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Abstract

This paper studies nonstationarities in a panel of Canadian and U.S. interest rates of different matu-

rities and risk. We focus on methods which model the cross-sectional dependence within the panel as

a linear dynamic factor model, and decompose our data into common and idiosyncratic components

that we analyze in turn.

Our results suggest the presence of a single nonstationary factor in our panel. Since some of the

idiosyncratic components are stationary, we conclude that these series are cointegrated. Finally, the

dominant factors can be interpreted as level and slope factors as in the term structure literature.



1 Introduction

In earlier empirical studies, using standard methods, nominal interest rates of different maturities are

typically found to be nonstationary and cointegrated (see for example Campbell and Shiller, 1987

and Evans and Lewis, 1994). On the other hand, early results in the nonstationary panel literature

that suppose that the series in the panel are independent are more favorable to stationarity (see for

example, Wu and Chen, 2001).

In this paper, we analyze a panel of 25 monthly Canadian and US interest rates of different ma-

turities and risk. First, we document significant cross-sectional correlation among the series in the

panel. To model the correlation, we employ a dynamic factor model. Then, our analysis focuses on a

decomposition of the panel into common and idiosyncratic components in order to answer the following

three questions: (i) is the observed data stationary or not and if it is nonstationary, is it because of

nonstationary common components or nonstationary idiosyncratic components?; (ii) how many com-

mon factors are necessary to capture the cross-sectional correlations and how many of these common

factors are nonstationary?; and (iii) do the estimated factors represent some observable variables of

interest?

The first question will be answered by carrying out a series of panel unit root tests and stationarity

tests that have been developed recently. Depending on the specification of the test, this will test

whether the idiosyncratic or common components are nonstationary or not. The first part of the

second question will be answered by using the panel information criteria proposed by Bai and Ng

(2002), while the second part of the question will be answered using a combination of tests and a new

information criterion developed by Bai (2004) . Finally, the third question will be answered using the

results in Bai (2004) .

We find that interest rates are characterized by a single nonstationary factor and some stationary

idiosyncratic components, in other words they are cointegrated as in Campbell and Shiller (1987) and

Evans and Lewis (1994) . Secondly, we find that the first two factors in our interest rate panel have

interpretations as level and slope factors as in the term structure literature.
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The paper is organized as follows. Section 2 introduces our data set and documents strong cross-

sectional correlation. Sections 3 provides an overview of the methodology for the analysis of factors

and our related empirical results. In Section 4, we discuss our analysis of the idiosyncratic components

by focusing specifically on the application of panel unit root tests with factors. Finally, Section 5

concludes.

2 Data

This section introduces our panel of interest rates briefly. Throughout, we suppose that we have panel

data zit of individual i that is observed at time t. Let n and T denote the size of the cross section and

time series dimensions, respectively. We model our panel using the decomposition among deterministic,

common and idiosyncratic components as in Bai and Ng (2004):

zit = dit + cit + uit, (1)

where dit is the deterministic component, cit the common component, and uit the idiosyncratic com-

ponent. In view of the type of data that we consider, the deterministic component will be restricted

to an individual-specific intercept, dit = αi. We model the common component, cit, with a linear

factor structure. Our goal is to characterize the stationary properties of the common and idiosyncratic

components.

Except for the case where the common component is nonstationary while the idiosyncratic one is

stationary (hence zit is cointegrated), it is sometimes more convenient for characterizing the stationarity

properties of zit to express model (1) in an autoregressive form as in Moon and Perron (2004) :

zit = αi + z
0
it (2)

z0it = ρiz
0
it−1 + yit,
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where yit are unobservable error terms with a factor structure:

yit = β0ift + eit, (3)

where ft areK×1 vectors of unobservable random factors, βi are nonrandom factor loading coefficients,

eit are idiosyncratic shocks, and the number of factors K is unknown.

Because Bai and Ng (2004) work with the decomposition (1) directly, this allows them to consider

testing separately the stationarity of the factors and the stationarity of the idiosyncractic component.

This has two advantages: first, the factors are considered as objects of interest than can be analyzed,

and second, cointegration among the panel units is allowed. We will follow this strategy rather closely.

Our panel consists of 14 monthly Canadian interest rates and 11 U.S. rates. These vary by both

maturity and risk. The included Canadian rates are 1-, 3-, and 6-month T-bills, federal government

bonds with a maturity of 1, 2, 3, 4, 7, and 10 years, commercial paper with a maturity of 1 month and

3 months and Scotia indices of yields on corporate bonds with mid-term and long-term maturities.

The U.S. rates are Treasury securities with 3 months, 6 months, and 1, 2, 3, 5, 7, and 10 years to

maturity, 1-month commercial paper, and Moody’s indices of yields on corporate bonds with AAA

and BAA ratings. The panel spans the January 1985-April 2004 period for a total of 232 observations

for each rate.

