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Abstract

This note analyzes the local asymptotic power properties of a test
proposed by Breitung (2000). We demonstrate that the Breitung test, like
many other tests (including point optimal tests) for panel unit roots in the
presence of incidental trends, has non-trivial power in neighborhoods that
shrink towards the null hypothesis at the rate of n−1/4T−1 where n and T
are the cross-section and time-series dimensions respectively. This rate is
slower than the n−1/2T−1 rate claimed by Breitung. Simulation evidence
documents the usefulness of the asymptotic approximations given here.
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1 Motivation

In the past decade or so, there has been much interest in testing for the presence
of a unit root in panel data. Many researchers have proposed statistics to test the
hypothesis of a common unit autoregressive root. Recent surveys by Baltagi and
Kao (2000), Choi (2004), Hurlin and Mignon (2004), and Breitung and Pesaran
(2005) provide an overview of these developments.
In this context, Breitung (2000) proposed a t− ratio type test statistic for

testing a panel unit root. Through numerical analysis, he claimed that his test
has ‘nice’ power properties within a certain local neighborhood of unity. The
present paper investigates analytically the asymptotic power properties of Bre-
itung’s test and clarifies some of the analytic results in Breitung (2000). Specif-
ically, we show that the limiting distribution of the Breitung test is the same
under the null and the O

¡
n−1/2T−1

¢
local alternatives considered by Breitung,
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Grant SES 04-142254. Perron acknowledges financial support from FQRSC, SSHRC, and
MITACS.
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so that the test has trivial power in such narrow neighborhoods. We provide
expressions for the local asymptotic power of this test for wider n−1/4T−1 local
departures from the null, discuss comparative results for other procedures such
as point optimal tests, and study the accuracy of the asymptotic approximations
in finite samples.

2 Breitung’s Test Statistic and Claimed Power

Suppose that panel data yit is generated by the following simple components
model

yit = µi + βit+ xit,

where the unobserved error term xit follows

xit = ρixit−1 + εit.

Our main interest is in testing the presence of a unit root in all cross-sectional
units, viz.,

H0 : ρi = 1 for all i. (1)

For this, we assume that εit ∼ iid
¡
0,σ2

¢
with E

¡
ε4it
¢
<∞, the initial observa-

tions xi0 are iid across i with E
¡
x4i0
¢
<∞ and independent of εit all t ≥ 1 and

i.1

Notice that this testing problem is invariant to the following linear trans-
formation: y∗it = yit + µ

∗
i + β∗i t. To construct a test that is invariant to the

transformation, Breitung (2000) suggested the use of the following transformed
data:

(∆yit)
∗
= st

∙
∆yit −

1

T − t (∆yit+1 + ...+∆yiT )
¸
,

for t = 1, ..., T − 1, where s2t = (T − t) / (T − t+ 1) , and

y∗it−1 = yit−1 − yi0 −
t− 1
T

(yiT − yi0) ,

for t = 2, ..., T.2 The panel unit root test for the null hypothesis (1) proposed
by Breitung (2000) is to reject the null for the small values of the following
statistic:

BnT =

Ã
σ̂2

nT 2

nX
i=1

T−1X
t=2

¡
y∗it−1

¢2!−1/2 1√
nT

nX
i=1

T−1X
t=2

(∆yit)
∗
y∗it−1

= (B2nT )−1/2 B1nT ,
1These restrictions are made for simplicity in the following analysis and can be relaxed to

cover more general cases.
2Notice that (∆yit)

∗ and y∗it−1 correspond to the terms in equations (16) and (17), respec-
tively of Breitung (2000).
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where σ̂2 is a consistent estimator of σ2. This is a t− ratio statistic from a pooled
regression of the transformed data (∆yit)

∗ on y∗it−1. Define x
∗
it =

Pt
s=1 εis.

Under the null hypothesis, a direct calculation (given in the appendix) shows
that for 2 ≤ t ≤ T − 1

E
£
(∆yit)

∗ y∗it−1
¤

= stE

∙µ
∆xit −

1

T − t (∆xit+1 + ...+∆xiT )
¶µ

xit−1 − xi0 −
t− 1
T

(xiT − xi0)
¶¸

= stE

∙½
εit −

1

T − t (x
∗
iT − x∗it)

¾½
x∗it−1 −

t− 1
T

x∗iT

¾¸
= 0,

and

lim
n,T

1

n

nX
i=1

V ar

Ã
1

T

T−1X
t=2

(∆yit)
∗ y∗it−1

!
=
1

6
σ4.

