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Abstract

This paper studies the efficient estimation of seemingly unrelated linear models with integrated regressors and

stationary errors. We consider two cases. The first one has no common regressor among the equations. In this case,

we show that by adding leads and lags of the first differences of the regressors and estimating this augmented dynamic

regression model by generalized least squares using the long-run covariance matrix, we obtain an efficient estimator of

the cointegrating vector that has a limiting mixed normal distribution. In the second case we consider, there is a common

regressor to all equations, and we discuss efficient minimum distance estimation in this context. Simulation results

suggests that our new estimator compares favorably with others already proposed in the literature. We apply these new

estimators to the testing of the proportionality and symmetry conditions implied by purchasing power parity (PPP)

among the G-7 countries. The tests based on the efficient estimates easily reject the joint hypotheses of proportionality

and symmetry for all countries with either the United States or Germany as numeraire. Based on individual tests, our

results suggest that Canada and Germany are the most likely countries for which the proportionality condition holds,

and that Italy and Japan for the symmetry condition relative to the United States.
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1 Introduction

The purchasing power parity (PPP ) doctrine plays a central role in most open-economy macroeconomic models. It states

that nominal exchange rates should reflect relative price behavior. There is by now an enormous literature on testing

PPP. A survey of earlier tests can be found in Froot and Rogoff (1995) , and a recent comprehensive survey of recent

research can be found in Sarno and Taylor (2002) . Most of these tests are univariate and use data for a single country

at a time in testing for PPP. Denote by sit the nominal exchange rate of country i (defined as the quantity of domestic

currency of country i per unit of foreign currency), p∗t is the foreign price level , and pit is the domestic price level of

country i. Purchasing power parity implies that if we run a regression for country i of the type :

ln sit = β0i + β1i ln (pit) + β2i ln (p
∗
t ) + εit, (1)

we should have β1i = −β2i (the so-called symmetry condition) and β1i = 1 (also called the proportionality condition).

The bulk of the tests impose these two conditions and test whether the the real exchange rate, defined as:

qit =
sitp
∗
t

pit

is stationary around a constant. The large majority of these tests support a unit root in real exchange rate which is

evidence against PPP.

In this paper, we use (1) directly to test the symmetry and proportionality conditions to investigate sources of rejection

of PPP. To improve efficiency of the test, we use cross-country data to take advantage of correlations across countries.

In order to do this, we study efficient estimation of a system of seemingly unrelated regression (SUR) equations with

integrated regressors. We distinguish two cases: the case where there is a common regressor in each equation (as there is

in equation (1) since each equation involves the price level of the numeraire country) and the case where there is no such

common regressor. The case with a common regressor allows us to test directly the symmetry condition, i.e. β1i = −β2i,
while the case without a common regressor will be used to test proportionality (the coefficient on relative price levels

should be 1).

Park and Ogaki (1991) demonstrated that the conventional feasible GLS estimation of a system of regression equations

with integrated regressors has a nonstandard limit distribution that is skewed and shifted away from the true parameter.

This renders inference in these systems difficult. To solve this problem, Park and Ogaki (1991) suggested using the

seemingly unrelated canonical cointegrating regression (SUCCR) estimator as an extension of the original CCR estimator

first presented in Park (1992). On the other hand, Moon (1999) suggested using fully-modified (FM) estimators (e.g., see

Phillips and Hansen, 1990, Phillips, 1991, and Phillips, 1995) on these systems. These two sets of estimators are efficient

relative to single-equation estimators, and have a limiting mixed normal distributions, rendering inference straightforward.

This paper suggests an alternative approach for obtaining efficient estimators with a mixed normal limiting distribution

based on results of Saikkonen (1991) and Stock and Watson (1993). The approach (which we call dynamic FGLS)

consists of adding leads and lags of the first differences of the regressors and using feasible generalized least squares on
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this augmented dynamic regression model using the long-run covariance matrix. As the other two estimators mentioned

above, our estimator is more efficient than equation-by-equation or system-wide ordinary least squares. 1

When there is a common regressor, GLS is not feasible since the long-run covariance matrix is singular and cannot be

inverted. For this case, we propose to use a minimum distance estimator suggested by Moon and Schorfheide (2002) and

Elliott (2000). This estimator is known to be efficient and is asymptotically equivalent to our DGLS without common

regressors.

We apply our new estimators to testing for purchasing power parity (PPP ) among the G-7 countries over the recent

float. Our new methodology allows us to test separately the symmetry condition (the coefficients on the domestic and

price levels are of the same magnitude but of different sign) and proportionality condition (this common coefficient is 1).

Contrary to most tests used in the literature, this test treats PPP as the null hypothesis and is asymptotically invariant

to the choice of numeraire if PPP holds. Moreover, it easily handles multiple countries simultaneously and thus can

take advantage of correlations among countries to construct more efficient tests, while allowing inference on individual

countries. Using our efficient estimators, we can reject the presence of PPP for several countries in our sample when

using both the United States and Germany as the numeraire country. The rejections come from the failure of both the

symmetry and proportionality conditions.