Table 1 presents estimates of the short-run correlation matrix for this data.1 We have divided the

data into Canadian and U.S. rates. There are high correlations among yields with similar maturity

in a given country. In particular, the correlation among long rates is very high as should be the case

if the expectations hypothesis were true. There is much lower correlation within a country between

short rates and long rates and across countries for the same maturity. For example, the 3-month

Canadian T-bill has a correlation of .933 with the 6-month Canadian T-bill but of only .405 with the

3-month US Treasury. Thus, the data is supportive of a model with high degree of correlation among

1The long-run correlation matrix is similar and is not reported.
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cross-sectional units such as our factor model.

3 Analysis of Factors

Our first step in our analysis of the nonstationary properties of our panel is to analyze the behavior of

the common factors. This entails estimating the total number of common factors and determining how

many of these are nonstationary. We will also attempt to relate the estimated factors to observable

variables of interest. The first subsection discusses our methodology, while the second one reports our

empirical results.

3.1 Methodology

3.1.1 Estimation of number of factors

One of our main goals is to determine the number of factors in the possibly nonstationary panel model

(1)− (3). To this end, we will employ information criteria as suggested by Bai and Ng (2002) . These

information criteria will be applied to factors estimated by principal components either on residuals

(following the Moon and Perron (2004) approach) or on first differences (following Bai and Ng (2004)).

To estimate the true number of factors, K, Bai and Ng (2002) propose to minimize the following

criterion functions,

PC (r) = σ̂2e (r) + rGnT ,

IC (r) = ln
¡
σ̂2e (r)

¢
+ rGnT , (4)

where r is the number of factors included in the model, σ̂2e (r) is the variance of the estimated id-

iosyncratic components, and GnT is a penalty function that depends on the size of the panel. These

criteria are similar in spirit to the common AIC and BIC criteria for time series. They involve a

trade-off between some measure of fit (as measured by σ̂2e (r)) and a function Gn,T that acts as penalty

for more complex models. The penalty function has to satisfy the conditions (i) Gn,T → 0 and (ii)
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min {n, T}Gn,T → ∞. as both nand T go to infinity. As we increase the number of factors, the fit

must improve ( i.e. σ̂2e goes down), but the penalty term increases. The estimated number of factors

is the integer that minimizes the appropriate criterion.

Bai and Ng (2002) and Moon and Perron (2004) demonstrate that estimation of the total number

of factors by minimizing either the PC or IC criterion is consistent in the sense that the probability

that the estimated number of factors equals the true one approaches one as both n and T become

large.

Bai and Ng suggest three specific forms of the penalty function for the PC criterion:

GPC,1,nT = σ̂2e (Kmax)
n+ T

nT
ln

µ
nT

n+ T

¶
,

GPC,2,nT = σ̂2e (Kmax)
n+ T

nT
ln (min {n, T}) , (5)

GPC,3,nT = σ̂2e (Kmax)

µ
ln (min {n, T})
min {n, T}

¶
,

where σ̂2e (Kmax) is the variance of the idiosyncratic component estimated with the maximum number

of factors leading to criteria PC1, PC2, and PC3 respectively, and

GIC,1,nT =
n+ T

nT
ln

µ
nT

n+ T

¶
,

GIC,2,nT =
n+ T

nT
ln (min {n, T}) , (6)

GIC,3,nT =

µ
ln (min {n, T})
min {n, T}

¶
,

leading to the IC1, IC2, and IC3 criteria respectively. Note that, just as in BIC, the IC has the

advantage of not requiring the estimation of a scaling factor in the penalty function. We also consider

the modified BIC criterion (called BIC3) :

BIC3 (r) = σ̂2e (r) + rσ̂
2
e (Kmax)

n+ T − r
nT

ln (nT ) (7)
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because simulation evidence suggests that it performs better in selecting the number of factors when

min (n, T ) is small (≤ 20) as is often the case in empirical applications. Bai and Ng rejected this crite-

rion because it does not satisfy the required conditions for consistency when either n or T dominates

the other one exponentially, but this appears to be a rather unusual case. For small n and T of roughly

the same magnitude, this criterion performed best in their simulation among those they considered.

For large panels, all three forms of the penalty function are essentially equivalent.

3.1.2 Determining the number of nonstationary factors

When the common component cit in (1) is nonstationary, it may be a linear combination of stationary

and nonstationary factors. Once we have determined the total number of factors using the above

information criteria on either first differences or residuals, our next task is to determine how many of

these factors are nonstationary. For this purpose, we will draw from two approaches. The first one is

an extension of the information criteria above. The second is a testing procedure proposed in Bai and

Ng (2004) that tests the rank of the long-run covariance matrix of the factors.