Hence, by central limit theory (e.g., see Phillips and Moon (1999)), it is possible
to show that B1nT ⇒ N

¡
0, 16σ

4
¢
as n, T →∞. On the other hand,

lim
n,T

1

n

nX
i=1

E

Ã
1

T 2

T−1X
t=2

¡
y∗it−1

¢2!
=
1

6
σ2,

so that B2nT →p
1
6σ

4 as n, T → ∞. Therefore, under the null hypothesis, it
follows that as n, T →∞,

BnT ⇒ N (0, 1) .

Breitung’s test for H0 with size α rejects H0 if BnT < −zα, where zα is the
(1− α)−quantile of the N (0, 1) distribution.
To analyze the local power of the test based on BnT , Breitung (2000) con-

sidered the following local parameterization

ρi = 1−
c

n1/2T
, (2)

and he claimed (see Theorem 5 of Breitung (2000)) that the test BnT has asymp-
totically significant local power against the local alternative

H1 : c < 0.

To verify the claim, since ∆xit = − c√
nT
xit−1 + εit under the local alternative

(2), we can express the transformed variables as follows:

(∆yit)
∗

= st

∙
εit −

1

T − t (εit+1 + ...+ εiT )

¸
− c√

nT
st

∙
xit−1 −

1

T − t (xit + ...+ xiT−1)
¸

= Ait −
c√
nT
Bit, say;
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and

y∗it−1

=

∙
(εi1 + ...+ εit−1)−

t− 1
T

(εi1 + ...+ εiT )

¸
− c√

nT

∙
(xi0 + ...+ xit−2)−

t− 1
T

(xi0 + ...+ xiT−1)

¸
= Cit−1 −

c√
nT
Dit−1, say.

Note that Ait and Cit do not depend on c. Then, the above formulae lead to
the following decomposition of B1nT

B1nT

=
1√
nT

nX
i=1

T−1X
t=2

AitCit−1 −
c

nT 2

nX
i=1

T−1X
t=2

(AitDit−1 +BitCit−1)

+
c2

n3/2T 3

nX
i=1

T−1X
t=2

BitDit−1. (3)

Lemma 1 The following hold under the local alternative ρi = 1 − c
n1/2T

as
n, T →∞.

(a) 1√
nT

Pn
i=1

PT−1
t=2 AitCit−1 ⇒ N

¡
0, 16σ

4
¢
.

(b) 1
nT2

Pn
i=1

PT−1
t=2 (AitDit−1 +BitCit−1)→p 0.

(c) 1
n.T3

Pn
i=1

PT−1
t=2 BitDit−1 = Op (1) .

(d) B2nT →p
1
6σ

4.

It follows from Lemma 1 that B1nT ⇒ N
¡
0, 16σ

4
¢
. Together with the limit

of B2nT , under the local alternative in (2) , we therefore obtain BnT ⇒ N (0, 1)
and have the following result.

Theorem 2 Under the local alternative ρi = 1 − c
n1/2T

assumed in Breitung
(2000), the Breitung test statistic BnT has asymptotic power equal to the size of
the test.

The above result does not imply a mistake in Breitung (2000). Specifically,
Breitung stated that the power of his test depends on a quantity that in our

notation is E
h
1
T

PT−1
t=2 y

∗
it (∆yit)

∗
i
. However, the above results demonstrate

that this expectation has zero limit. Instead of an analytical evaluation of the
limit, Breitung relied on a numerical approximation to the expectation which
suggested non-negligible power against alternatives of the form (2). Our results
indicate that the numerical approximation is poor and that consequently the
implications regarding power in neighborhoods of the form (2) are misleading.
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3 Asymptotic Local Power of Breitung’s Test

The main problem with Theorem 2 is that the local neighborhood in (2) shrinks
too fast to unity and so the asymptotic power is trivial. To correct the result,
this section considers local neighborhoods that shrink to unity more slowly and
derives an asymptotic local power function for the Breitung test.
First, consider the local to unity region defined by

ρi = 1−
ci

n1/4T
, (4)

where the ci may be defined as the realizations of a sequence of iid random
variables whose support lies in an interval of the form [−Mlc,Muc] for some
0 < Mlc <∞ and 0 ≤Muc <∞. Let ci be independent of εjs for all i, j, s. Under
these conditions, the numerator of Breitung’s test statistic can be decomposed
as

B1nT

=
1√
nT

nX
i=1

T−1X
t=2

AitCit−1 −
1

n3/4T 2

nX
i=1

ci

T−1X
t=2

(AitDit−1 +BitCit−1)

+
1

nT 3

nX
i=1

c2i

T−1X
t=2

BitDit−1,

where the components Ait, Bit, Cit−1, and Dit−1 are defined in the previous
section.

