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The authors examined spatial frequency (SF) tuning of upright and inverted face identification using an
SF variant of the Bubbles technique (F. Gosselin & P. G. Schyns, 2001). In Experiment 1, they validated
the SF Bubbles technique in a plaid detection task. In Experiments 2a–c, the SFs used for identifying
upright and inverted inner facial features were investigated. Although a clear inversion effect was present
(mean accuracy was 24% higher and response times 455 ms shorter for upright faces), SF tunings were
remarkably similar in both orientation conditions (mean r � .98; an SF band of 1.9 octaves centered at
9.8 cycles per face width for faces of about 6°). In Experiments 3a and b, the authors demonstrated that
their technique is sensitive to both subtle bottom-up and top-down induced changes in SF tuning,
suggesting that the null results of Experiments 2a–c are real. The most parsimonious explanation of the
findings is provided by the quantitative account of the face inversion effect: The same information is used
for identifying upright and inverted inner facial features, but processing has greater sensitivity with the
former.
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Human adults are able to recognize thousands of faces rapidly
and effortlessly, as long as the faces are seen upright (e.g., Maurer,
Le Grand, & Mondloch, 2002). When stimuli are rotated by 180°
in the picture plane, face recognition accuracy decreases consid-
erably (e.g., Hochberg & Galper, 1967; Yin, 1969) and response
latencies increase (e.g., Diamond & Carey, 1986). This drop in
recognition performance was found to be disproportionately larger

for faces than for other mono-oriented objects (e.g., houses and
airplanes) in untrained individuals and is commonly referred to as
the face inversion effect (FIE; e.g., Boutet, Collin, & Faubert,
2003; Leder & Carbon, 2006; Robbins & McKone, 2007; Yin,
1969; reviews in Rossion & Gauthier, 2002, and Valentine, 1988).
The FIE can be observed for unfamiliar and familiar faces (Col-
lishaw & Hole, 2000; Rock, 1974; Yarmey, 1971), full faces (e.g.,
Boutet et al., 2003; Goffaux & Rossion, 2006, Experiment 1), or
inner facial features (faces shown through an elliptical aperture;
e.g., Goffaux & Rossion, 2006, Experiments 2 and 3; Robbins &
McKone, 2003; Sekuler, Gaspar, Gold, & Bennett, 2004), and in a
variety of experimental conditions; for instance, it has been dem-
onstrated using blocked or randomized presentation of upright and
inverted faces, in old/new recognition tasks, and in matching tasks
with or without delay (for reviews, see Rossion, 2008; Rossion &
Gauthier, 2002). The FIE has been described as one of the most
robust phenomena in the face processing literature.

Given that upright and inverted faces have the same complexity
and are almost identical in their low-level properties, such as
luminance, contrast, and spatial frequencies (only phase informa-
tion differs), the difficulty of recognizing upside-down faces can-
not easily be attributed to stimulus properties per se. Typically, the
FIE has been attributed to qualitative processing differences be-
tween upright and inverted faces, that is, inversion is thought to
disrupt certain face processes more than others (e.g., Rossion,
2008). In particular, it has been suggested that inversion mainly
impairs the perception of the relative distances between facial
features (Diamond & Carey, 1986; Leder & Bruce, 1998, 2000;
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Rhodes, 1988) or holistic processing—“the simultaneous integra-
tion of the multiple features of a face into a single perceptual
representation” (Rossion, 2008, p. 275; see also Farah, Tanaka, &
Drain, 1995; Sergent, 1984; Tanaka & Farah, 1993). Several other
studies have demonstrated differential effects of inversion on the
processing of the local facial features themselves versus their
configuration or integration into a holistic representation (e.g.,
Bartlett & Searcy, 1993; Barton, Keenan, & Bass, 2001; Collishaw
& Hole, 2000; Freire, Lee, & Symons, 2000; Leder, Candrian,
Huber, & Bruce, 2001; Le Grand, Mondloch, Maurer, & Brent,
2001; Rhodes, Brake, & Atkinson, 1993; Rossion & Boremanse,
2008; Tanaka & Sengco, 1997; Thompson, 1980; Young, Hel-
lawell, & Hay, 1987), thus supporting the qualitative view of
the FIE.

Despite a wide acceptance of the qualitative account, it has also
been proposed that the FIE arises from quantitative processing
differences. Using a response classification method (Ahumada &
Lovell, 1971; Eckstein & Ahumada, 2002), Sekuler et al. (2004)
found that the eye and eyebrow regions contain the features
correlated linearly with the discrimination of both upright and
inverted faces, and that the correlations associated with upright
faces were greater than those associated with inverted faces. These
findings are in line with previous behavioral studies that identified
the eye and eyebrow regions as most important for face identifi-
cation (e.g., Davies, Ellis, & Shepherd, 1977; Gold, Sekuler, &
Bennett, 2004; Gosselin & Schyns, 2001, 2005; Haig, 1985, 1986;
Schyns, Bonnar, & Gosselin, 2002; Shepherd, Davies, & Ellis,
1981; Walker-Smith, Gale, & Findlay, 1977). They are also con-
sistent with eye-tracking data demonstrating that gaze is especially
attracted by the eyes of both upright and inverted faces (e.g.,
Williams & Henderson, 2007; but see Barton, Radcliffe, Cherka-
sova, Edelman, & Intriligator, 2006, for a demonstration of more
random global scan patterns and more fixations on lower face parts
in the inverted condition). Furthermore, Sekuler et al. reported that
contributions of nonlinear processes to performance were small
and similar for both face orientations. The authors concluded from
their classification image results that a quantitative, not a qualita-
tive, difference underlies the FIE (see also Gaspar, Bennett, &
Sekuler, 2008; Riesenhuber, Jarudi, Gilad, & Sinha, 2004; Valen-
tine, 1988; Yovel & Kanwisher, 2004; but see Rossion, 2008)—
specifically, that the same facial information is processed with less
sensitivity when faces are upside-down.

The classification images of Sekuler et al. (2004), however, are
insufficient to determine whether the same cues subtend upright
and inverted face recognition beyond the spatial domain. For
example, they cannot rule out that the eye and eyebrow regions
revealed in the upright and inverted classification images hide
different patterns of spatial frequency (SF) use (e.g., 8 cycles per
face width for upright eye and eyebrow regions and 16 cycles per
face width for the same regions but inverted). It thus remains
possible that qualitative processing differences can be found in the
SF domain.

Spatial Frequency Tuning for Face Identification

The human visual system analyzes the complex luminance
variations that make up the visual stimulus with discrete channels,
each tuned to a specific SF range (see De Valois & De Valois,
1990, for a review). High SFs represent the fine-grained informa-

tion in a stimulus, such as the eyelashes or edges of the mouth, and
low SFs convey coarse information, such as luminance blobs and
blurred shapes (see Morrison & Schyns, 2001, and Ruiz-Soler &
Beltran, 2006, for reviews). Several studies found that a narrow
band of intermediate SFs centered between 7 and 16 cycles per
face (cpf) width is particularly important for upright face recog-
nition (e.g., Costen, Parker, & Craw, 1994, 1996; Gaspar, Sekuler,
& Bennett, 2008; Gold, Bennett, & Sekuler, 1999; Näsänen, 1999).