The most closely paper is that by Li (1999) . Using a Bayesian approach, she tests the symmetry and proportionality

conditions within a SUR framework. The parameters β1i and β2i are modelled as independent draws from normal

distributions in each period. The symmetry condition in this case is that the magnitude of the mean of these two

distributions is the same, while the proportionality condition is that the magnitude of both means is 1. Using data for

a larger sample of OECD data, she finds little support for these two conditions, although the evidence against them

diminishes at the sampling frequency diminishes.

The outline for the rest of the paper is as follows. Section 2 introduces our estimators of the SUR model with

integrated regressors and derives their limiting asymptotic distribution. Section 3 presents results from a simulation

experiment comparing estimators of the integrated SUR model. Section 4 presents our empirical methodology and results

for testing PPP among industrialized countries over the recent float, while section 5 concludes.

2 Efficient Estimation of the SUR Cointegration Model

In this section we study a SUR model with integrated regressors. Suppose that there are N individual linear cointegration

regression equations,

yit = β0i + β01ixit + uit (2)

xit = xit−1 + vit,

1A similar analysis has been recently proposed independently by Mark, Ogaki, and Sul (2000) who apply it to tests of forward exchange

rate unbiasedness and international correlation between saving and investment.
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where uit and vit are scalar and L-vector valued stationary processes, respectively, for i = 1, · · · , N, and t = 1, ..., T.

Assume that xi0 = Op (1) as T →∞ for all i = 1, ..., N. Let yt = (y1t, . . . , yNt)0, x̃t = diag(x̃1t, . . . , x̃Nt), x̃it = (1, x0it)
0,

xt = (x
0
1t, ..., x

0
Nt)

0
, ut = (u1t, . . . , uNt)

0, and vt = (v01t, . . . , v
0
Nt)

0. Then, using vector notation, we rewrite (2) as

yt = x̃0tβ + ut, (3)

xt = xt−1 + vt,

where β =
¡
β01, ...,β

0
N

¢0
and βi =

¡
β0i,β

0
1i

¢0
.

Define wt =
³
u0t v0t

´0
. Our analysis will be for T →∞ for N fixed. We assume that the partial sum process of wt

converges in distribution to a Brownian Motion as T →∞,

1√
T

[Tr]X
t=1

wt ⇒ B (r) ≡ BM (Ω) , (4)

where Ω =
P∞

h=−∞E (w0w
0
h) =

⎛⎝ Ωuu Ωuv

Ωvu Ωvv

⎞⎠ , B (r) = ¡Bu (r)0 , Bv (r)0¢0 , Bu (r) = (Bu,1 (r) , ..., Bu,N (r))0 , Bv (r) =¡
Bv,1 (r)

0 , ..., Bv,N (r)
0¢0 , and the partitions of Ω and B (r) are conformable with ut and vt. The functional central limit

theorem assumed in (4) is satisfied under mild regularity conditions on wt (e.g., see Phillips and Solo, 1992). In the next

subsection, we assume that the long-run covariance matrix Ω of wt is positive definite, which excludes the possibility that

there exists a cointegrating relation among the elements of xt. The case where Ω is singular because there is a common

regressor will be discussed in the following subsection.

Our setup is a SUR version of a triangular system as developed by Phillips (1991) . In complementary work, Groen and

Kleibergen (2003) look at maximum likelihood estimation and testing in a SUR extension of a system of error correction

models with correlation across observational units, but they do not allow for common regressors. Their analysis is for

large T and fixed N like ours. Larsson, Lyhagen, and Lothgren (2001) use the same framework as Groen and Kleibergen

to develop tests of cointegrating rank. However, they assume independence across observational units and use large N,

large T approximations.

2.1 Dynamic GLS Estimation of the Integrated Seemingly Unrelated Regression Model

The main purpose of this section is to develop an efficient estimation method for the cointegration parameter β in the

SUR cointegration model (2) when the long-run covariance matrix Ω is of full rank and establish its asymptotic properties.

When there is (long-run) correlation between ut and vt (as in a simultaneous equation model) and/or serial correlation, it

is well known that the limiting distribution of the OLS estimator of model (2) is miscentered and skewed, and this causes

difficulties in statistical inference. To overcome the problem, we modify the regression model and make the transformed

error asymptotically uncorrelated with the regressors and uncorrelated through time.
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To do so, we decompose the stacked vector ut into two components, the projection onto the sigma field generated by

{vt}∞t=−∞,
P∞
j=−∞ πjvt−j, and a residual, namely

ut =
∞X

j=−∞
πjvt−j + ξt. (5)

and in this case, ξt is uncorrelated with {vt}
∞
t=−∞ . Denote the long-run covariance of ξt by Ωuu.v. Under mild regularity

conditions 2, we know that

Ωuu.v = Ωuu − ΩuvΩ−1vv Ωvu. (6)

Now, in view of the decomposition (5) , we can write model (3) as

yt = x̃
0
tβ +

∞X
j=−∞

πjvt−j + ξt. (7)

In equation (7) we have added an infinite number of regressors {vt}∞t=−∞ , which makes estimating it impossible with a
finite number of observations. We propose a feasible version of (7) obtained by truncating the infinite sum and replacing

it by
PK
j=−K πj∆xt−j , where K is assumed to tend to infinity as T → ∞ at an appropriate rate to be specified below.

