer-specific internal knowledge (i.e., the internal
representations, or models) that guides reduction of the

high-dimensional retinal input onto a low-dimensional code.
Here, we directly revealed the content of subjective internal

representations by instructing five observers to detect a
face in the presence of only white noise, to force a pure top-

down, knowledge-based task. We used reverse correlation

methods to visualize each observer’s internal representation
that supports detection of an illusory face. Using reverse

correlation again, this time applied to observers’ electroen-
cephalogram activity, we established where and when in the

brain specific internal knowledge conceptually interprets
the input white noise as a face. We show that internal repre-

sentations can be reconstructed experimentally from behav-
ioral and brain data, and that their content drives neural

activity first over frontal and then over occipitotemporal
cortex.

Results and Discussion

We presented observers with white-noise stimuli and in-
structed them that on half of the trials a face would be hidden
in the noise, when in fact no face was ever presented. To
resolve the task, observers must use their own internal knowl-
edge of a face and match it with the incoming white-noise
stimulus. A small correlation between the noise and internal
knowledge enables the observer to ‘‘detect’’ a face, a process
we previously termed ‘‘superstitious perception’’ [10]. Via
reverse correlation [11] from behavioral responses, we estab-
lished the subjective internal representation that each ob-
server used in the face detection task—i.e., we established
what information is critical.

This leaves unaddressed the crucial issues of where and
when the brain deploys this critical information to conceptually
*Correspondence: marie.smith@bbk.ac.uk
interpret the input white noise. To this aim, on each trial we
concurrently recorded the observer’s brain activity via electro-
encephalography (EEG). Using only unstructured noise stimuli,
and providing no a priori target face, we can isolate where
(in terms of EEG electrodes) and when the observer’s brain
uses its own internal face information to interpret the high-
dimensional input noise as a face.

Behavior: From Face Detection Behavior to an Internal

Face Template
Despite the presence of only noise, observers detected
a face on 44% (s = 5.9%) of trials in 1050 ms, with no differ-
ence in reaction times between face detection decisions
[mean difference: 34.8 ms, s = 40 ms, t(4) = 2.1, not signif-
icant]. Upon completion of the experiment we debriefed ob-
servers, and all expressed shock that no face was ever
presented.
If an observer’s decisions occurred randomly, through

stochastic variations in ongoing neural processes (e.g., [12])
or pure guesswork, systematic structures should not emerge
from the reverse correlation analysis as white noise averages
to gray. However, if perceptual decisions require a systematic
matching of internal face knowledge with minimal bottom-up
input from the noise, reverse correlation should depict this
internal information. The resulting classification images (Fig-
ure 1B) did indeed reveal facial structures including the
‘‘eyes’’ for all observers but S5; a nose,mouth, and chin outline
for observers S1, S2, and S3; and a hairstyle for S3. Threshold-
ing [13] emphasized the key internally represented features.
Note that there is no statistical method ideally suited to
perform this thresholding, because all methods assume rela-
tively focal signals resulting in a reduced sensitivity for more
distributed features, e.g., face contour and hairstyle.We there-
fore opted to retain the full classification images for all subse-
quent analyses.
Internal knowledge representations should demonstrate

individual subjectivity. To measure this, we generated a refer-
ence template for each observer from the first half of the
experimental trials. We then computed the ‘‘faceness’’ of
subsequent trials by correlating each noise stimulus with the
reference template. We found a significant linear relation
between the faceness ratings and the probability of a face
detection response (Figure 1C, solid lines; r2 > 0.94, df = 9,
p < 0.0001 for observers S1, S2, S4, and S5; r2 = 0.78,
p = 0.008 for observer S3). Critically, this relationship did not
hold when using the reference template of another observer
to rank the noise stimuli by faceness (r2 < 0.66, not significant
for all at p < 0.05, Bonferroni corrected)—except for observers
S1 and S2 (r2 > 0.94, p < 0.0001), where there is a clear overlap
in the behavioral information templates.
This result emphasizes the subjective nature of the internal

face representations, their consistency across experimental
sessions, and their power to predict perceptual detection
responses from input noise. However, there remains an infin-
itesimally small probability that white noise could depict
a reasonably well-structured face on a particular trial. This
information could be sufficient to bias subsequent detection
responses in a bottom-up manner. To control, we extracted
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Figure 1. Behavior: From Face Detection Behavior to an Internal Face Template

(A) Illustration of the experimental design and behavioral reverse correlation analysis (illustrated with average of all observers).