For the SF tuning of inverted face identification, mixed findings
have been obtained. Collishaw and Hole (2000) demonstrated that
blurred faces (i.e., faces containing only low-SF information)
could still be recognized above chance level, unless they were
presented upside-down. Because inversion of a scrambled face (a
condition of comparable difficulty) did not decrease performance
below chance, the findings were attributed to a disruption of the
processing of the relative distances between facial features (by
inversion) and the featural information (by blurring) rather than
task difficulty. These findings suggest that the FIE might be
particularly large for low-pass filtered faces. Although their study
did not directly pertain to face inversion, Goffaux and Rossion
(2006, Experiments 2 and 3) demonstrated in a composite face
paradigm that inversion costs in both accuracy and RT were larger
for low-SF faces (�8 cpf) compared with broad-spectrum and
high-SF (�32 cpf) stimuli. Moreover, Nakayama (2003) reported
that face discrimination (in a four-choice task) was most degraded
by noise of approximately 12 cpf, with a much broader masking
function for inverted than for upright faces. Finally, using an
old/new recognition task, Boutet et al. (2003, Experiment 1) found
FIEs of comparable magnitude on accuracy for broadband faces,
band-pass filtered faces in a range of relatively low SFs (1.25–5
cpf), and intermediate-SF (5–20 cpf) faces, but not for high-SF
(20–80 cpf) faces, which did not lead to a significant FIE. These
findings, albeit somewhat inconsistent, support the qualitative
view of the FIE.

In contrast to the above, Boutet et al. (2003, Experiments 2A
and B) found a comparable FIE on accuracy in all SF band-pass
filter conditions (1.25–5 cpf, 5–20 cpf, 20–80 cpf) in a sequential
matching paradigm and concluded—considering the results of
their Experiments 1–3—that SF filtering had little impact on the
FIE. Furthermore, Collin, Liu, Troje, McMullen, and Chaudhuri
(2004) demonstrated that varying the degree of SF overlap be-
tween two faces influences accuracy in a matching task similarly
for upright and inverted faces. Finally, using critical band mask-
ing—a technique that measures signal thresholds for stimuli to
which high-pass (or low-pass) filtered white Gaussian noise is
added at different cutoffs—Gaspar, Sekuler, and Bennett (2008)
showed that the same narrow SF band (approximately 1.5 octaves
wide and centered at about 7 cpf) was used in two 10-choice
identification tasks with both upright and inverted faces. These
results are consistent with a quantitative view of the FIE. In sum,
both orientation dependency and independency of SF use has been
reported in the literature.

Here, we re-examined whether the identification of upright and
inverted faces is mediated by different SFs using a novel SF
variant of the Bubbles technique (Fiset, Blais, Gosselin, & Schyns,
2006; Gosselin & Schyns, 2001; see McCotter, Gosselin, Sowden,
& Schyns, 2005, for a distinct attempt at applying Bubbles to SFs).
The Bubbles technique has been applied to full-spectrum images
(e.g., Gosselin & Schyns, 2001, Experiment 1) as well as band-
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pass filtered images (e.g., Gosselin & Schyns, 2001, Experiment 2;
Schyns et al., 2002). However, it has not previously been used to
sample the SF content of stimuli. We randomly varied the avail-
ability of SFs on a trial-by-trial basis, thereby testing the contri-
bution of each SF to performance independently. After a sufficient
number of trials, we performed multiple linear regressions on the
random SF filters and response accuracy or response time (RT).

The SF Bubbles technique allowed us to derive the precise SF
tuning curves for upright and inverted face identification. In com-
parison, traditional high-pass, low-pass, or band-pass filtering
techniques (e.g., Boutet et al., 2003; Goffaux & Rossion, 2006)
provide only crude estimates of SF tuning. The main strength of
the SF Bubbles technique in the present context is that it minimizes
the risk that participants adapt to a predictable stimulus manipu-
lation (e.g., low-, band-, or high-pass filtering or critical band
masking; see Sowden & Schyns, 2006, for evidence of “channel
surfing”) by randomly sampling multiple SFs simultaneously on a
trial-by-trial basis.

The present research comprised six experiments. The first ex-
periment was designed to assess the validity of the SF Bubbles
technique. Using a plaid (i.e., the sum of two sine wave gratings)
detection task, we verified that the SF Bubbles method can un-
cover precisely the diagnostic SFs. The next three experiments,
which constitute the main experiments, examined which SFs are
used for the accurate (Experiments 2a and c) and fast (Experiment
2b) identification of upright and inverted faces. The experiments
employed two sets of 20 grayscale face photos (10 identities � 2
exemplars per set) that were cropped to an elliptical shape. We
decided to focus on inner facial features to bridge the qualitative
and quantitative accounts of the FIE as much as possible (e.g.,
Gaspar, Sekuler, & Bennett, 2008; Goffaux & Rossion, 2006,
Experiments 2 and 3; Robbins & McKone, 2003; Sekuler et al.,
2004, used faces revealed through an elliptical aperture). To an-
ticipate our main result, we find no difference in SF use between
the upright and inverted condition. To rule out that this null result
was due to an insensitivity of the SF Bubbles technique to
bottom-up or top-down influences on SF tuning, we carried out
two more experiments. Experiment 3a re-examined SF tuning in
the identification task of Experiment 2a as a function of stimulus
size, which is known to influence SF tuning in a bottom-up fashion
(e.g., Majaj, Pelli, Kurshan, & Palomares, 2002). In Experiment
3b, task demands were modified (gender or happy/neutral discrim-
ination) to modulate SF tuning in a top-down fashion (e.g., Schyns
& Oliva, 1999). In both cases, we revealed subtle differences in SF
use, confirming that the SF Bubbles technique is sensitive to
bottom–up- and top–down-induced changes in SF tuning.

Experiment 1

The purpose of the first experiment was to determine whether
the SF Bubbles technique can reveal precisely the SFs that convey
the information that is diagnostic for the task. We employed a plaid
(i.e., the sum of two SFs) detection task: If the SF Bubbles
technique works adequately, then we should be able to recover the
SFs in the plaid. This experiment is also meant as an illustration of
the SF Bubbles technique.

Method

Participants. One male and two female University of Victoria
students (22–25 years old; M � 24 years) participated in Experi-
ment 1. All participants had normal or corrected-to-normal vision,
and two were naı̈ve to the purpose of the experiment. The third
participant was the first author of the article (Observer 1). Partic-
ipants gave informed consent approved by the University of Vic-
toria Human Research Ethics Committee.