Hence the estimable version of model (7) is

yt = x̃0tβ +
KX

j=−K
πj∆xt−j + ξ∗t = x̃

0
tβ +

KX
j=−K

¡
∆x0t−j ⊗ IM

¢
vec(πj) + ξ∗t (8)

= z0tb+ ξ∗t ,

where we have defined ξ∗t = ξt + et, et =
P
|j|>K πjvt−j , zt =

¡
x̃0t, ∆x

0
t−K ⊗ IN , ....,∆x0t+K ⊗ IN

¢0
, b =

¡
β0,Π0K

¢0
, and

ΠK = (vec(π−K)
0, ..., vec(πK)

0) . Note that the regression model (8) is simply an augmented version of the original SUR

model (2) obtained by adding leads and lags of ∆xt.

We may consider estimating the regression model (8) in two ways, either by OLS or by GLS using the long-run

correlation in the error ξt as is appropriate when the error term has serial correlation. Let Yt = (y1,t, ..., yN,t)
0
, Y =¡

Y 0K+1, ..., Y
0
T−K

¢0
, X̃ = (x̃K+1, ..., x̃T−K)

0
, ∆K,t =

¡
∆x0t−K , ...,∆x

0
t+K

¢0 ⊗ IN , ∆K = (∆K,K+1, ...,∆K,T−K)
0
, and

Z =
³
X̃,∆K

´
. The system dynamic OLS (hereafter SDOLS) and the dynamic (feasible) GLS (hereafter DGLS) estimators

are defined, respectively, as:

b̂SDOLS = (Z 0Z)
−1
Z0Y,

b̂DGLS =

µ
Z0
³
IT−2K ⊗ Ω̂uu.v

´−1
Z

¶−1µ
Z0
³
IT−2K ⊗ Ω̂uu.v

´−1
Y

¶
or in summation notation,

b̂SDOLS =

Ã
T−KX
t=K+1

ztz
0
t

!−1Ã T−KX
t=K+1

ztyt

!
= b+

Ã
T−KX
t=K+1

ztz
0
t

!−1Ã T−KX
t=K+1

ztξ
∗
t

!
,

2 See, for example, Brillinger (1975) and Saikkonen (1991).

5



and

b̂DGLS =

Ã
T−KX
t=K+1

ztΩ̂
−1
uu.vz

0
t

!−1Ã T−KX
t=K+1

ztΩ̂
−1
uu.vyt

!
= b+

Ã
T−KX
t=K+1

ztΩ̂
−1
uu.vz

0
t

!−1Ã T−KX
t=K+1

ztΩ̂
−1
uu.vξ

∗
t

!
,

where Ω̂uu.v is a consistent estimate of Ωuu.v. Note that the DGLS estimator β̂DGLS is a GLS estimator using the long-run

correlation information in the system (8) .

An alternative estimator is the dynamic OLS estimator for the cointegrating vector βi (hereafter IDOLS) in the i
th

individual regression model of (2). Now define wit = (uit, v0it)
0 and Ωi,j =

⎛⎝ Ωi,juu Ωi,juv

Ωi,jvu Ωi,jvv

⎞⎠ =
P∞

h=−∞E
³
wi,0w

0
j,h

´
. Let

θit = uit −
∞X

s=−∞
πijvit−s, (9)

be the linear projection residual of the ith individual equation regression error uit on the closed linear space of {vit}∞t=−∞
for i = 1, ..., N. Denote the long-run variance of θit by Ωiuu.v. Under mild regularity conditions,

Ωiuu.v = Ω
i,i
uu − Ωi,iuv

¡
Ωi,ivv

¢−1
Ωi,ivu. (10)

Now we define the following ith individual dynamic regression

yit = x̃
0
itβi +

KX
s=−K

πis∆xit−s + θ∗it, (11)

where θ∗it = θit + ²it and ²it =
P
|s|>K πisvit−s. We denote β̂i the OLS regression estimator for βi of (11) and β̂IDOLS =³

β̂
0
1, ..., β̂

0
N

´0
.

Let β̂DGLS and bΠDGLS be sub-vectors of b̂DGLS whose sizes are conformable to those of β and Π. In a similar fashion,
define β̂SDOLS , bΠSDOLS , β̂IDOLS , and bΠIDOLS . Define FT∗ = IN ⊗ diag ³√T ∗, T ∗IL´ , where T ∗ = T − 2K. We collect
the asymptotic distributions of the above estimators in the following proposition.