Lemma 3 Under the local alternative (4) , the following hold as n, T →∞.

(a) 1√
nT

Pn
i=1

PT−1
t=2 AitCit−1 ⇒ N

¡
0, 16σ

4
¢
.

(b) 1
n3/4T2

Pn
i=1 ci

PT−1
t=2 (AitDit−1 +BitCit−1)→p −

E(c2i)σ2

18 .

(c) 1
nT3

Pn
i=1 c

2
i

PT−1
t=2 BitDit−1 →p

E(c2i )σ2

36 .

(d) B2nT →p
1
6σ

4.

Using Lemma 3, the limit distribution under the local alternative hypothesis
(4) is

BnT ⇒ N

Ã
−
E
¡
c2i
¢

6
√
6
, 1

!
,

from which we deduce the following theorem.

Theorem 4 Against the local alternative in (4), the asymptotic local power of

Breitung’s test is Φ

µ
E(c2i )
6
√
6
− zα

¶
.
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Remarks

1. Contrary to Breitung’s (2000) claim, non-trivial local power is defined in
neighborhoods that shrink towards the null hypothesis at the rate 1

n1/4T
.

This is the same rate worked out by Moon, Perron, and Phillips (2005) in
defining the power envelope for panel unit root testing in the context of
incidental trends for models in this form.

2. In contrast to Breitung (2000), the result above is obtained against het-
erogeneous alternatives. The test therefore has significant power against
this type of hypothesis despite pooling.

3. The power of Breitung’s test depends on the second moments of the local-
to-unity parameters. Thus, for a given mean autoregressive parameter,
the more heterogeneous the alternatives are, the easier they are to detect.

4. Moon, Perron, and Phillips (2005) derive the power envelope for the above
testing problem, suggest a common point optimal (CPO) test and discuss
the local asymptotic power of other tests such as those proposed by Levin
et al. (2002), Ploberger and Phillips (2002), and Moon and Phillips (2004).
According to those results, the test based on BnT is more powerful than
the Levin et al. and Moon and Phillips tests, but less powerful than the
Ploberger-Phillips and CPO tests.

A small scale simulation was conducted to assess the accuracy of these
asymptotic results in finite samples. We use the following data generating pro-
cess:

zit = b0i + b1it+ yit,

yit = ρiyit−1 + uit,

yi,−1 = 0, uit ∼ iid N (0, 1) .

The heterogeneous trend coefficients are taken to be iid N (0, 1) . We assume
that the error term is independent in both time and cross-section dimensions
with a Gaussian distribution and identical variances. We consider four values
for n (10, 25, 100, and 250) and three values for T (50, 100, and 250). All tests
are carried out at the 5% significance level, and the number of replications is
set at 10,000.
The autoregressive parameters are generated according to (4) . We consider

the following nine distributions for the local-to-unity parameters:

(0) ci = 0 ∀i (size),

(1) ci ∼ iidU [0, 2] ,

(2) ci ∼ iidU [0, 4] ,

(3) ci ∼ iidU [0, 8] ,
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(4) ci ∼ iidχ2 (1) ,

(5) ci ∼ iidχ2 (2) ,

(6) ci ∼ iidχ2 (4) ,

(7) ci = 1 ∀i,

(8) ci = 2 ∀i.

These distributions enable us to examine performance of the tests as the
mass of the distribution of the localizing parameters moves away from the null
hypothesis. We can also look at the effect of homogeneous versus heterogeneous
alternatives (cases (1) and (4) versus (7), and cases (2) and (5) versus (8))
together with the role of the higher-order moments of the distribution. For
instance, case (7) has the same mean as cases (1) and (4) but smaller higher-
order moments than the other two cases. The same situation arises for cases
(2), (5), and (8), and cases (3) and (6). Note that the alternatives with χ2

distributions do not fit our asymptotic framework since they have unbounded
support.
Table 1 presents the results. The second column provides the size and power

predicted by our asymptotic theory using the moments of ci. The other columns
in the table report the size and size-adjusted power of the tests for the various
combinations of n and T . If asymptotic theory were a reliable guide to finite-
sample behavior, all columns in the table would be very close.