Apparatus. Experiments 1, 2a, 2b, 3a, and 3b were run on a
dual core 2.93 GHz PC at the University of Victoria. Stimuli were
displayed on a 22-in. Viewsonic CRT monitor that was calibrated
to allow a linear manipulation of luminance. The resulting cor-
rected table contained 154 luminance levels, ranging from 0.3
cd/m2 to 98.7 cd/m2. The background luminance was 49.3 cd/m2.
The monitor refresh rate was 85 Hz for all experiments, and the
resolution was set to 1,024 � 768 pixels (except in Experiment
3a). All experiments were programmed in MATLAB (Natick,
MA) using the Psychophysics Toolbox extensions (Brainard,
1997; Pelli, 1997).

Procedure. Participants were instructed to perform a plaid
detection task. The original plaid comprised a horizontal sine wave
grating with an SF of 10 cycles per image (cpi) and a vertical sine
wave grating with an SF of 45 cpi (Figure 1) and had a size of
256 � 256 pixels. On “signal present” trials (50% of trials), the
SFs of the plaid were randomly sampled (see next section) and
displayed embedded in white Gaussian noise. On “signal absent”
trials, a white Gaussian noise field of 256 � 256 pixels was
displayed. Each trial began with a central fixation cross lasting 435
ms, followed by the stimulus presented for 870 ms, and then by a
homogeneous mid-gray field that remained on the screen until the
observer responded by pressing an appropriate key on a computer
keyboard. Signal present and signal absent trials occurred in ran-
dom order. No feedback was provided. Each observer performed
eleven 100-trial blocks with breaks between blocks. Participants
were seated in a dark room and a chin rest was used to maintain
viewing distance at 53 cm; stimuli subtended a visual angle of
10.2° � 10.2°.

Spatial frequency bubbles. All experiments reported in this
article revealed SF use by employing the SF Bubbles technique.
This section serves two purposes: (a) It describes the SF Bubbles
technique in general, and (b) it illustrates the use of the technique
in Experiment 1.

On each trial, the SF information of a stimulus was sampled
randomly as illustrated in Figure 1. First, the square base stimulus
was padded to minimize edge artifacts in the SF domain. It was
centered on a uniform gray field of the stimulus’ background
luminance and twice its size. In Experiment 1, for example, the
plaid of size 256 � 256 pixels was padded with a midluminance
background of size 512 � 512 pixels. Second, the padded stimulus
was Fourier transformed using functions from the Image Process-
ing Toolbox for MATLAB. The quadrants of the Fourier image
were shifted so that low SFs occupied the central region of the
complex (i.e., real � imaginary number) amplitude matrix. Third,
a random filter was constructed. The construction of this filter
involved the following steps: (a) A binary random vector of 2wk
elements was created, where w was the stimulus width and k a
constant that determined the smoothness of the sampling (the
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higher k, the smoother); k was arbitrarily set to 20 for all the
experiments reported in this article. In Experiment 1, the random
vector thus had 10,240 elements (2 � 256 � 20). The vector
contained zeros among b ones that were randomly distributed
(with repetition); b determined the number of SF bubbles (see

below) and was arbitrarily set to 45. (b) To create a smooth filter,
the binary vector was convolved with a Gaussian kernel, referred
to as an SF bubble. The standard deviation of the SF bubble was
arbitrarily set to 1.5 and the maximum to 0.125; all values of the
resulting vector above 1 were reduced to 1. The convolution
resulted in a “sampling vector” consisting of b randomly located
SF bubbles. (c) To ensure that the sampling vector approximately
fit the SF sensitivity of the human visual system (see De Valois &
De Valois, 1990, for a review), we subjected the smoothed vector
to a logarithmic transformation: w elements of the vector were
sampled according to the function of

f �x� � e�x�1�
ln�kw�

�w�1� � a,

with x � [1:w] and a � kw/2. The constant a was arbitrarily chosen
and prevented low and high SFs being sampled less often than
intermediate SFs. (d) The resulting w-element filter was then
rotated about its origin to create an isotropic random two-
dimensional filter of size w � w.

Fourth, filtering was carried out by dot-multiplying the two-
dimensional filter with the complex amplitude of the padded base
stimulus before subjecting the result to the inverse Fourier trans-
form. We constructed the experimental stimuli by cropping the
central w � w pixel region of the filtered image. White Gaussian
noise was added to the SF sampled stimulus to adjust performance.
The w � w noise field was multiplied by 1 – c, with c ranging from
0 to 1 and added to the image multiplied by c. The value of c was
increased or decreased on a block-by-block basis by the experi-
menter (in increments of .02; Experiments 2a–c and 3a) or on a
trial-by-trial basis using QUEST (Watson & Pelli, 1983; Experi-
ments 1 and 3b). For example, in Experiment 1, performance was
maintained at 75% correct.

To find out which SFs drove the observers’ correct and incorrect
responses or response times, we performed a multiple linear re-
gression on the random binary vector (see above) and transforma-
tions of the observers’ correct and incorrect responses or RTs.
Here, a multiple linear regression is linearly related to summing all
sampling vectors weighted by the transformed responses.
Throughout this article, correct and incorrect responses were trans-
formed as follows: Correct responses were given a value of 1 –
P(correct) and incorrect responses a value of –P(correct). In Ex-
periment 1, for example, correct responses were assigned a value
of 0.25 and incorrect responses a value of �0.75. Similarly, fast
responses (RTs shorter than the median RT of the corresponding
block) were given a value of 1 and slow responses (those longer
than the median RT) were given a value of �1.

The vector of w regression coefficients—referred to as a clas-
sification vector—was then transformed into Z scores for each
observer. A group classification vector can be computed by sum-
ming the classification vectors of all observers and by dividing the
resulting vector by �n, with n equal to the number of observers. A
pixel test was used to determine a statistical threshold (Chauvin,
Worsley, Schyns, Arguin, & Gosselin, 2005). Note that because of
padding, the xth element of the classification vector corresponds to
x/2 cycles per base stimulus width; in this article, all SFs are given
either relative to the base stimuli (Experiment 1) or to face width
(Experiments 2a–c and 3a and b).

Figure 1. Illustration of the spatial frequency (SF) Bubbles technique. (1)
Padding of the base stimulus with a uniform gray background. (2) Fast
Fourier transform (FFT) of the padded stimulus. (3) Construction of a
random SF filter: (a) creation of a binary random vector of length 2wk (w �
image width; k � 20) consisting of 45 ones among zeros; (b) convolution
of the random vector with a Gaussian kernel (an “SF bubble”), resulting in
a random sampling vector; (c) log-scaling of sampling vector (see text for
details), resulting in a one-dimensional (1D) filter; (d) construction of a 2D
filter by rotating the 1D filter about its origin. (4) SF filtering by dot-
multiplying the 2D filter with the padded stimulus’ complex FFT ampli-
tudes. (5) Inverse fast Fourier transform (IFFT) and (6) cropping of the
output to create the SF sampled experimental stimulus.
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Results and Discussion

The first block was considered as practice block and was ex-
cluded from the analysis. Results are shown in Figure 2, which
plots the Z scores across all SFs (classification vectors) as well as
the significance threshold ( p � .05, Sr � 256, FWHM � 3.53,
Zcrit � 3.45; for details, see Chauvin et al., 2005). Individual and
group results were very similar (rs � .93, .99, and .96); we thus
report the group results only. Two significant peaks occurred: the
first peak at 10 cpi (Zmax � 10.50) and the second at 45 cpi
(Zmax � 6.87), with an octave width of 0.42 and 1.39, respectively.
The peaks correspond to the two SFs of the plaid, thus demon-
strating that the SF Bubbles technique can accurately reveal the SF
information that drives the observers’ responses.