Bai (2004) proposed new information criteria to select the number of nonstationary factors in a

panel. These are closely related to the information criteria in Bai and Ng (2002) discussed above, but

they are applied to the levels of the series rather than the first differences or the residuals. The three

criteria are:

IPC1 (r) = σ̂2u (r) + rαT σ̂
2
u (Kmax)

n+ T

nT
ln

µ
nT

n+ T

¶
,

IPC2 (r) = σ̂2u (r) + rαT σ̂
2
u (Kmax)

n+ T

nT
ln (min {n, T}) , (8)

IPC3 (r) = σ̂2u (r) + rαT σ̂
2
u (Kmax)

n+ T − r
nT

ln (nT ) ,

where ûit = zit − d̂it − ĉit are the estimated idiosyncratic components from level data zit and

αT = T/ [4 ln ln (T )] . Thus, the IC and PC criteria are used to estimate the total number of factors

(stationary and nonstationary), while the use of these IPC criteria on levels estimates the number of
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nonstationary factors. The criterion we will use is the IPC1 criterion. Bai also suggested the use of

BIC on level data to estimate the number of nonstationary factors. This seems to perform better for

smaller panels. Note that the consistency result in Bai (2004) requires that the idiosyncratic compo-

nent be stationary. In the next section, we provide evidence that suggests that this condition is in fact

met in our data.

In addition to these information criteria, we will look at the modified Qc (MQc) statistic of Bai and

Ng (2004) to determine the number of nonstationary factors in our panels. The statistic tests whether

the smallest eigenvalue of the matrix of a first-order VAR is unity and proceeds in a sequential fashion

as in the standard Johansen technique. We first start assuming that all K̂ factors are nonstationary.

If this is the case, all of the eigenvalues from the VAR matrix are unity, and we cannot reject the

null hypothesis that the number of nonstationary factors equals the total number of factors. If we can

reject this null hypothesis, we move on to tests whether there are K̂ − 1 nonstationary factors and

so on. We stop when we cannot reject that the smallest eigenvalue is 1. The limiting distribution of

the MQc statistic is nonstandard, and critical values are provided in Bai and Ng (2004) for up to 6

factors. Finally, to confirm our results, we will compute the KPSS statistic for testing stationarity on

each estimated factor. This procedure has been shown to be valid in Bai and Ng (2005) .

3.1.3 Inference on estimated factors

Recently, Bai (2004) has obtained inferential results for nonstationary factors. In particular, these

allow to test whether some observable variable can be argued to represent these factors.

The inherent problem with the estimated factors is that they are only identified up to normalization

(they are a basis to some space only). The idea of Bai to circumvent this problem is to first rotate the

estimated factors towards the observed series of interest by estimating the linear regression:

Rt = α+ δ0Ft + ηt. (9)

where Rt is some observed series and Ft are the estimated factors. In our results below, we will report
7



the R2 of this regression for each individual series in the panels and some spreads (in levels and in

first differences to prevent against a spurious regression) for one and two factors. Of course, we could

also search for observables that are proxied by these factors outside of our panels, but the series in the

panels are natural first candidates.

Bai also proposed a procedure for testing whether one of the factors represents the observed series,

Rt. The idea is to compare the observed series Rt and the fitted values from (9) , R̂t. The construction

of these confidence intervals for R̂t require the factors to be nonstationary with stationary idiosyncratic

errors, otherwise the above regression is a spurious regression (see Phillips (1986)). These distributional

results are pointwise (i.e. for each t) which means that if a factor truly represents the observed series Rt,

we should see (under independence) α% of the observations fall outside of a 1−α% confidence interval

constructed in this fashion. In consequence, we will also report in our tables below the percentage

of observations that fall outside the appropriate 95% confidence interval. If the asymptotic analysis

is accurate and one of the included factors in the above regression represents the observed series, we

should expect to see entries close to 5% in these columns.

3.2 Empirical results

In this section, we apply our procedures to the analysis of our panel of nominal yields. We first start by

estimating the total number of factors. Typically, the term structure literature employs three factors

(see Litterman and Scheinkman, 1988). However, the number of factors does not seem to be well

estimated by the Bai and Ng information criteria. The IC1 suggests the presence of 8 factors (the

maximum number we allowed), while BIC suggests 7 factors.

Table 2 reports our evidence regarding the number of nonstationary factors. Using the MQc

statistic, we find a single nonstationary factor, regardless of the maximum number of factors. However,

results with information criteria are more fragile. With a maximum of 8 nonstationary factors, the

IPC criterion finds 4 nonstationary factors while the BIC finds 3. After setting the maximum number

of factors to 4, the IPC finds 3 factors and the BIC finds 2 factors. If we allow only 2 factors, all
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criteria find a single one as with the MQc statistic. Finally, the KPSS statistic rejects stationarity for

only one factor. Thus, our results point to the presence of a single nonstationary factor.