Table 1. Size and size-adjusted power of Breitung’s test

T = 50 T = 100 T = 250
Theory n = 10 25 100 250 n =10 25 100 250 n =10 25 100 250

ci = 0 (size) 5.0 6.6 5.1 3.8 2.7 6.1 5.5 4.8 3.8 6.4 5.8 4.7 4.3
ci ∼ U [0, 2] 6.0 5.0 5.6 6.0 5.4 5.3 5.4 5.2 5.6 5.6 5.2 6.2 6.7
ci ∼ U [0, 4] 10.0 6.9 8.2 8.7 8.6 7.3 7.8 8.3 8.8 8.3 7.9 9.6 9.9
ci ∼ U [0, 8] 42.3 13.3 17.6 22.0 24.4 15.6 18.5 22.9 27.0 16.2 19.3 24.3 30.0
ci ∼ χ2 (1) 7.5 5.5 6.4 6.2 6.8 6.3 5.8 5.9 6.7 6.4 6.2 7.7 7.0
ci ∼ χ2 (2) 13.6 7.1 8.4 9.1 10.0 7.7 8.7 8.8 10.0 8.4 8.6 10.4 11.0
ci ∼ χ2 (4) 49.5 13.8 17.3 21.8 24.8 15.4 17.1 21.1 26.1 16.0 18.2 24.8 29.4
ci = 1 5.7 4.4 5.5 6.1 5.3 5.8 5.1 5.2 5.6 5.8 5.4 5.5 6.1
ci = 2 8.5 5.8 7.4 7.7 7.8 7.0 7.4 7.2 8.1 7.0 7.5 9.1 8.6

Note: The second column reports the rejection frequency of the panel unit
root hypothesis based on a one-sided test according to our theory. The remain-
ing columns report the actual rejection frequencies using ether the asymptotic
critical value (for size) or the empirical critical value (for size-adjusted power)
based on 10,000 replications.

Overall, we see that the test performs much more closely to the asymptotic
theory as both n and T increase. The test underrejects for large n relative to T .
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Power is usually below what is predicted by asymptotic theory, especially for
the more distant alternatives, but the discrepancy diminishes with increases in
either n or T or both. Finally, experiments where the local-to-unity parameters
have a fatter tailed distribution tend to have higher power as predicted. Thus,
for a given mean autoregressive parameter, more heterogeneous alternatives are
easier to detect (despite the pooling approach used in the test). There also seems
no sign that the unboundedness of the χ2 distributions affects the validity of
the asymptotic theory.
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4 Appendix: Proofs

Proof of Lemma 1
Part (a): Part (a) follows because the distribution of 1√

nT

Pn
i=1

PT−1
t=2 AitCit−1

is identical to that of B1nT under the null since neither Ait nor Cit−1 depends
on c. ¥

Part (b): Under the given assumptions, by a WLLN,

1

nT 2

nX
i=1

T−1X
t=2

(AitDit−1 +BitCit−1)→p lim
T→∞

1

T 2

T−1X
t=2

E [AitDit−1 +BitCit−1] .

Recall the definition x∗it =
Pt
s=1 εis. For 2 ≤ t ≤ T − 1, we have

E [AitDit−1]

= E

∙
st

½
εit −

1

T − t (εit+1 + ...+ εiT )

¾½
(xi0 + ...+ xit−2)−

t− 1
T

(xi0 + ...+ xiT−1)

¾¸
= E

∙
st

½
εit −

1

T − t (x
∗
iT − x∗it)

¾½¡
x∗i1 + ...+ x

∗
it−2

¢
− t− 1

T

¡
x∗i1 + ...+ x

∗
iT−1

¢¾¸
+ o (1)

= E
£
stεit

¡
x∗i1 + ...+ x

∗
it−2

¢¤
− 1

T − tE
£
st (x

∗
iT − x∗it)

¡
x∗i1 + ...+ x

∗
it−2

¢¤
− t− 1

T
E
£
stεit

¡
x∗i1 + ...+ x

∗
iT−1

¢¤
+

1

T − t
t− 1
T

E
£
st (εit+1 + ...+ εiT )

¡
x∗i1 + ...+ x

∗
iT−1

¢¤
= st

µ
− t− 1

T
(T − t) + t− 1

T

T − t− 1
2

¶
.