Experiments 2a–c

Experiments 2a–c were designed to investigate which SFs un-
derlie the identification of upright and inverted faces. For upright
faces, several studies demonstrated that a narrow band of interme-
diate SFs (i.e., centered between 7 and 16 cpf, depending on the
size of the face stimuli) is particularly important for recognition
(e.g., Costen et al., 1994, 1996; Gaspar, Sekuler, & Bennett, 2008;
Gold, Bennett, & Sekuler, 1999; Näsänen, 1999). For inverted face
identification, less is known about the exact SF range used. Pre-
vious results indicate that face inversion might be particularly
detrimental for low-SF faces (e.g., Collishaw & Hole, 2000;
Goffaux & Rossion, 2006), that the SF band used for inverted
faces might be much broader than for upright faces (Nakayama,
2003), or that SF tuning might be very similar for upright and
inverted face identification (Gaspar, Sekuler, & Bennett, 2008).
We tested the independent contribution of each SF to the identi-
fication of upright and inverted inner facial features, allowing us to
reconstruct the precise SF filters used for effective identification.
We used both accuracy (Experiments 2a and c) and RT (Experi-
ment 2b) as measures of effective identification and employed the
SF Bubbles technique described above to reveal the SF tuning
curves.

Method

Participants. In total, 15 university students (10 women) ages
19–35 years (M � 25.5 years) took part in Experiments 2a–c. Four
participants completed both Experiments 2a and b, and 1 of them
additionally took part in Experiment 2c. One student participated
in Experiment 2a only and 1 in 2b only. Nine participants took part
in Experiment 2c only. All observers had normal or corrected-to-
normal vision. Two participants are among the authors of this
article, and 13 participants were naı̈ve to the purpose of the study.
They received course credit or were paid as compensation.

Apparatus. For Experiments 2a and b, see the corresponding
section of Experiment 1. Experiment 2c was run on a dual core 2.2
GHz PC at the Université de Montréal. Stimuli were presented on
a 22-in. Hewlett Packard CRT monitor that was calibrated to allow
a linear manipulation of luminance. The corrected table contained
117 luminance levels, ranging from 0.3 cd/m2 to 70.7 cd/m2; the
background luminance was 29.3 cd/m2. The monitor refresh rate
was 85 Hz, and the resolution was set to 1,024 � 768 pixels. The
experiment was run in MATLAB using the Psychophysics Tool-
box extensions (Brainard, 1997; Pelli, 1997).

Stimuli. Two sets of grayscale face photos of 256 � 256
pixels served as base stimuli. Each set comprised two exemplars of
10 faces to make it less likely that observers followed a template-
matching strategy. In Set 1 (Experiments 2a and b), the exemplars
showed two different expressions (neutral and happy). In Set 2
(Experiment 2c)—a subset of the base faces used by Goffaux and
Rossion (2006)—both exemplars had a neutral expression, but the
faces were shown from slightly different angles. The main inner
facial features (eyes, eyebrows, nose, and mouth) were aligned
within each stimulus set using rotation, translation, and scaling. It
is important to note that these affine transformations did not alter
the shape of facial features or the relative distance between them.
The faces were presented behind a midluminance homogeneous
field through an elliptical aperture with a horizontal diameter of
158 or 121 pixels and a vertical diameter of 239 or 175 pixels for
the first and second stimulus set, respectively (see Figures 3a and
3b). Thereby, only the inner facial features were revealed, and the
minor and major axes of the ellipse contained no information
relevant to the task at hand. This mode of stimulus presentation
was also chosen by Gaspar, Sekuler, and Bennett (2008), Robbins
and McKone (2003), and Sekuler et al. (2004). In contrast, Gof-
faux and Rossion (2006, Experiments 2–4) used different elliptical
apertures to reveal the inner facial features of their stimuli. Faces
within each stimulus set were equated in mean luminance, con-
trast, and energy at each SF. Face width subtended a visual angle
of 6.5° (Set 1) or 5.7° (Set 2). The base stimuli were presented
upright or inverted (rotated 180° in the image plane).

Practice phase. Participants learned to associate the faces
with common names (e.g., Mary, John, Peter) from printed gray-
scale pictures displayed along with names. When the participants
were confident that they could identify all faces, the practice
session began. Participants were seated in a dark room and a chin
rest maintained them at a 53-cm viewing distance from the screen
in Experiments 2a and b and at a 45-cm viewing distance for the
smaller faces in Experiment 2c. Upright and inverted base stimuli
were presented in separate 100-trial blocks, starting with upright
faces. Each trial began with the appearance of a central fixation
cross on the screen for 435 ms, followed by an upright or an
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Figure 2. Individual and group classification vectors obtained in the plaid
detection task (Experiment 1). The spatial frequency (SF) Bubbles tech-
nique revealed significant peaks at 10 cycles per image (cpi) and at 45 cpi
(Zcrit � 3.45, p � .05), thus accurately showing the diagnostic SFs (i.e., the
SFs of the plaid).
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inverted face presented for 435 ms, and then by a homogeneous
mid-gray field that remained on the screen until the observer
responded with a key press. Each of the keys (numerals 0 to 9) on
a regular computer keyboard was associated with a particular face
name. When participants responded incorrectly, auditory feedback
was provided (a brief 3000-Hz pure tone). The first part of the
practice session was completed when accuracy for upright faces
was above 95% correct for two successive blocks of 100 trials; the
second part was completed when the same criterion was reached
for inverted faces. On average, participants needed 6.40 or 6.00
practice blocks in the upright condition and 17.00 or 10.50 blocks
in the inverted condition with the first or second stimulus set,
respectively. Finally, participants performed six additional practice
blocks (three with upright and three with inverted faces) in which
white Gaussian noise was added to the full-SF spectrum faces in
preparation for the experimental blocks.

Experimental phase. In the experimental phase of Experi-
ment 2a, each participant was presented with a total of 2,100
upright and 2,100 inverted face stimuli. Upright and inverted faces
were presented in separate 100-trial blocks, starting with upright
stimuli and then alternating with inverted stimuli. Accuracy was
measured in the same 10-choice identification task as during the
practice. The experimental trials differed from the practice trials on

the following: (a) The SFs of the base stimuli were randomly
sampled (Figure 4; for details, see the Spatial frequency bubbles
section), (b) no feedback was given, and (c) performance in the
upright blocks was maintained between 75% and 85% correct by
adjusting the quantity of additive noise block per block. The same
amount of noise was used in the following inverted blocks. We
chose to equate the quantity of additive noise across conditions
instead of accuracy (the latter is what Sekuler et al., 2004, and
Gaspar, Sekuler, & Bennett, 2008, did) because in “real life”
upright and inverted faces contain the same amount of information.