Proposition Suppose that the functional limit theorem (4) holds and ξt in (5) and θit in (9) have long-run covariance

matrices Ωuu.v in (6) and Ωiuu.v in (10) respectively. Further suppose that
K3

T → 0 and
√
T
P
s>|K| kπsk = o (1) . Then,

as T →∞,

(a) FT∗
³
β̂DGLS − β

´
⇒MN

µ
0,
³R 1

0
B̃v (r)Ω

−1
uu.vB̃

0
v (r) dr

´−1¶
,

(b) FT∗
³
β̂SDOLS − β

´
⇒MN

µ
0,
³R 1

0
B̃v (r) B̃

0
v (r) dr

´−1 ³R 1
0
B̃v (r)Ωuu.vB̃

0
v (r)

´³R 1
0
B̃v (r) B̃

0
v (r) dr

´−1¶
,

(c) FT∗
³
β̂IDOLS − β

´
⇒MN

µ
0,
³R 1

0
B̃v (r) B̃

0
v (r) dr

´−1 ³R 1
0
B̃v (r) Ω̃uu.vB̃

0
v (r)

´³R 1
0
B̃v (r) B̃

0
v (r) dr

´−1¶
where MN (·, ·) denote a mixed normal distribution, B̃v (r) = diag

³
B̃v,1 (r) , ..., B̃v,N (r)

´
, B̃v,i (r) =

¡
1, Bv,i (r)

0¢0 ,
Ω̃uu.v = diag

¡
Ω1uu.v, . . . ,Ω

N
uu.v

¢
.
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Moreover, it is easy to show that the limiting variance of β̂DGLS is smaller than that of β̂SDOLS with probability one

because µZ 1

0

B̃v (r)Ω
−1
uu.vB̃

0
v (r) dr

¶−1
<

µZ 1

0

B̃v (r) B̃
0
v (r) dr

¶−1µZ 1

0

B̃v (r)Ωuu.vB̃
0
v (r)

¶µZ 1

0

B̃v (r) B̃
0
v (r) dr

¶−1
(12)

with probability one. Therefore, β̂DGLS is asymptotically more efficient than β̂SDOLS .

Moreover, since Ωuu.v ≤ Ω̃uu.v, we can conclude that FT∗
³
β̂SDOLS − β

´
is asymptotically more efficient than

FT∗
³
β̂IDOLS − β

´
. Therefore, among the three estimators, we can conclude that the DGLS estimator β̂DGLS is the

most efficient and the individual dynamic OLS estimator β̂IDOLS is the least efficient. This result is also obtained by

Park and Ogaki (1991) and Moon (1999) with the CCR method and the FM method respectively.

In a linear cointegration regression model with no restriction on the cointegrating vectors, it is well known that there

is no efficiency gain in GLS estimation over OLS estimation ( e.g., Phillips and Park, 1988 and Stock and Watson, 1993).

This asymptotic equivalence result is similar in spirit to the classical Grenander and Rosenblatt theorem (1957) which

states that polynomial time trends with stationary error can be estimated efficiently by OLS.

However, as we verify through (12) , in the dynamic augmented model (8) the GLS estimator is asymptotically more

efficient than the OLS estimator. As discussed in Park and Ogaki (1991), the asymptotic efficiency gain of GLS in the

SUR model comes from overidentification parameter restrictions.

To see this, write the SUR model (3) in a multivariate regression form,

yt = b̃X̃t + ut, (13)

where

b̃ = diag (β1, ...,βN ) (14)

and X̃t = (x̃01t, ..., x̃
0
Nt)

0
. In model (13), overidentifying parameter restrictions are imposed by restricting the off-block

diagonal elements of b̃ to be zero, while in the models studied in Phillips and Park (1988) and Stock and Watson (1993),

the regression coefficients are exactly identified.3

The mixed normality property of the limiting distributions of β̂SDOLS , β̂DGLS , and β̂IDOLS enables us to use con-

ventional chi-square tests for the null hypothesis of parameter restrictions. Suppose that we are interested in testing a

null hypothesis on the parameters,

H0 : ϕ(β) = r, (15)
3Once the SUR model (1) is expressed in the form of a multivariate cointegration model with restrictions on the coefficients as in (13) and

(14) , we could think of employing other estimation procedures to efficiently estimate the restricted parameters (β1, ...,βN )
0 . For example, we

could apply the efficient minimum distance (MD) estimation method proposed by Elliott (2000) and Moon and Schorfheide (2002). Moon and

Schorfheide (2002) show that the asymptotic distributions of the efficient MD estimator and the DGLS estimators are identical. Details of the

MD estimation procedures will be discussed in the following section.
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where ϕ is a (q× 1) vector-valued, continuously differentiable function and the first derivative of ϕ at the true parameter
β, Φ(β), has full rank q. The Wald test statistic WT using β̂DGLS is then defined as

WT ≡ (ϕ(β̂DGLS)− r)0
⎛⎝Φ(β̂DGLS)

Ã
TX
t=1

x̃tΩ̂
−1
uu.vx̃

0
t

!−1
Φ(β̂DGLS)

0

⎞⎠−1 (ϕ(β̂DGLS)− r), (16)

and it is easy to verify that under the assumptions stated above, as T →∞, WT ⇒ χ2q, a chi-square distribution with q

degrees of freedom.

2.2 Efficient Estimation with Common Regressors

The asymptotic results in the previous section rest on the assumption that the elements of xt have a positive definite

long-run covariance matrix which excludes the possibility that there exists a cointegrating relation among the elements of

xt = (x
0
1t, ..., x

0
Nt)

0
. This restriction is violated if some variables in xit are common for all i = 1, ..., N. Existence of common

regressors in a system of equation like (2) is not rare in empirical applications, as discussed in our PPP application below.