To determine whether our estimated factors proxy some variables of interest, we regressed each

interest rate on a constant and either the first one or two estimated factors. The first two columns

of the table report the R2 from regression (9) when a single factor is included on the right-hand side.

The results from this regression are presented in table 3 for each interest rate in the panel and for

some interest rate spreads. The table reveals that all rates are highly correlated with the first factor,

with the highest correlation for the 2-year Canadian rate. The next two columns report the R2 from

regression (9) when a second factor is added to the regression. We see a large increase in the R2 for the

spreads, in particular the Canadian term spread. Finally, the last two columns provide the rejection

rates of the 95% confidence intervals for the rotated factors using the Bai (2004) methodology. If

the estimated factor proxied the corresponding observable variable, we would expect to reject 5% of

the time. The information in these columns corroborates the information from the R2. The lowest

rejection rate with one factor is with the 2-year Canadian rate, and the addition of a second factor

has most impact on the Canadian term spread. There is much less impact on the US term spread or

on the spread between the two countries. Nevertheless, we see that all rejection rates in the table are

much above the nominal 5% level. This suggests that the first two factors do not represent one of the

rates or spread in our panel.

Figure 1 plots the time series of the 2-year Canadian bond rate against the limits of the 95%

confidence interval for the rotated first factor. For illustration we use the case with a single factor, but

the picture with two or even three factors is almost identical. We see that the fit is generally pretty

good, but that large parts of the series lie outside the bands. If the factor proxied the 2-year Canadian

rate, we would see (under independence over time) 5% of the observations outside the limits of the

confidence band. Since about 27% of them do, we must conclude that no single interest rate in the

panel can proxy for our first estimated factor.

In the empirical literature on the term structure, many models with unobservable factors are used.

9



In these studies, it is common to find that three factors are necessary to account for the term structure

(see Litterman and Scheinkman (1988), Andersen, Benzoni, and Lund (2004) or Diebold and Li (2006)

for recent examples), with these three factors usually associated with “level”, “slope” and “curvature”.

It is clear that our first factor can be labelled a level factor that shifts the entire set of yields. Usually,

this level factor is proxied by a short rate, but our results suggest that a 1 or 2 year rate provides a

better fit. Further evidence that this first factor affects all rates similarly comes from the fact that the

loadings are similar for all rates in the panel (results available from the authors upon request).

The second factor, the “slope” or steepness of the yield curve, is usually proxied by a spread

between a long rate and a short rate. It is therefore reasonable that the inclusion of a second factor in

the regression has a large impact on term spreads, mostly Canadian but also American as evidenced

by the much higher R2 (multiplied by 10 in first differences for both term spreads). Neither of these

two factors seems to have much to do with the yield differentials between the two countries however.

Figure 2 plots the Canadian term spread and the limits of the 95% confidence bands for the case with

two factors. Once again, we see that the overall fit is pretty good, but that the confidence interval

does not contain the observed series for many periods, mostly associated with large swings (either up

or down) in the spread. Note that there are only two episodes when the Canadian yield curve was

inverted (negative spread) for more than one month, in early 1986 and late 1989-early 1990. The

confidence interval appears rather narrow, and this could be due to the fact that we have treated this

second factor as nonstationary in the construction. Our results above suggest the strong possibility

that this second “slope” factor is in fact stationary. This would invalidate the reported intervals. It

is also interesting to note that the loadings on this second decrease monotonically with the term to

maturity of Canadian government bonds. Thus, the second factor affects the relative magnitude of

short versus long Canadian bonds. The pattern among loadings is not as clear among US Treasury

bonds.

There has been much recent literature on the links between term structure models and macroeco-

nomic variables. For example, Diebold, Rudebusch, and Aruoba (2006) try to compare their three-
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factor term structure model to macro variables. They find that their level factor is highly correlated

with inflation. They interpret this evidence as being consistent with the Fisher equation of a link be-

tween nominal yields and inflationary expectations. Their second factor, on the other hand, is closely

linked to levels of economic activity. They find a high correlation between their second factor and a

measure of capacity utilization. This correlation is also the source of the use of the term spread to

forecast business cycle fluctuations as in Estrella and Mishkin (1998) . The yield curve tends to be

downward-sloping (short rates are higher than longer rates) prior or at the beginning of recessions.

Our second factor is therefore likely to be related to the business cycle.

4 Analysis of Idiosyncratic Components

Our second step in our analysis of the nonstationary properties of our panel is to look at the id-

iosyncratic components, uit in our decomposition (1). The analysis of the nonstationarity of the

idiosyncratic component is much more developed than the analysis of the stationarity properties of

factors and proceeds in two steps: in the first step, some estimate of the idiosyncratic components is

obtained, while in a second step, a panel unit root test is applied. The estimation of the idiosyncratic

component is equivalent to obtaining estimates of the deterministic and common components.