The RT version (Experiment 2b) followed Experiment 2a and
differed from it only in four respects: (a) Face stimuli remained on
the screen until a response was made; (b) participants named aloud
the identities of the faces, and a voice key was used to measure
response latency; (c) after each trial, the experimenter typed the
participants’ response using a computer keyboard; and (d) perfor-
mance was maintained above 90% correct in the upright condition
block per block.

Experiment 2c served as control experiment and differed from
Experiment 2a only in three respects: (a) The second stimulus set
was used (Figure 3b), (b) the number of trials per observer was
reduced to 400 per condition, and (c) the sigma of the Gaussian
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Figure 4. Three sample stimuli after filtering with the spatial frequency
(SF) Bubbles technique. Fourier energy averaged across orientations is
plotted as a function of SF in cycles per image (cpi).

Figure 3. (a) Base stimuli used in Experiments 2a, 2b, and 3a. Faces of
10 identities � 2 expressions (neutral, happy) were shown. (b) Base stimuli
used in Experiment 2c (from the base set of Goffaux & Rossion, 2006).
Faces displayed 10 neutral identities � 2 slightly different viewpoints.
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filter was increased to 1.8 octaves. The goal of this experiment was
to see whether the results obtained with the first set of stimuli
would generalize to another set of faces. Furthermore, we wanted
to see whether the results could be replicated with a relatively
small number of trials per observer.

Results and Discussion

In Experiments 2a–c, the first 100-trial block in each orientation
condition was considered as practice and was therefore excluded
from the analyses. In Experiment 2a, accuracy across participants
was significantly higher for upright (M � 80.52%, SD � 1.35)
than for inverted faces (M � 52.43%, SD � 6.32), t(4) � 8.56, p �
.01. In Experiment 2b, where accuracy was adjusted to above 90%
for upright faces (M � 92.24%, SD � 2.23), accuracy for inverted
faces was again lower (M � 72.12%, SD � 6.12), t(4) � 6.81, p �
.01. Furthermore, RTs on correct trials were significantly shorter in
the upright (M � 1,479.83 ms, SD � 315.29) than in the inverted
condition (M � 1,935.01 ms, SD � 410.95), t(4) � �6.90, p �
.01. In Experiment 2c, accuracy was also significantly higher for
upright (M � 79.37%, SD � 5.81) than for inverted faces (M �
55.43%, SD � 7.51), t(9) � 14.87, p � .01. In sum, all versions
of the experiment exhibited a clear FIE. Figure 5 shows the mean
accuracy (Experiments 2a–c) and RTs (Experiment 2b) for each
block.

To reveal the SF ranges that led to accurate (Experiments 2a and
c) and fast (Experiment 2b) face identification in the upright and
the inverted conditions, we performed multiple linear regressions
on the sampling vectors per orientation condition per observer and
on the appropriate regressor (see the Spatial frequency bubbles
section). Because individual and group classification vectors were
very similar in Experiments 2a and 2b (average correlations in-
cluding both orientation conditions of r � .86 in Experiment 2a
and r � .77 in Experiment 2b), and because Experiment 2c was
based on a relatively small number of trials per observer, we report
group results only. The group classification vectors for the upright
and inverted conditions and their Z-transformed difference are
shown in Figures 6, 7, and 8. The upright group classification
vector in Experiment 2a showed a significant SF band of 2.00
octaves and dual peaks, one at 7.14 cpf (Zmax � 8.20, p � .05,
Sr � 256, FWHM � 3.53, Zcrit � 3.45) and the other at 12.14 cpf
(Zmax � 8.10). Similarly, in the inverted condition, a 2.00 octaves
wide SF band peaking at 7.14 cpf (Zmax � 8.68) and 11.07 cpf
(Zmax� 7.72) was significant. In Experiment 2b, the group clas-
sification vector for the upright condition revealed a significant SF
range of 1.94 octaves peaking at 8.57 cpf (Zmax � 6.97) and 12.86
cpf (Zmax � 5.77). In the inverted condition, an SF range of 1.30
octaves peaking at 12.14 cpf (Zmax � 5.06) was significant. In
Experiment 2c, the upright classification vector reached signifi-
cance for an SF band of 1.00 octave with a maximum Z score at
7.53 cpf (Zmax � 4.34, p � .05, Sr � 256, FWHM � 4.24, Zcrit �
3.40). The classification vector for the inverted condition was
significant for an SF band of 1.06 octaves, with a peak at 8.06 cpf
(Zmax � 5.06, p � .05, Sr � 256, FWHM � 4.24, Zcrit � 3.40).
None of the difference classification vectors reached statistical
significance.

The correlations between classification vectors obtained on ac-
curacy and RTs using the same stimuli (Experiments 2a and b)
were very high in both the upright conditions (r � .96) and the

inverted conditions (r � .93). For the experiments measuring
accuracy but using different stimulus sets (Experiments 2a and c),
the correlations were high as well (r � .84 for upright faces and
r � .87 for inverted faces). Similarly, we found high correlations
between Experiments 2b and c (based on different stimulus sets
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Figure 5. Mean accuracy across observers over the 20 blocks of Exper-
iments 2a (a) and 2b (b), as well as over the three blocks of Experiment 2c
(d). Mean response times (RTs) on correct trials over the 20 blocks of
Experiment 2b are shown in (c). Error bars give the standard errors. Both
accuracy and RT show a clear face inversion effect.
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and different response measures) with r � .87 for upright and r �
.95 for inverted faces. Most important, the correlation between the
classification vectors for upright and inverted faces was very high
in Experiments 2a (r � .97), 2b (r � .95), and 2c (r � .85), and
the correlation between the average of the upright and inverted
classification vectors of Experiment 2a–c was even higher (r �
.98), strongly suggesting that the same SF band was used for
identifying upright and inverted faces. To best estimate the center
and width of this SF band, we summed all classification vectors for
Experiments 2a–c and fitted a Gaussian density function to the
logarithm of the average classification vector. The mean of the best
fit—9.8 cpf—is our estimate of the center of the SF channel, and
its FWHM—1.9 octaves—is our estimate of the width of the SF
channel.

The reliance on this 1.9 octaves wide SF band centered on
average on 9.8 cpf appears robust to changes in the measure
employed to assess the FIE (accuracy or response time of correct
trials), to changes in the face sets, and to changes in procedures
(many trials and few subjects in Experiments 2a and 2b, or few
trials and relatively many subjects in Experiment 2c). The SF
range revealed in the present study is in accordance with the
intermediate SFs identified in previous studies for upright faces
(e.g., Costen et al., 1994, 1996; Gold et al., 1999; Näsänen, 1999).
Our results are also consistent with the findings of Gaspar,
Sekuler, and Bennett (2008) for both upright and inverted faces,
and suggest that the processing difference does not lie in the
extraction of cues at different SFs but rather in how the informa-
tion within the same SF band is used.