In this section we discuss how to estimate the coefficients efficiently in the presence of common regressors. The procedure

summarized here is the minimum distance estimation method proposed by Moon and Schorfheide (2002) and by Elliott

(2000).

Suppose that the integrated regressors in model (2) consist of two components,

xit = (x
0
it1, x

0
t2)

0
, (17)

where xit1, is an L1− vector regressor varying across individuals and xt2 is an L2− vector common regressor across

individuals (L = L1 + L2). Let β1i1 and β1i2 denote the coefficients of xit1 and xt2, respectively. Now defining Xt =

(x01t1, ..., x
0
Nt1, x

0
t2)

0 and X̃t = (1,X 0
t)
0
, we express model (2) in the following multivariate regression form,

yt = ΓX̃t + ut, (18)

where the coefficient matrix Γ is an (N × (NL1 + L2 + 1)) matrix. Then, the restricted coefficient matrix Γ in (18) is

Γ =

µ
Γ1
...Γ02
...Γ03

¶
,

Γ1
(N×1)

= (β01, ...,β0i, ...,β0N )
0 ,

Γ2
(NL1×N)

= diag (β111, ...,β1i1, ...,β1N1) ,

Γ3
(L2×N)

= (β112, ...,β1i2, ...,β1N2) .

Denote

δ
N(1+L1+L2)

=
¡
β00,β

0
11,β

0
12

¢0
,

where

β0 = (β01, ...,β0i, ...,β0N )
0 , β11 =

¡
β0111, ...,β

0
1i1, ...,β

0
1N1

¢0
, β12 =

¡
β0112, ...,β

0
1i2, ...,β

0
1N2

¢0
.
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Denote γ = vec (Γ) 4 . Then, we can find a linear relationship between the unrestricted parameters γ and the restricted

parameter δ, which is of interest:

γ
N(NL1+L2+1)×1

= Gδ, (19)

where

G
(N(NL1+L2+1)×N(1+L1+L2))

=

⎛⎜⎜⎜⎝
IN 0 0

0 KNL1,N (diag(i1, . . . , iN )⊗ IL1) 0

0 0 KL2,N

⎞⎟⎟⎟⎠ ,
KNL1,N and KL2,N are the N

2L1×N2L1 and NL2×NL2 commutation matrices, respectively, (i.e., when A is an (m× n)
matrix, vec(A0) = Km,nvec(A)), and ik denotes the kth column of the N ×N identity matrix IN .

To estimate the restricted parameter of interest δ efficiently, in this paper we suggest to follow the minimum distance

(MD) method proposed by Moon and Schorfheide (2002) and Elliott (2000). For this, we assume the following. Denote

Vt = ∆Xt. Assume that
1√
T

TX
i=1

Vt ⇒ BV (r) ≡ BM (ΩV ) ,

where ΩV =
P∞
h=−∞E (V0V

0
h) , a positive definite matrix. Let Ωuu.V = Ωuu−Ω0V uΩ−1V VΩV u, whereΩV u =

P∞
h=−∞E (V0u

0
h) .

Let B̃V (r) =
¡
1, BV (r)

0¢0. Define DT∗ = diag ³√T ∗, T ∗INL1+L2´ . FT∗ = diag ³√T ∗IN , T ∗INL´ .
Step 1 We first estimate Γ efficiently by running some efficient system cointegrating regression of yt on X̃t. For this, one

can use the FM method (e.g., Phillips and Hansen, 1989), the CCR method (e.g., Park, 1992), or the DOLS method

(e.g., Saikonnen, 1991, Stock and Watson, 1993). Denote this estimator Γ̂ and let γ̂ = vec
³
Γ̂
´
. Under regularity

conditions, Γ̂ is the efficient estimator of the unrestricted coefficients Γ (see Phillips, 1991), and its limit is

(DT∗ ⊗ IN ) (γ̂ − γ)⇒MN

Ã
0,

µZ 1

0

B̃V (r) B̃V (r)
0
dr

¶−1
⊗ Ωuu.V

!
.

Step 2 Estimate δ using the minimum distance (MD) method. For this, assume that Ω̂uu.V is a consistent estimator of

Ωuu.V . Let Ŵ =
³PT∗

t=1D
−1
T∗ X̃tX̃

0
tD
−1
T∗

´
⊗ Ω̂−1uu.V . The efficient MD estimator δ̂ is found by minimizing

min
δ
(γ̂ −Gδ)0 Ŵ (γ̂ −Gδ) ,

which yields the GLS solution

δ̂ =
³
G0ŴG

´−1
G0Ŵ γ̂

Notice that Ŵ ⇒W =
R 1
0
B̃V (r) B̃V (r)

0 dr ⊗ Ω−1uu.V . According Moon and Schorfheide (2002), we have

FT∗
³
δ̂ − δ

´
⇒MN

³
0, (G0WG)

−1
´
. (20)

Having the limit of δ̂ in (20) , it is straightforward to construct a Wald test for restrictions on parameter δ, and we omit

it.
4vec (A) denotes a vector that stacks the columns of the matrix A.
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3 Simulation comparison

In this section, we want to compare the relative merit of the various estimators of the integrated SUR model with no

common regressor. The data generating process that will be used for this purpose contains N equations with L integrated

regressors in each equation (for a total of NL integrated regressors):

y1t = β01 + β11,1x1t,1 + . . .+ β11,Lx1t,L + u1t

...

yNt = β0N + β1N,1xNt,1 + . . .+ β1N,LxNt,L + uNt

where xit are correlated random walks:

∆xit = vit, i = 1, . . . , N.