9



Also,

E [BitCit−1]

= E

∙
st

½
xit−1 −

1

T − t (xit + ...+ xiT−1)
¾½

(εi1 + ...+ εit−1)−
t− 1
T

(εi1 + ...+ εiT )

¾¸
= E

∙
st

½
x∗it−1 −

1

T − t
¡
x∗it + ...+ x

∗
iT−1

¢¾½
x∗it−1 −

t− 1
T

x∗iT

¾¸
+ o (1)

= E
£
stx
∗
it−1x

∗
it−1

¤
− 1

T − tE
£
st
¡
x∗it + ...+ x

∗
iT−1

¢
x∗it−1

¤
− t− 1

T
E
£
stx
∗
it−1x

∗
iT

¤
+

1

T − t
t− 1
T

E
£
st
¡
x∗it + ...+ x

∗
iT−1

¢
x∗iT
¤

= st

∙
− t− 1

T
(t− 1) + t− 1

T

(T + t− 1)
2

¸
.

Combining these, we have the required result for Part (b) since

1

T 2

T−1X
t=2

E [AitDit−1 +BitCit−1]→
Z 1

0

µ
−r (1− r) + 1

2
r (1− r)− r2 + 1

2
r (1 + r)

¶
dr = 0. ¥

Parts (c) and (d): These follow by a WLLN. ¥

Proof of Lemma 3
In this proof we use the notation x∗it =

Pt
q=1 εiq + x

∗
i0, where x

∗
i0 = xi0.

Also, for notational convenience, we write εi0 = xi0 = x
∗
i0. Then, by definition,

for t ≥ 1,

xit − x∗it =
t−1X
p=0

¡
ρt−pi − 1

¢
εip =

t−1X
p=0

t−pX
l=1

µ
t− p
l

¶³
− ci
n1/4T

´l
εip. (5)

Parts (a) and (d): They follow in the same fashion as Parts (a) and (d) in
Lemma 1. ¥

Part (b): Using (5) , we can approximate the quantity of interest as:

1

n3/4T 2

nX
i=1

ci

T−1X
t=2

(AitDit−1 +BitCit−1)

=
1

n3/4T 2

nX
i=1

ci

T−1X
t=2

(AitD1,it−1 +B1,itCit−1)−
1

nT 2

nX
i=1

c2i

T−1X
t=2

(AitD2,it−1 +B2,itCit−1) + op (1) ,
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where

Ait = st

"
εit −

1

T − t

Ã
TX

q=t+1

εiq

!#
, Cit−1 =

"Ã
t−1X
q=1

εiq

!
− t− 1

T

Ã
TX
q=1

εiq

!#

B1,it = st

"
x∗it−1 −

1

T − t

Ã
T−1X
q=t

x∗iq

!#
,

B2,it = st

"
t−2X
p=0

µ
t− p− 1

T

¶
εip −

1

T − t

Ã
T−1X
q=t

q−1X
p=0

µ
q − p
T

¶
εip

!#
,

D1,it−1 =
t−2X
q=0

x∗iq −
t− 1
T

T−1X
q=0

x∗iq,

D2,it−1 =

"
t−2X
q=1

q−1X
p=0

µ
q − p
T

¶
εip −

t− 1
T

T−1X
q=1

q−1X
p=0

µ
q − p
T

¶
εip

#
.

Note that E
h
1
T2

PT−1
t=2 (AitD1,it−1 +B1,itCit−1)

i
≤ M̄

T and

V ar

"
1
T 2

T−1X
t=2

(AitD1,it−1 +B1,itCit−1)

#
≤ M̄,

for some constant M̄ > 0. By Chebychev’s inequality, we then have

1

n3/4T 2

nX
i=1

ci

T−1X
t=2

(AitD1,it−1 +B1,itCit−1) = Op

µ
1

n1/4

¶
= op (1) .

Next, we apply a WLLN (e.g., see Phillips and Moon, 1999) to deduce that

1

nT 2

nX
i=1

c2i

T−1X
t=2

(AitD2,it−1 +B2,itCit−1) → pE
¡
c2i
¢
lim
T→∞

E

"
1

T 2

T−1X
t=2

(AitD2,it−1 +B2,itCit−1)

#

= −
E
¡
c2i
¢
σ2

18

as shown in Moon, Perron, and Phillips (2006). ¥

Part (c): By the WLLN, we have

1

nT 3

nX
i=1

c2i

T−1X
t=2

BitDit−1 =
1

nT 3

nX
i=1

c2i

T−1X
t=2

B1,itD1,it−1 + op (1)

→ p E
¡
c2i
¢
lim
T→∞

E

"
1

T 3

T−1X
t=2

E (B1,itD1,it−1)

#
=
E
¡
c2i
¢
σ2

36

as shown in Moon, Perron, and Phillips (2006). ¥
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