Experiments 3a and b

The results of Experiments 2a–c reveal no difference in SF
tuning between the upright and inverted conditions. However, we
cannot rule out the possibility of this “null result” being due to a
relative insensitivity of the SF Bubbles technique to reveal subtle
differences in SF tuning resulting from bottom-up or top-down
alterations in the visual strategies employed by observers with
upright versus inverted faces (e.g., holistic vs. featural processing).
We conceived two experiments to test whether the SF Bubbles
technique is sensitive enough to reveal subtle differences in SF
tuning in situations known to differ solely in bottom-up (Experi-
ment 3a) or top-down (Experiment 3b) SF tuning.

It has been shown that decreasing the size of letters (Chung,
Legge, & Tjan, 2002; Majaj et al., 2002) and faces (Loftus &
Harley, 2005; Näsänen, 1999) induces a shift in the use of SFs
toward lower SFs in a mandatory bottom-up fashion. Experiment
3a examined whether we can reveal such a bottom–up-induced SF
tuning change with the SF Bubbles technique. Observers were
asked to identify the same faces as in Experiments 2a and b with
large versus small stimuli.

Experiment 3b was designed to assess the capacity of the SF
Bubbles technique to reveal differences in SF tuning that are due
solely to changes in the top-down influence of task demands. More
specifically, the SF Bubbles technique was applied to two different
tasks previously shown to induce different SF usage patterns
(happy/neutral vs. gender discriminations; e.g., Gosselin &
Schyns, 2001; Schyns & Oliva, 1999).
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Figure 6. Accuracy group classification vectors obtained for upright and
inverted face identification in Experiment 2a. The two faces at the bottom
show the spatial frequencies (cpf � cycles per face) that reached statistical
significance (Zcrit � 3.45, p � .05) in both orientation conditions. There
was no significant difference between the two classification vectors.
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Figure 7. Response time group classification vectors obtained for upright
and inverted face identification in Experiment 2b. The two faces at the
bottom show the spatial frequencies (cpf � cycles per face) that reached
statistical significance (Zcrit � 3.45, p � .05) in both orientation conditions.
There was no significant difference between the two classification vectors.
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Method

Participants. For Experiment 3a, 1 male and 2 female Uni-
versity of Victoria students (ages between 22 and 26 years; M �
23.7 years) were recruited. For Experiment 3b, we recruited 40
students (31 women) between 18 and 42 years of age (M � 19.8
years). All observers had normal or corrected-to-normal vision.
Participants were naı̈ve to the purpose of the study, and they
received course credits or were paid for participating.

Apparatus. See corresponding section of Experiment 1; for
the screen settings in Experiment 3a, see next section.

Stimuli. In Experiment 3a, the base stimuli of Experiments 2a
and b were used but their resolution was decreased to 128 � 128
pixels. In the small condition, observers saw the upright face
stimuli at a screen resolution of 2,048 � 1,536 pixels and at a
distance of 180 cm, resulting in a face width of 0.5° of visual
angle. In the big condition, they saw them at a screen resolution of
640 � 480 pixels and at a viewing distance of 45 cm, resulting in
a face width of 5.9° of visual angle.

In Experiment 3b, the same 10 neutral faces (5 males, 5 females)
were used as in Experiments 2a, 2b, and 3a. The corresponding 10
happy faces, however, differed from the set previously used in that
no teeth were visible (Figure 9). We chose this set to make task
difficulty between gender and happy/neutral discriminations more
similar; a pilot study showed ceiling effects for happy/neutral
discrimination when accuracy for gender was in the 65%–75%
range. Base stimuli had a resolution of 256 � 256 pixels and face
width subtended a visual angle of 6.5°. They were normalized for

a number of low-level visual features and for the main facial
feature position as in Experiments 2a, 2b, and 3a.

Procedure. In Experiment 3a, participants performed the
same 10-alternative face identification task as in Experiment 2a.
Each participant completed 3,300 trials per condition. We adjusted
the quantity of additive white Gaussian noise (as described in the
Method section for Experiment 1) on a block-by-block basis so
that performance was approximately 80% correct in the big con-
dition (i.e., the easiest condition). The 100-trial blocks succeeded
each other as in Experiment 2a, but this time alternating between
big and small rather than between upright and inverted.

Experiment 3b was divided in two parts: Each participant com-
pleted six consecutive 100-trial blocks of happy/neutral discrimi-
nation and six consecutive 100-trial blocks of gender discrimina-
tion. The first 20 participants initially completed the happy/neutral
discrimination, followed by the gender discrimination; the last 20
participants completed the tasks in the opposite order. Each trial
began with a central fixation cross presented for 412 ms, followed
by an upright face presented for 412 ms, and then by a homoge-
neous mid-gray field that remained on the screen until the observer
responded by pressing the appropriate key on a computer key-
board. Keys were counterbalanced across participants. For the
initial task, performance was adjusted on a trial-by-trial basis by
manipulating the quantity of additive noise using QUEST (Watson
& Pelli, 1983). In the second task of Experiment 3b, the same
experimental stimuli were used (i.e., same base faces, same sam-
pling vector, and same amount of white Gaussian noise) as in the
corresponding trials of the first task of Experiment 3b.

Results and Discussion

For each participant, the first 100-trial block of each task was
considered as practice and was discarded from data analysis. The
analyses were thus performed on 19,200 trials (3,200 trials per size
condition � 2 size conditions � 3 participants) and 40,000 trials
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Figure 8. Accuracy group classification vectors obtained for upright and
inverted face identification in Experiment 2c with stimuli from Goffaux
and Rossion (2006). The two faces at the bottom show the spatial frequen-
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Figure 9. Base stimuli used in Experiment 3b. Faces displayed 10 iden-
tities � 2 expressions (neutral, happy). The neutral faces were the same as
those used in Experiments 2a, 2b, and 3a, but the happy faces differed from
those previously used in that no teeth were visible.
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(500 trials per task � 2 tasks � 40 participants) in Experiments 3a
and 3b, respectively. Because individual and group results were
very similar for Experiment 3a (with an average correlation of r �
.93 including both conditions), and because Experiment 3b was
based on a large number of observers who each completed a
relatively small number of trials, we report group results only.

Mean accuracy in Experiment 3a was similar in the small (M �
74.48%, SD � 9.79) and big conditions (M � 80.36%, SD �
1.84), t(2) � 1.227, p � .05. In the small condition, a range of SFs
of octave width 1.8 peaking at 5.00 cpf (Zmax � 12.46) exceeded
the significance threshold ( p � .05, Sr � 128, FWHM � 3.53,
Zcrit � 3.25). The significance threshold (Zcrit) is slightly lower
than in Experiment 2a because of the reduced stimulus resolution
(128 � 128 instead of 256 � 256 pixels). In the big condition, an
SF range of octave width 2.81 peaking at 8.57 cpf (Zmax � 9.19)
attained significance. This is a replication of the results of Exper-
iments 2a–c obtained with a similar face width. The difference
between the group classification vectors of the two conditions
reached significance between 3.57 cpf and 5.00 cpf as well as
between 9.29 cpf and 17.86 cpf, with a maximum at 4.29 cpf
(Zmax � 5.27). Thus, as expected, we observed a clear shift toward
lower SFs with smaller stimuli (Figure 10). This shows that the SF
Bubbles approach is capable of revealing changes in SF tuning
based on the same task and the same stimuli as in Experiment 2a.