(B) Behavioral classification images for each of the observers with (bottom row) and without (top row) threshold.

(C) Results of the split-half analysis indicating the relationship between the ‘‘faceness’’ of the noise stimuli (i.e., the correlation between each unique random

noise stimulus and the behavioral template of the observer) and the proportion of ‘‘face present’’ responses for each observer’s decisions, using their own

and each others’ behavioral templates to compute the faceness rankings.

(D) The noise stimulus with the highest correlation to the internal face template for each observer.
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for each observer the noise stimulus that had the high-
est correlation with the observer’s classification image
(maximum r = 0.1). Visual inspection of these maximally
correlated stimuli (Figure 1D) revealed no obvious face struc-
ture, emphasizing the top-down nature of the face detection
task.

Brain: From the Internal Face Template to Its Processing

in the Brain

We used the EEG brain measurements to identify where and
when the brain uses its internal knowledge (what information)
to conceptually interpret the high-dimensional input noise.
On average, observers detected a face on 4,134 artifact-free
trials (‘‘face present’’) versus 5,204 no-detection trials (‘‘face
absent’’). On ‘‘face present’’ trials (compared with ‘‘face
absent’’ trials), within the first 500 ms of processing we found
significantly increased neuronal responses (p < 0.005) over
both frontal and lateral occipitotemporal cortex (Figure 2A).
But there were no significant differences in onset or duration
across frontal and occipitotemporal regions [t(4) < 0.8, not
significant; see top panel of Figure S1 available online]. Initially
this enhanced response on ‘‘face present’’ trials had a topo-
graphic distribution of increased negativity over lateral occipi-
totemporal cortex, similar to a noise-delayed N170 [14],
accompanied by an increased positivity over frontal elec-
trodes. Later ‘‘face present’’ trials had increased activation
over centroparietal regions with a topography similar to the
category-selective P300 component, but with a varying time
course across observers (450 to 650 ms).

These event-related potential results are typical of face
detection decisions. However, they cannot inform as to where
and when the brain uses internal knowledge for detection. To
address this, we explored the EEG response of each observer
on ‘‘face present’’ trials. We sought to measure systematic
associations between single-trial EEG amplitudes and face
information in the noise stimuli (see ‘‘EEG Analyses’’ in Exper-
imental Procedures). We found that each observer processed
information from their face template consistently over frontal
and lateralized occipitotemporal regions in the 200–500 ms
following stimulus onset (see bottompanel of Figure S1). There
was a direct association between increasing faceness content
of the stimuli and enhanced positivity in the single-trial EEG
amplitudes over frontal sensors—i.e., the more face-like noise
stimuli drove larger neural responses (Figure 2B, p < 0.01 high-
lighted on curves)—and a significant association between
increased negative responses over occipitotemporal sensors
and the faceness of the noise. Across all five observers, a
consistent pattern emerged, pre-400ms, with significant asso-
ciation peaks over frontal regions preceding the peaks over
occipitotemporal regions as predicted [mean difference =
30 ms, t(4) = 2.3, p < 0.05, one-tailed t test]. Post-400 ms,
and with a more variable timing, increased positivity over cen-
troparietal sensors was significantly associated with the face-
ness of the noise stimuli (see bottom panel of Figure S1). The
most face-like stimuli produced the largest P300-like re-
sponses, as expected [15, 16].

Finally, we provide direct evidence that the brain uses its
internal face knowledge to interpret the noise stimuli by
computing EEG classification images (see ‘‘EEG Classification
Images’’ in Experimental Procedures). Figure 2B reveals face-
like structure in the EEG classification images of each ob-
server. Crucially, the EEG classification images correlate
significantly more with the behavioral template of the observer
considered than with the behavioral template of the other
observers [same observer versus mean of other observers:
t(4) = 5.38, p < 0.006; same observer versus maximum of other
observers: t(4) = 3.74, p = 0.02; Figure 2C].

Internal Representations Can Be Accessed Experimentally
Here, we used white-noise stimuli and instructed observers to
detect a face that was never actually presented. With reverse
correlation methods applied to detection behavior, we re-
vealed the internal subjective information that guided each ob-
server’s perceptual decisions.With reverse correlation applied
to the EEG signal on ‘‘face present’’ trials, we found where
and when each observer’s brain deploys internal knowledge
to interpret the input noise and revealed the content of this
internal, observer-specific knowledge over frontal and occipi-
totemporal regions.