We assume that ut = (u1t, ..., uNt)
0 is correlated with vt = (v01t, ..., v

0
Nt)

0:⎛⎝ ut

vt

⎞⎠ ∼ i.i.d.N
⎛⎝⎛⎝ 0

0

⎞⎠ ,
⎛⎝ % Σ

Σ Φ

⎞⎠⎞⎠ .
where each submatrix has a particular form. The covariance matrix is of dimension (N +NL) × (N +NL) . The first

submatrix, % is the covariance matrix of ut and has the form:

%
N×N

=

⎛⎜⎜⎜⎜⎜⎜⎝
1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1

⎞⎟⎟⎟⎟⎟⎟⎠
that is the parameter ρ controls the degree of correlation between the equations and will therefore affect the efficiency

gains of GLS relative to OLS estimators.

On the other hand, the submatrix Σ is the covariance matrix between the regressor innovations and regression distur-

bances. This will therefore affect the behavior of the static OLS and GLS estimators of (3) . We suppose that there is a

constant correlation between each integrated regressor and the disturbance of the equation in which this regressor enters.

The submatrix Σ of size N ×NL therefore takes the form:

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ · · · σ 0 · · · 0 0 · · · 0

0 · · · 0 σ · · · σ 0 · · · 0
...

...
...

...
...

...

0 · · · 0 0 · · · 0 σ · · · σ

|{z}
L

|{z}
L

|{z}
L

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Finally, the covariance matrix of vt, denoted by Φ, assumes that the regressors are uncorrelated within an equation,

but that regressors across equations have a constant correlation φ.This NL×NL matrix therefore takes the form:

Φ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · φ · · · φ

IL · · ·
...

. . .
...

· · · φ · · · φ
...

...
...

. . .
...

...
...

φ · · · φ · · ·
...

. . .
... · · · IL

φ · · · φ · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The parameter φ will control the relative efficiency of system versus individual equation OLS.

We consider three combinations of N and L.We look at the case of 2 equations with a single regressor in each equation

(N = 2, L = 1), 2 equations with 2 regressors (N = 2, L = 2), and 4 equations with a single regressor. (N = 4, L = 1)

This will allow us to look at the impact of increasing the number of equations in the system and the number of variables

per equation. We set the three covariances (ρ,σ,φ) to extreme values. We choose the largest values that will keep the

full covariance matrix Ω positive definite for all three combinations of N and L we consider. Therefore, we look at the

cases (0, 0, 0) , (0.3, 0.3, 0.3) , (0.9, 0, 0) , (0, 0.7, 0) , and (0, 0, 0.4) .

Without loss of generality, we set all coefficients to 1. We want to compare the constant and slope coefficient estimates

IDOLS, SDOLS, DGLS, FM −OLS 5 , FM −GLS, and SUCCR.6 The sample sizes chosen are T = 100 and T = 300,
and the number of replications is 10,000. The number of leads and lags in the dynamic estimators (K) is selected by

BIC,and the maximum number of lags is set at 4 for T = 100 and 7 for T = 300.7 We also report the rejection frequency

of the hypotheses on the first constant β01 = 1 and slope β11,1 = 1 for each estimator based on individual t-tests using

the asymptotic critical values at level α = 5%. All long-run covariance matrices here and in the rest of the paper are

estimated using the Andrews (1991) procedure with data-based bandwidth and quadratic spectral kernel. Because it

made very little difference, we did not recompute the long-run covariance matrices after estimating each regression. In

other words, the long-run covariance matrices are computed using the residuals from the static OLS regression. There

is only one case where recomputing the covariance matrix made a difference is with 2 endogenous integrated regressors

(N = 2, L = 2, σ = 0.7). In this case, the static OLS estimator is very biased and this leads to test statistics that are too

small and gross underrejection. We recomputed the covariance matrix in this case.
5There is an error in β̂FM−SOLS defined in Moon (1999). The component π̂m should be

π̂m =

⎛⎜⎝ 0

∆̂m,m
vu −

³
∆̂m,.
vv

´ µ³
Ω̂uvΩ̂

−1
vv

´
m,.

¶0
⎞⎟⎠ .