In Experiment 3b, mean accuracy across participants was sig-
nificantly higher for happy/neutral (M � 81.20%, SD � 5.20) than
for gender discriminations (M � 65.31%, SD � 5.03), t(39) �
16.899, p � .001. The group classification vector results for happy/
neutral and gender discriminations are illustrated in Figure 11. We

analyzed the results for the different stimulus types separately, that
is, happy male, happy female, neutral male, and neutral female
classification vectors for both the happy/neutral and gender dis-
crimination tasks. These eight classification vectors allowed us to
compare the use of SF information for the same group of stimuli
(e.g., happy females) in the two tasks (gender and happy/neutral)
and thus to isolate the top-down effect of task demands.

The group classification vectors for the happy/neutral and gen-
der discriminations revealed different SF patterns for each of the
four stimulus types. With happy male faces, the significant portion
of the classification vector for the happy/neutral task was shifted
into a lower SF range (with peaks at 2.14 cpf, Zmax � 6.45, and 5
cpf, Zmax � 6.37) than the peak for the gender task (7.86 cpf,
Zmax � 3.94, p � .05, Sr � 256, FWHM � 3.53, Zcrit � 3.45; for
details, see Chauvin et al., 2005). The correlation between the
classification vectors was r � �.52. With neutral male faces, the
classification vector for the happy/neutral task peaked at 8.57 cpf
(Zmax � 7.75), and for the gender task at 10 cpf (Zmax � 4.10); the
correlation was r � .44. With happy female faces, the classifica-
tion vectors for the two tasks both peaked at 2.86 cpf (Zmax � 9.27,
happy/neutral; Zmax � 11.75, gender) and had a correlation of r �
.90. With neutral female faces, two distinct peaks were revealed at
7.86 cpf (Zmax � 9.33) for happy/neutral and at 2.14 cpf (Zmax �
7.84) for gender discriminations, with a correlation between clas-
sification vectors of r � .39. With all four stimulus types, the
difference between the classification vectors for happy/neutral and
gender reached significance. Furthermore, the results revealed that
for both male and female faces, the happy/neutral classification
vectors were only weakly correlated (r � �.03 and r � .22,
respectively), and that for both happy and neutral faces, the gender
classification vectors had a relatively weak correlation as well (r �
�.46 and r � �.48). These results are in accordance with the view
that the information required for different tasks can reside at
different SFs of the same stimulus, and that our visual system is
flexibly tuned to extract this information. Overall, the results of
Experiment 3b show that SF Bubbles is a technique sensitive to
differences in SF tuning that are only due to changes in task
demand.

Together the findings of Experiments 3a and b demonstrate that
the SF Bubbles approach is capable of revealing subtle differences
in SF tuning for complex stimuli induced by a bottom-up factor
(Experiment 3a) and by a top-down factor (Experiment 3b). These
results also suggest that the null results of Experiments 2a–c are
real; thus, the FIE cannot be attributed to qualitative processing
differences at the SF level.

General Discussion

The goals of the present study were to introduce a new SF
probing technique and to uncover the SFs that mediate upright and
inverted face identification. It comprised six experiments: The first
experiment was designed to assess the validity of the SF Bubbles
technique. Using a plaid detection task, we verified that the SF
Bubbles method could reveal precisely the two SFs of the plaid.
Compared with traditional SF sampling techniques—such as high-
pass, low-pass, and band-pass filtering (e.g., Boutet et al., 2003;
Goffaux & Rossion, 2006), or critical band masking (e.g., Gaspar,
Sekuler, & Bennett, 2008)—SF Bubbles minimizes the risk that
observers adapt to a certain SF range during the task by randomly

1  5 10 50

-4

-2

0

2

4

6

8

10

12

Spatial frequency (cpf)

Z
-S

co
re

 p < .05

Big
Small
Difference
Threshold

Small Big

Figure 10. Accuracy group classification vectors for upright face iden-
tification obtained in the big and small conditions of Experiment 3a. The
two faces at the bottom show the spatial frequencies (cpf � cycles per face)
that reached statistical significance (Zcrit � 3.25, p � .05) in both size
conditions. The difference between classification vectors exceeded the
significance threshold.

131FACE INVERSION AND SPATIAL FREQUENCY



sampling the SF information on a trial-by-trial basis. Another
advantage of SF Bubbles in comparison with critical band masking
is that SF Bubbles does not assume that SFs are integrated linearly.
We could, in principle, evaluate the joint utilization of two or more
SF bands provided that we perform computationally taxing
second-order analyses, which go beyond the scope of the current
article (e.g., Schyns et al., 2002).

The next three experiments—the main experiments of the article—
examined which SFs are diagnostic for the accurate (Experiments 2a
and c) and fast (Experiment 2b) identification of upright and inverted
faces. Although accuracy was on average 24% higher and RTs were
455 ms shorter with upright faces, thus showing a clear FIE, SF
tunings were remarkably similar in both orientation conditions. A
single SF band of 1.9 octaves that peaked at 9.8 cpf width was used
by observers. This result was obtained independently of whether
we used the accuracy (Experiments 2a and c) or RT (Experiment
2b) classification vectors. Moreover, this finding appears to be
robust to changes in procedures (many trials and few subjects in
Experiments 2a and 2b; few trials and relatively many subjects in
Experiment 2c) and to changes in face sets. In Experiment 2c, we
employed a subset of the base faces used by Goffaux and Rossion
(2006) and replicated our findings of Experiment 2a.

To rule out that this null result was due to an insensitivity of the
SF Bubbles technique, Experiment 3a re-examined SF tuning in
the identification task of Experiment 2a as a function of stimulus
size, which is known to influence SF tuning in a bottom-up fashion
(Chung et al., 2002; Loftus & Harley, 2005; Majaj et al., 2002;
Näsänen, 1999). In Experiment 3b, task demands were modified
(gender or happy/neutral discrimination) to modulate SF tuning in
a top-down fashion (e.g., Schyns & Oliva, 1999). In both cases, we
revealed subtle differences in SF use, confirming that the SF

Bubbles technique is sensitive to bottom–up- and top–down-
induced SF tuning changes. This result suggests that the null
results of Experiments 2a–c are real. In addition, the big condition
of Experiment 3a, which employed size parameters comparable to
those of Experiments 2a–c, closely replicated our previous results.