Internal Representations Drive Neuronal Activation

First over Frontal and Then over Occipitotemporal
Brain Regions

In a subjective task (i.e., with no ‘‘correct’’ or ‘‘incorrect’’ re-
sponse), we found robust EEG differences between detection
and no-detection trials over frontal and occipitotemporal
regions, from200ms followingstimulusonset. Furtheranalyses
revealed the predicted dynamics of frontal before occipito-
temporal cortex EEG covarations with the observer-specific
face-like nature of the noise [17]. Although frontal cortex has
previously been proposed to generate the information driving
internal predictions [18, 19], here we revealed the content of
this information—i.e., the internal knowledge discussed in
predictive coding models of perception in ambiguity [19, 20].
It is worth noting that the expectation of seeing a face can
enhance neuronal responses with a similar timing over occipi-
totemporal cortex ([18], e.g., the N170 component [21]). Face
expectations may therefore contribute to the early enhanced
activation on face present (versus absent) trials, where pro-
cessing is drivenby factors external to the face-like information
from the stimulus per se.

Implications for the Future

We have addressed a cornerstone of the research agenda in
cognition: measuring the processing location, timing, and
content of the internal visual knowledge that guides reduction
of high-dimensional retinal sampling to a low-dimensional
conceptual code (a significant advance from initial studies
[10, 22]). These representations are formally restricted to the
projection of internal knowledge onto a two-dimensional
image, and their low-contrast details may be hindered by the
use of white noise that has equal power across all spatial
frequency bands. Future research should expand the tech-
nique for both dimensions of projection and spatial resolution
of the represented information. This could be coupled with
testing of different categorization tasks (e.g., with faces: iden-
tity, gender, and facial expression; or with objects and scenes:
car and city versus Porsche and New York) to examine how
different categorical knowledge leads to different information
reductions of the visual input [23–25].
Our results provide the first direct evidence that the visual

information matching an observer’s internal knowledge mod-
ulates neural activity in frontal cortex. This implies not only
that regions of frontal cortex provide the internal knowledge
representation to guide processing in ventral temporal cortex,
but also that these regions can respond to expected infor-
mation in advance of any similar modulation over sensory
regions.



Figure 2. Brain: From the Internal Face Template to Its Processing in the Brain

(A) Significant single-subject differences (p < 0.005) in the evoked activity on trials classified as ‘‘face present’’ versus ‘‘face absent’’ (see top panel of Fig-

ure S1 for the time course of this activation over frontal and occipitotemporal regions).

(B) Time course of associations (Z-scored, with respect to prestimulus baseline) of single-trial EEG amplitude modulations with face-like information in the

noise stimuli on trials classified as ‘‘face present’’ over frontal (red) and occipitotemporal (blue) regions. Significant associations (p < 0.01) are highlighted on

the curves. Inset topographies depict the topographic distribution of the significant associations in the critical 300–400ms time interval (see bottom panel of

Figure S1 for full set of topographic maps). Inset images depict EEG classification images illustrating the specific visual information driving modulations in

neuronal activity.

(C) Correlation of each observer’s EEG classification images with their own (same) and the other observers’ behavioral information templates (average and

maximum single correlation).
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Experimental Procedures

Observers, Stimuli, and Task

Stimuli comprised randomly generated black-and-white noise fields with

the aspect ratio of a face (Figure 1A; [10]). Each noise field contained a

random combination of 32 3 43 black and white pixels expanded up by

a factor of 6. Five naive observers (four females, one male; mean age 23.8

years) each saw a different set of 10,500 random noise images. No reference

or target facewas ever presented.We instructed observers that faceswould

be present on half of the trials, filling the image space and facing toward

them. Observers were instructed to indicate whether they perceived

a face or not. We emphasized that the task would be very challenging.

Observers gave informed written consent according to the regulations of

the Faculty for Information and Mathematical Sciences Ethics Committee

at the University of Glasgow.