6We thank Masao Ogaki for providing us with his code for SUCCR.
7The number of leads and lags, K, is chosen to be close to T 1/3, considering the restriction in the proposition.
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Since the efficiency gains due to GLS-type estimators come from a non-diagonal long-run covariance matrix, it is

important to see how each parameter affects it. For the special case with 2 equations and a single integrated regressor

the long-run covariance matrix Ωuu.v is

Ωuu.v =

⎛⎝ 1− σ2

1−φ2 ρ+ φσ2

1−φ2

ρ+ φσ2

1−φ2 1− σ2

1−φ2

⎞⎠
This expression highlights the role played by the three parameters of the DGP as described above. For the last four

parameter designs, this matrix is therefore:⎛⎝ 0.67 0.33

0.33 0.67

⎞⎠ ,
⎛⎝ 1 0.9

0.9 1

⎞⎠ ,
⎛⎝ 0.51 0

0 0.51

⎞⎠ ,
⎛⎝ 1 0

0 1

⎞⎠
so that we can expect GLS to be more efficient than OLS for the second and particularly the third design since the

off-diagonal elements are much larger in this case. The variance in the fourth scenario should be cut by about half for

all estimators with no change to the relative merit of each relative to the base case. Finally, the last design should give

identical results to the baseline case.

The results of the experiments are presented in table 1 for T = 100 and table 2 for T = 300. The first line for each set

of parameters gives the results for the constant the second line gives the results for the first slope parameter.

The main features of the results are:

• All estimators are essentially unbiased even with the smaller sample size. The only exception is the FM estimators

in the endogenous regressor case (σ = 0.7) that have a bias of about 10% upward for T = 100. This bias disappears

with T = 300;

• The convergence of the estimates of the slope coefficient
³
β̂11

´
is much faster than that of the constant, as expected

given the different rates of convergence;

• There are large efficiency gains in using GLS in cases where ρ is high. These are cases where the cross-equation
correlation is high;

• All estimators suffer from some mild size distortions with T = 100. The size of the tests is much improved with

T = 300. FM-OLS and FM-GLS have more severe distortions, and our DGLS and SDOLS estimators do very well

in controlling the size of the tests;

• There are notable efficiency gains of using system methods relative to individual equation methods when the

regressors are endogenous (σ 6= 0) and correlated (φ 6= 0). The only place where this is relevant is for our case 2
with 2 integrated regressors. The magnitude of either σ or φ individually is not important as the expression for the

long-run covariance matrix above highlights. However, a high value of σ on its own would bias static estimators;
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• The two fully-modified estimators do not handle well the case of endogenous regressors (σ = 0.7). These two

estimators are biased, more variable, and have large size distortions;

• SUCCR seems to provide the most efficient estimator among those studied here. It does suffer from more severe size
distortions than our estimators. Its performance in the endogenous regressors case is better than the fully-modified

case, but not as good as that of our DOLS or DGLS estimators;

• Increasing the number of regressors and equations leads to size distortions. The effect of doubling the number of
regressors or doubling the number of equations is about the same.

Overall, our DGLS estimator performs well in all cases relative to its competitors and has substantial advantages in

some cases. In particular, it seems to control size well and to handle endogenous regressors admirably.

4 Empirical Application: Testing for PPP

As already discussed, there is a large literature on testing PPP. The tests carried out in this paper are based on the

system of regressions:

ln sit = β0i + β1i ln (pit) + β2i ln (p
∗
t ) + εit (21)

We test PPP in two steps, first looking at the proportionality condition while assuming that symmetry holds, and then

testing the symmetry condition directly. We see four main advantages to this approach:

1. Separate tests of symmetry and proportionality: looking at these two conditions separately will provide us with

evidence on the sources of rejections of PPP in most other studies. Our new tools provide efficient tests of the

symmetry condition in (21) which consists of testing β1i = −β2i and of the proportionality condition which consists
of testing that the coefficient on relative prices is 1. In tests of symmetry, there is a regressor that is common

to all equations (the price level of the numeraire country) which makes it necessary to use the minimum distance

estimator of section 2.2. There is no common regressor in our tests of proportionality and so the efficient DGLS

estimator of section 2.1 can be applied;

2. PPP is the null hypothesis: in classical testing methodology, there is a strong bias towards the null hypothesis and

we do not reject it unless there is strong evidence against it. Hence, it seems natural to specify the null hypothesis

as the theory to be tested, in this case PPP. Most studies reverse the role of the null and alternative hypotheses

and in our opinion this alters the interpretation of test results in undesirable ways. If we cannot reject the null

hypothesis of real exchange rate nonstationarity for example, it is unclear whether that is because PPP does not

hold or because the selected tests have low power;
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3. The class of tests is invariant to the choice of numeraire country: under the null hypothesis of PPP, a change in the

numeraire country still leads to a regression of the form (21) with β1i = 1 and β2i = −1. Of course, the properties
of the error term εt depend on the choice of numeraire and therefore for a given sample, our evidence will differ on

the presence or absence of PPP. However, asymptotically, the inference obtained will remain valid regardless of the

choice of numeraire if the null hypothesis is true. Under the alternative hypothesis, this is not the case, and the

power of our test will depend on which country is used as numeraire;

4. Individual tests: our methodology has the distinct advantage of using multivariate information to improve efficiency

while preserving the ability of carrying out tests of PPP on individual currencies. Panel unit root tests do not allow

for this possibility as the usual null hypothesis is that all real exchange rates in the panel have a unit root. When

this null hypothesis is rejected, it is not clear how to interpret the results and in particular how to decide which

countries have stationary real exchange rates and which ones do not.