The SF range revealed in the present study for faces subtending
a horizontal visual angle of approximately 6° is consistent with the
intermediate-SF band (centered between 7 cpf and 16 cpf) identi-
fied as optimal in previous experiments for upright faces of visual
angles between 2.3° and 9.5° (e.g., Costen et al., 1994, 1996;
Gaspar, Sekuler, & Bennett, 2008; Gold et al., 1999; Näsänen,
1999). Our results are also consistent with those of Boutet et al.
(2003), who argued that band-pass filtering faces in the low-SF
(1.25–5 cpf), medium-SF (5–20 cpf), or high-SF (20–80 cpf)
range had little impact on the FIE. Furthermore, our results are in
agreement with a recent study on SF use in upright and inverted
face identification by Gaspar, Sekuler, and Bennett (2008). They
used critical band noise masking to examine SF tuning in two
10-choice identification tasks and reported that SF tuning for
upright and inverted faces was mediated by the same SF band
(approximately 1.5 octaves wide and centered at about 7 cpf for
face stimuli with a width of 2.3° of visual angle). Our study
replicates their findings based on accuracy and complements them
by including RT analyses, by using a different SF probing tech-
nique, and by using different indexes of the FIE. Specifically, they
equated accuracy between orientation conditions by manipulating
the quantity of signal, and signal threshold was their index of the
FIE. In contrast, we used the same quantity of signal and noise for
upright and inverted faces, and response accuracy and RT were our
indexes of the FIE.

Figure 11. Accuracy group classification vectors obtained for two different tasks (happy/neutral and gender
discriminations) performed on the same face set (Experiment 3b). For all stimulus types, the difference between
the classification vectors for the two tasks exceeded the significance threshold (Zcrit � 3.45, p � .05).
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Our face identification results, however, appear to contradict the
findings obtained by Collishaw and Hole (2000) and Goffaux and
Rossion (2006), which suggest that inversion might be particularly
detrimental to faces containing only low SFs.1 For example,
Goffaux and Rossion reported that the composite face effect
(Young et al., 1987) and the whole–part advantage (Tanaka &
Farah, 1993)—used as indexes of holistic processing—were more
pronounced for low-pass filtered (�8 cpf) than for high-pass
filtered (�32 cpf) upright faces. In an additional experiment, they
found that the composite effect for upright faces in the low-SF
condition was also larger than in an intermediate-SF (8–32 cpf)
condition. In contrast, no disproportionate composite effect for low
SFs was observed when faces were upside-down. The authors
concluded that holistic processing is largely supported by low SFs
(but see Cheung, Richler, Palmeri, & Gauthier, 2008, for a re-
examination with an extended paradigm). An SF Bubbles experi-
ment is unbiased in comparison with low-pass, high-pass, or
band-pass filtering in the sense that on some trials it is equivalent
to low-pass filtering, on others to high-pass filtering, and on others
to band-pass filtering. On the majority of trials, it is equivalent to
band-pass filtering multiple bands simultaneously. At the limit, it
contains all possible filtering experiments. If there was a difference
in the low-SF range between the identification of upright and
inverted faces, this difference should have affected participants’
behavior in our experiments at least on the trials in which only low
SFs were shown, and we should have seen traces of this in the
classification vectors. However, we did not observe such an effect.

How much of the variance between these findings can be
explained by different modes of stimulus presentation remains to
be investigated. Collishaw and Hole (2002) presented stimuli with
both inner and outer facial features (see also Goffaux & Rossion,
2006, Experiment 1). Goffaux and Rossion (2006, Experiments
2–4) showed inner facial features through different elliptical ap-
ertures, whereas Gaspar, Sekuler, and Bennett (2008) showed
inner facial features through a constant elliptical aperture. We
employed the same approach as Gaspar, Sekuler, and Bennett and
obtained results consistent with theirs but inconsistent with the
studies using a different mode of stimulus presentation.

Another potential explanation for the different findings is that
the studies tap into different processes. It is conceivable that
holistic processing as indexed by the composite face effect does
not correlate with accurate face identification. In fact, Konar,
Bennett, and Sekuler (2007, 2008) assessed this possibility by
using a composite face task and different identification tasks in a
within-subject design. In the composite task, participants were
asked to make same–different judgments about the top halves of
faces while they were either aligned or misaligned with the bottom
halves. In the three identification tasks, participants were asked to
either determine whether a target face was present in a lineup, or
perform a 10-alternative forced-choice identification with unlim-
ited viewing time, or perform a 4-alternative forced-choice iden-
tification with a viewing time of 200 ms (i.e., the viewing duration
in the composite task). No correlation was found between the
strength of the composite face effect and accuracy in any of these
face identification tasks. If there is a qualitative difference between
the processing of upright and inverted faces—possibly in SF
use—that is neither correlated with accuracy nor with RT in face
identification, it will not be revealed in our classification vectors.
Thus, even though we did not find differences in SF use for the

identification of upright and inverted faces, our results are not
necessarily inconsistent with a qualitative view of the FIE.

It also remains possible that the same SFs are used, but in a
different fashion. For example, in the upright condition, observers
might use information at 9.8 cpf to encode the distance between
eye and eyebrow; in the inverted condition, they might use infor-
mation at the same SF to encode local features of the eye. Ac-
cordingly, Boutet et al. (2003) showed that intermediate SFs are
optimal for both configural and featural modifications (but see
Goffaux, Hault, Michel, Vuong, & Rossion, 2005, for a dissocia-
tion between low- and high-SF information and the extraction of
configural and featural cues). Although the present study provides
a precise estimate of the SF tuning curves and demonstrates that
the performance drop with inversion is not due to a shift to less
informative SFs, it remains an avenue for future research to shed
light on how exactly the revealed SF information is used at other
processing stages.

The most parsimonious explanation for the present findings is
provided by the quantitative account of the FIE (Sekuler et al.,
2004). According to this view, the FIE can be explained in terms
of a decrease in the sensitivity of the same process. Sensitivity can
be broken down into calculation efficiency, its deterministic com-
ponent, and internal noise, its stochastic component. Gaspar, Ben-
nett, and Sekuler (2008) recently found evidence that face inver-
sion leads to a reduction in calculation efficiency but does not alter
internal noise. We interact much more frequently with upright than
with inverted faces, and it is thus plausible that a neural mecha-
nism similar to that thought to mediate perceptual learning is
responsible for the FIE. For instance, Kobatake, Wang, and
Tanaka (1998) showed that monkeys trained on a set of novel
stimuli have more inferotemporal neurons responsive to features of
these stimuli than untrained monkeys. The more such selective
neurons, the greater is the sensitivity. Perhaps more fusiform gyrus
neurons are responsive to upright than to inverted facial features
(see also Perrett, Oram, & Ashbridge, 1998, for a review) within
the critical SF band characterized in this article.

Conclusion

The present study introduced a novel SF sampling technique
that was applied to investigate SF tuning in upright and inverted
face identification. The results show that the same SFs (dependent
on stimulus size) were used for the accurate and fast identification
of upright and inverted inner facial features, and performance was
higher in the upright condition. The findings place an additional
constraint on theories of qualitative processing differences and are
consistent with predictions of the quantitative account of the FIE.

1 Nakayama (2003) reported a broader masking function for inverted
than for upright faces, which is also in disagreement with our SF results. To
our knowledge, this study has been published as an abstract only, and we
do not have sufficient details to discuss it any further.
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