EEG Recording

We recorded scalp electrical activity (EEG)with sintered Ag/AgCl electrodes

mounted in a 62-electrode cap at scalp positions including the standard

10–20 system positions along with intermediate positions and an additional

row of low occipital electrodes. Linked mastoids served as initial common

reference, and the AFz electrode as ground. Vertical and horizontal electro-

oculogram (EOG) wasmeasured by additional electrodes placed around the

eyes. Electrode impedance was kept below 10 kU throughout. Analysis

epochs were generated offline starting 200 ms prior to stimulus onset and

continuing for 1,000 ms. Trials containing EEG and EOG artifacts and eye

movements were removed using standard artifact detection software.

Artifact-free trials were low-pass filtered at 30 Hz, rereferenced to average

reference (excluding the EOG channels), and baseline corrected using the

mean amplitude in the 200 ms leading up to stimulus presentation.

Behavioral Reverse Correlation Analysis

For each observer, we summed together all of the ‘‘face present’’ noise

fields and subtracted from that the sum of all ‘‘face absent’’ noise fields.

The resulting classification image represents the information underlying

the observer’s face detection decisions. To increase the signal-to-noise

ratio, we smoothed the classification images with a 2D Gaussian kernel

(SD = 1 pixel) and applied the cluster test [13] to isolate individual

features.

EEG Analyses

Event-Related Potentials

For each observer, we performed a full analysis of all 58 electrodes over

1,025 time points and used a robust bootstrap methodology [14, 26] to

compare the pattern of neuronal activation on trials classed as containing

a face versus not. We directly tested H1 by sampling individual trials (with

replacement, on average n = 4,134) independently from the original distribu-

tions of the two perceptual response conditions (face versus no face),

computing the new mean for each condition, and then storing the differ-

ences of the means. Each sample comprised the entire electrode-by-

time-point matrix, as these values are not independent. We repeated this

process 500 times to generate a distribution of bootstrapped estimates of

the mean difference and established a 99.5% confidence interval. Mean

differences for which the confidence interval did not include zero were

considered significant [14, 26]. The time course of face versus no-face

percept differences was estimated as the maximal significant difference

over frontal (classed as electrodes FP1, FP2, FPz, AF3, AF4, AF7, AF8, F1,

F2, F3, F4, F7, F8, and Fz) and occipitotemporal (electrodes P3, P4, P5,

P6, P7, P8, PO3, PO4, PO5, PO6, PO7, and PO8) regions at each time point.

Single-Trial Reverse Correlation

For each observer, we ranked each experimental trial according to its ‘‘face-

ness’’ by correlating each noise stimulus with the observer’s behavioral

information template. To establish the electrodes and time intervals where

any minimal face-like information in the noise was directly associated with

modulations of EEG amplitude, we regressed the single-trial faceness rank-

ings with the corresponding EEG voltages on face percept trials. A random

permutation bootstrap [26] established a 99% significance criterion (p <

0.01) for the mapping between EEG amplitude modulations and the face-

ness of the noise stimuli. The time course of this mapping was estimated

as themaximal association (Z-scored, with respect to the prestimulus base-

line) over frontal (electrodes FP1, FP2, FPz, AF3, AF4, AF7, AF8, F1, F2, F3,

F4, F7, F8, and Fz) and occipitotemporal (electrodes P3, P4, P5, P6, P7, P8,

PO3, PO4, PO5, PO6, PO7, and PO8) regions at each time point, with signif-

icant associations highlighted on the curves.
EEG Classification Images

We generated an EEG classification image for a particular electrode and

time point by summing together all noise stimuli associated with high EEG

amplitudes and subtracting from that the sum of all noise stimuli associated

with low EEG amplitudes, after weighting each image by the voltage that it

had elicited on the chosen electrode at the specified time point. Single-trial

voltages for each electrode and time point were first Z-scored across trials.

EEG classification imageswere computed for each electrode and time point

found to be significantly associated with the processing of face-like infor-

mation, and the individual classification images were averaged to generate

three (two for observer S2) average EEG classification images over frontal

and occipitotemporal regions. These average EEG classification images

were smoothed as per the behavioral classification images. The averaged

frontal and occipitotemporal EEG classification images for each observer

were correlated with the behavioral information template of the same

observer and the other observers, and the resulting correlations were aver-

aged across regions to generate a measure for each observer of the corre-

lation of their EEG classification images with their own and the other

observers’ behavioral information templates. Both the maximum single

correlation of an observer’s EEG templates with any other observer’s

behavioral template and the average of all correlations of the observer’s

EEG templates with the other observers’ behavioral templates were

computed.
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