In the previous section, we used principal components on first differences to obtain estimates of

the factors. The idiosyncratic components could then be obtained as the residuals after removing the

estimated common components from the observed data. We chose this method because it allowed

us to use inferential procedures on the estimated factors. Other available methods for estimating

the common and idiosyncractic components do not provide inferential procedures for factors. These

methods include principal components on residuals as in Moon and Perron (2004) , the moment-based

orthogonalization method of Phillips and Sul (2003), and the cross-sectional average of Choi (2006a)

and Pesaran (2006) . Both the Bai and Ng and the Moon and Perron methods estimate general dynamic

factor models with an unknown number, K, of factors. On the other hand, Phillips and Sul’s method

is designed for a model with a single i.i.d. factor, while Choi uses an error-component model (which is
11



a single factor model with homogeneous factor loadings).

The second step in our analysis consists in testing the estimated idiosyncratic components for a

unit root. We will use a total of seven unit root tests in this paper. Each assumes that cross-sectional

correlation is captured via a factor model. This restricts us to focus on tests that require both n and

T to diverge since a large n is necessary for consistent estimation of the factors. Other methods of

dealing with cross-sectional correlation do not face this restriction and may be better suited for smaller

panels. We will not review all the tests in detail since recent surveys are available in Choi (2006b) ,

Hurlin and Mignon (2004) and Breitung and Pesaran (2005) .

The null hypothesis of interest is that all idiosyncratic components are nonstationary:

H0 : ρi = 1 for all i = 1, . . . , n,

whereas the alternative hypothesis takes the form:

HA : ρi < 1 for some i,

where ρi is the largest autoregressive root in the time series of individual i.

For the tests to be consistent, it is necessary that a positive fraction of the units fall under the

alternative (stationary) hypothesis, i.e. lim
n→∞

1
n

Pn
i=1 1 (ρi < 1) > 0 where 1 (·) is the indicator function.

Early panel unit root tests (e.g Levin et al. (2002) , Im et al. (2003) , and Maddala and Wu (1999)

or Choi (2001)) assumed independence of observed data across individual units. This assumption

is clearly unrealistic in empirical settings as suggested by the large correlations reported in table 1.

However, once factors have been extracted from the data, similar methods can be applied to the

idiosyncratic components. In other words, once we have estimated idiosyncratic components, we could

apply the pooling approach of Levin et al. (2002), the averaging approach of Im et al. (2003) , or the

p-value combination approach of Maddala and Wu or Choi (2001) to test the joint null hypothesis of

nonstationary idiosyncratic components.
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The seven tests we consider are those of Moon and Perron (2004) , Bai and Ng (2004) , Phillips and

Sul (2003) , Choi (2006a) , Pesaran (2006) , a panel version of the Sargan and Bhargava (1983) test

developed in Moon and Perron (2005), and a common point optimal test proposed in Moon, Perron,

and Phillips (2005) with c = 1. These tests vary according to the way they eliminate the factors and

the way they aggregate the individual information. We will first use the defactoring method of Moon

and Perron (2004) before applying these last two tests.

The CIPS test developed by Pesaran (2006) is slightly different in nature. Pesaran showed that by

augmenting the usual ADF regression with the first difference and the first lag of the cross-sectional

mean, one can account for the cross-sectional dependence arising through a single stationary factor.

Thus, no direct estimation of the idiosyncratic component is needed in this approach. This can be

beneficial for small panels where estimation of factors is difficult.

As with the factors, we will perform stationarity tests on the estimated idiosyncratic components.

In order to do so, it is first necessary to project the estimated idiosyncractic components in the space

orthogonal to a constant and the nonstationary factors. The validity of this approach has been shown

in Bai and Ng (2005) . Note however that we can only perform individuals KPSS tests on the estimated

idiosyncratic components. Pooling is not possible due to the presence of nonstationary factors as the

nonstationarity will be transmitted to the residuals in a non-vanishing way under the null hypothesis

of stationarity.

Other tests for panel unit roots with cross-sectional dependence that do not rely on a factor

structure are available. Recent tests of this kind that have been proposed by Chang (2002) , Breitung

and Das (2005) , Shin and Kang (2004) , and Choi and Chue (2005) , while an earlier one was proposed

by Taylor and Sarno (1998) . These tests allow for general cross-sectional dependence of the error terms

and, typically, do not need to let the number of cross-sections, n, diverge since no estimation of the

factors is necessary.
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4.1 Empirical results

Our unit root test results are presented in table 4. For the tests that require the estimation of the

number of factors (Moon and Perron, Bai and Ng, and the two optimal tests combined with the Moon

and Perron defactoring procedure), we report results as the number of factors varies between 1 and 8

since the estimated idiosyncratic components depends on the assumed number of factors. We report

results in this way because the number of cross-sections does not appear to be sufficient to get a good

estimate of the number of factors as we saw above. For the tests that are based on individual ADF

tests and the CIPS test, we choose the number of lagged first differences to be included by AIC in all

cases with a maximum of 12 lags. When needed, long-run variances and covariances are computed with

a quadratic spectral kernel estimate and with the bandwidth selected following the rule of Andrews

(1991) and with prewhitening.

Fortunately, the results from the application of panel unit root tests are clear and do not depend

much on the estimated number of factors. With the exception of the Moon-Perron-Phillips and Sargan-

Bhargava tests with 1 or 2 factors and the Bai and Ng test with 2, 4, 5, and 6 factors, we reject the

null hypothesis of a unit root in all idiosyncratic components.

The results from the KPSS tests confirm these results. The last row of table 4 includes the number

of idiosyncratic series for which we cannot reject stationarity at the 5% level. Regardless of the number

of factors we allow, we cannot reject stationarity for at least 23 series. Moreover, we reject stationarity

for a total of only 6 out of the 200 tests that we perform. As discussed above, it is not possible to

aggregate these individual tests in order to control the overall rejection probability. However, these

results are indicative and further support our claim that most, if not all, idiosyncratic components are

stationary.

The presence of nonstationary factor(s) and stationary idiosyncratic components means that the

nominal yields in our panel are cointegrated. Similar conclusions (nonstationary factors and stationary

idiosyncratic components) are obtained when applying our approach to the yields of each country

separately. This corroborates many empirical results supporting cointegration in the term structure
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dating back to Campbell and Shiller (1987) and Evans and Lewis (1994) and provides support for

models of cointegration in the term structure such as that of Carstensen (2003) .

5 Conclusion

This paper has analyzed a panel of interest rates with different maturities and risk characteristics.

Our application of recently-developed methods for nonstationary panels where the units are correlated

through a factor structure suggests that a single nonstationary factor is sufficient to model these data.

However, the number of stationary factors needed to model the cross-sectional correlation is not well

identified. Since we can reject the nonstationarity of all idiosyncratic components, these results suggest

that interest rates are cointegrated. The dominant factor in the interest rate panel is a level factor

that is highly correlated with all rates and could be the result of inflationary expectations. The second

factor has an interpretation as a slope factor, that is the differential between a long rate and a short

rate since it affects short and long rates differently and might be a measure of the business cycle.
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6 Appendix: Simulation evidence

In this appendix, we present limited simulation evidence to document the behavior of the tests for the

nonstationarity of the idiosyncratic components considered in this paper. Other (more comprehensive)

comparative simulation evidence can be found in Gutierrez (2006) and Gengenbach et al. (2005).

The data-generating process is a slightly modified version of the data-generating process of Moon

and Perron (2004) . The modification greatly increases the level of cross-sectional dependence by re-

placing the N (0, 1) factor loadings with U [0, 1] factor loadings.

The data-generating process is given by equations (2):

zit = αi + z
0
it

z0it = ρiz
0
it−1 + yit

z0i0 = 0

with a single factor structure for the error terms as in equation (3):

yit = τβift + eit.

All shocks are assumed i.i.d. standard normal:

(ftj , eit) ∼ iidN (0, I2)

while the factor loadings are βij ∼ iidU [0, 1] , and the deterministic components are heterogeneous,

αi ∼ N (0, 1) .

Size is considered for ρi = 1 for all i. We fix the alternative to be uniform with a mean of 0.99,

ρi ∼ U [0.98, 1] . Finally, we consider two values of the parameter controlling the relative importance

of common versus idiosyncratic shocks τ, 1 and 3. We choose three values for n (n = 10, 20, and
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100) and two values for T (T = 100 and 300). We estimate long-run variances even though it is not

necessary to do so (since shocks are independent over time). When necessary for the factor extraction

method employed by a given test, the number of factors is estimated by the IC1 criterion of Bai and

Ng (2002) with a maximum of 8 factors. Note that this design does not satisfy the assumptions of the

Choi test since factor loadings are heterogeneous. We therefore expect to see large size distortions for

this test.

Note that our design is also limited since the factors and idiosyncratic components are restricted

to have the same order of integration. Under the null hypothesis, ∆z0it is made up of a stationary

common component and a stationary idiosyncratic shock so that both components are nonstationary

in levels. Under the alternative hypothesis, z0it is the sum of two stationary components.

The results are presented in tables A1 (size), A2 (power), and A3 (size-adjusted power). The first

thing to notice is that all tests that require the estimation of the number of factors (MPP, Moon and

Perron, Sargan and Bhargava, and Bai and Ng) have severe size distortions for the smallest choice of

n. This is due to overestimation of the number of factors as reported in Moon and Perron (2004) . For

n = 10, the IC1 criterion tends to choose the maximum number of factors allowed (8). For n ≥ 20,

this problem disappears since the estimated number of factors is almost always equal to the true one.

The CIPS and Phillips and Sul tests are not affected by this problem since the first one does not

estimate factors directly, while the second one imposes (correctly in this case) the presence of a single

factor. As expected, the Choi test has large size distortions. These are reduced when T is large and τ

is small. The Moon and Perron and Bai and Ng tests tend to overreject for n ≥ 20. The MPP tends

to slightly underreject for c = 1 and overreject for c = 2. Nonetheless, it is clear that the combination

of the Moon and Perron (2004) defactoring procedure with this common point optimal tests leads to

reasonable size control.

The size-adjusted power results suggest that the MPP, Moon and Perron, and Sargan-Bhargava

tests dominate and are pretty much equivalent. The Bai and Ng test is next, followed by Phillips and

Sul, and finally CIPS. Table A3 also reproduces the result in Moon, Perron, and Phillips (2005) that
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the power of their test is not sensitive to the choice of c (except maybe for n = 10). Finally, the table

also shows that, as expected, power goes down with the degree of cross-sectional correlation, i.e. power

is lower for τ = 3 than for τ = 1.

In conclusion, among the tests considered in this study, the CIPS test of Pesaran (2006) is best

at controlling size, in particular for smaller panels. It is also the easiest to compute. However, its

power for alternatives that are close to the unit root null hypothesis is quite low. It should therefore

be emphasized in situations with small panels and alternatives of interest that are not too close to

unity. In other cases, tests that estimate the factor model are called for. In particular, if cointegration

is suspected, the Bai and Ng procedure must be given precedence since it is the only valid procedure

in such cases.
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Table 2. Estimated number of nonstationary factors

max = 1 2 3 4 5 6 7 8

MQc 1 1 1 1 1 1 1 1
IPC 1 1 2 3 3 4 4 4
BIC 1 1 1 2 3 3 3 3

The table reports the estimated number of nonstationary factors with the maxi-

mum number of factors in the first row.

Table 3. R2 of regression each interest rate on factors
Sample of 25 monthly interest rates

1985-2004
R2 (%) Pr (zit /∈ CI)

K = 1 K = 2 K = 1 K = 2
Levels First differences Levels First differences

1-month T-bill 91.4 42.3 98.6 82.4 63.8 48.3
3-month T-bill 93.5 67.2 99.4 96.9 57.8 22.0
6-month T-bill 95.5 76.0 99.4 89.1 44.8 37.9

1 year 97.0 79.3 98.9 83.6 32.8 53.9
2 years 98.1 79.8 98.2 79.9 27.2 54.7
3 years 97.8 78.3 97.9 79.8 33.6 53.9

Canadian rates 5 years 96.2 76.2 97.1 82.3 51.7 67.2
7 years 93.9 72.5 95.8 80.3 58.2 70.3
10 years 91.3 66.0 94.5 78.7 63.4 69.8

1-month commercial paper 91.8 48.5 99.1 89.5 60.3 32.3
3-month commercial paper 93.5 66.7 99.6 96.9 56.0 14.7
1-month Bankers’ acceptances 91.9 49.5 99.2 89.7 60.8 32.8
Long-term corporate (Scotia) 85.9 56.2 88.2 67.9 74.1 78.5
Mid-term corporate (Scotia) 91.8 67.1 92.6 75.8 65.5 82.8

3-month Treasury 78.6 33.7 78.7 34.4 82.3 91.8
6-month Treasury 79.8 40.2 79.8 45.0 80.6 90.5
1-year Treasury 81.4 47.1 82.1 57.9 84.1 88.8
2-year Treasury 84.6 47.9 87.5 69.0 75.9 81.5

US rates 3-year Treasury 86.6 46.4 91.3 73.6 73.7 71.6
5-year Treasury 88.5 44.6 96.2 76.0 72.8 43.5
7-year Treasury 88.4 44.2 97.7 79.3 65.5 25.0
10-year Treasury 87.6 41.0 98.3 77.6 67.2 18.1

1-month commercial paper 77.5 20.2 77.8 20.4 85.8 93.5
Moody’s AAA 85.2 32.6 96.1 69.2 61.2 37.1
Moody’s BAA 81.3 29.6 91.3 63.1 65.5 61.6

10y - 3m Canadian 42.7 8.0 93.9 84.1 92.2 37.5
spreads 3m US - 3m Canadian 42.8 42.7 57.6 77.1 94.0 87.9

10y - 3m US 2.8 3.0 32.3 36.9 100.0 85.3
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Table A1. Size of tests

DGP: zit = αi0 + z
0
it

z0it = z
0
it−1 + τβift + eit

αi0,ft, eit ∼ iidN (0, 1)
βi∼ iidU [0, 1]

MPP
n T c = 1 c = 2 Moon-Perron CIPS Sargan Bai-Ng Choi Phillips-Sul

10 100 30.8 35.4 29.5 5.6 23.0 17.5 16.9 5.3
20 100 4.3 6.0 7.4 5.6 2.9 7.0 24.5 5.9
100 100 4.9 5.9 7.0 6.1 3.9 7.1 69.7 6.4

τ = 1 10 300 30.3 34.5 29.8 4.9 24.5 16.4 6.2 5.1
20 300 4.4 6.2 7.4 5.2 3.3 6.7 5.9 5.6
100 300 4.7 5.3 6.0 5.7 3.7 5.7 7.5 6.5

10 100 40.1 45.0 40.6 6.0 33.1 17.7 23.5 5.3
20 100 4.5 6.4 8.2 5.4 2.4 6.7 35.0 6.1
100 100 5.0 5.6 9.2 5.8 3.8 7.0 64.3 6.8

τ = 3 10 300 35,5 40.7 35.0 5.4 29.3 17.3 9.4 5.3
20 300 4.0 5.9 7.2 5,1 2.8 6.3 13.4 5.0
100 300 4.4 5.0 6.4 5.7 4.0 6.6 33.5 6.9

Note: Each entry represents the percentage of replications in which the null hy-

pothesis of a unit root is rejected for the appropriate 5% test with the number of

factors estimated using the IC1information criterion suggested by Bai and Ng (2002)
using the asymptotic critical values. The number of replications is 5000.

Table A2. Power of tests against linear alternative

DGP: zit = αi0 + z
0
it

z0it = ρiz
0
it−1 + τβift + eit

αi0,ft, eit ∼ iidN (0, 1)
βi∼ iidU [0, 1]
ρi ∼ U [0.98, 1]

MPP
n T c = 1 c = 2 Moon-Perron CIPS Sargan Bai-Ng Choi Phillips-Sul

10 100 51.1 57.3 51.7 8.0 39.8 25.5 59.6 11.6
20 100 56.9 64.9 69.9 8.9 42.2 44.1 87.4 17.9
100 100 99.6 99.7 99.8 11.0 99.1 94.9 99.8 50.9

τ = 1 10 300 74.3 80.0 76.6 18.0 67.8 48.9 88.0 28.9
20 300 95.8 97.1 97.6 25.8 93.7 97.1 98.7 52.3
100 300 100.0 100.0 100.0 45.3 100.0 100.0 99.9 97.8

10 100 57.9 63.8 59.8 7.0 48.6 24.1 56.7 8.8
20 100 45.3 53.2 60.3 7.5 33.0 36.4 74.8 13.9
100 100 89.7 90.6 92.1 7.2 88.6 82.4 90.6 36.3

τ = 3 10 300 72.9 78.7 75.5 16.8 66.5 42.2 75.0 20.0
20 300 78.8 81.3 84.1 20.9 75.9 83.5 87.8 31.2
100 300 93.1 93.4 93.7 36.0 93.8 97.9 96.3 69.2

Note: See table A1.



Table A3. Size-adjusted power of tests against linear alternative

DGP: zit = αi0 + z
0
it

z0it = ρiz
0
it−1 + τβift + eit

αi0,ft, eit ∼ iidN (0, 1)
βi∼ iidU [0, 1]
ρi ∼ U [0.98, 1]

MPP
n T c = 1 c = 2 Moon-Perron CIPS Sargan Bai-Ng Choi Phillips-Sul

10 100 10.3 10.4 11.3 7.4 10.0 8.4 30.3 10.2
20 100 60.6 62.0 62.2 8.1 53.2 36.2 53.5 16.3
100 100 99.6 99.7 99.7 9.3 99.3 93.0 96.6 45.9

τ = 1 10 300 22.3 23.7 27.3 18.8 23.9 20.4 85.8 28.6
20 300 96.2 96.6 96.5 25.0 95.8 96.0 98.4 49.8
100 300 100.0 100.0 100.0 42.2 100.0 100.0 99.9 96.9

10 100 8.6 8.4 10.6 6.1 8.9 7.0 24.3 8.2
20 100 47.7 49.0 51.1 7.0 43.2 31.0 33.0 11.7
100 100 89.7 89.9 89.8 6.3 89.8 77.0 51.2 30.9

τ = 3 10 300 19.1 20.8 22.4 15.9 20.0 16.0 66.0 19.0
20 300 80.0 80.3 81.6 20.5 80.1 80.7 79.0 31.2
100 300 93.4 93.4 93.4 32.3 94.1 97.4 89.7 65.8

Note: Each entry represents the percentage of replications in which the null hy-

pothesis of a unit root is rejected for the appropriate 5% test using the empirical

critical values. The number of replications is 5000.
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