5. No need for cointegration tests: a further advantage is that it bypasses the difficulties associated with unit root and

cointegration tests since if (21) is not a cointegration regression, that is if εit is non-stationary for any value of β0i,

β1i and β2i, our test statistics will diverge to infinity (equation (21) becomes a spurious regression, see theorem

1(d) in Phillips (1986)). In this case, our test will correctly conclude that PPP is not supported by the data;

6. Efficient estimators: finally, our tests are based on efficient estimators. Other multivariate approaches, for example

Flôres et al. (1999), cannot claim efficiency since the estimator of an AR(1) model does not have a mixed nor-

mal distribution. Only with estimators that have a limiting mixed normal distribution can meaningful efficiency

statements be made.

Other work using this framework to test PPP include Edison, Gagnon, and Melick (1995) who find that tests of PPP

based on the coefficients of the cointegrating vector tend to be more powerful than simple cointegration tests. This is

intuitive since we are testing against a more specific alternative than a general cointegration test. Cheung and Lai (1993)

also look at tests on the coefficients of the cointegrating vector and find that these are more powerful than cointegration

tests. Finally, Li (1999) used a Bayesian approach to conclude that the data does not support PPP at the monthly

frequency but is more supportive at the quarterly and annual frequencies.

The data we employ covers the entire recent float for the G-7 countries (1974-1998, 100 quarterly observations per

country). We end the sample in 1998 to avoid potential impacts of the introduction of the Euro. The data was obtained

from IFS and consists of monthly averages of the bilateral exchange rates relative to the US dollar and national price

indices. We consider three separate prices indices: consumer prices, producer prices, and GDP deflators. 8

Table 3 presents the short-run correlation matrix of changes in the 6 log of real exchange rates relative to the US

dollar using consumer prices and is similar to table 1 in Flores et al. (1999). Three explanations can account for the
8Producer prices are not available for France and starts in 1981 for Italy in IFS. We have deleted these two countries from the analysis

when using producer prices.
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large correlation, in particular among European countries. The first one is the presence of various nominal exchange

rate co-ordination mechanisms among European countries over the period. The second source of correlation, as pointed

out by O’Connell (1998) , is the use of a numeraire country (in this case the United States). Finally, the international

transmission of shocks among these countries leads to correlation among their real exchange rates.

Table 3. Short-run correlation matrix of (log) real exchange rate changes

Canada 1.000

France 0.031 1.000

Germany 0.097 0.909 1.000

Italy 0.121 0.835 0.818 1.000

Japan 0.035 0.466 0.494 0.330 1.000

United Kingdom 0.187 0.655 0.644 0.701 0.390 1.000

Table 4 is identical to the previous table, but it compares the long-run correlation of changes in the log real exchange

rates among the countries involved. There are large off-diagonal entries, especially among European countries, but also

between Japan and Europe. Canada is the only country with small (and sometimes negative) correlation with the other

countries in the sample. These long-run correlations were neglected by previous authors and will be used to gain efficiency

in testing for PPP.

Table 4. Long-run correlation matrix of log real exchange rate changes

Canada 1.000

France −0.156 1.000

Germany −0.110 0.929 1.000

Italy 0.001 0.851 0.841 1.000

Japan −0.155 0.557 0.615 0.380 1.000

United Kingdom 0.007 0.713 0.563 0.690 0.268 1.000

4.1 Tests of proportionality

To begin with, we impose symmetry (β1i = −β2i) to directly test the proportionality condition. We thus look at regres-
sions:

ln sit = β0i + β1i ln (pit/p
∗
t ) + εit i = 1, ..., N (22)
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and test the null hypothesis that β1i = 1 for each country i. Since there is no common regressor in this case, we can

apply our efficient estimator of section 2.1 to this set of regressions. The condition that no cointegration exists among

regressors reduces to the condition that relative prices are not cointegrated. We therefore perform residual-based tests for

cointegration on our data, and the results are presented in table 5 below along with the appropriate MacKinnon (1996)

critical values for all possible normalizations (we have included a linear trend as some relative prices exhibit trending

behavior). It is not necessary to repeat most tests with Germany as numeraire since the test statistics are identical. To

see this, suppose that we test for cointegration with normalization on country 1’s relative price relative to the United

States. The estimated regression is:

ln

µ
pCANt

pUSt

¶
= γ0 + γ1t+ γ2 ln

µ
pFRt
pUSt

¶
+ γ3 ln

µ
pGEt
pUSt

¶
+ γ4 ln

µ
pITt
pUSt

¶
+ γ5 ln

µ
pJAt
pUSt

¶
+ γ6 ln

µ
pUKt
pUSt

¶
+ εit

If we subtract ln
¡
pGEt

¢
and add ln

¡
pUSt

¢
to each side of this equation and collect terms, we obtain:

ln

µ
pCANt

pGEt

¶
= γ0+γ1t+γ2 ln

µ
pFRt
pGEt

¶
+(1− γ2 − γ3 − γ4 − γ5) ln

µ
pUSt
pGEt

¶
+γ4 ln

µ
pITt
pGEt

¶
+γ5 ln

µ
pJAt
pGEt

¶
+γ6 ln

µ
pUKt
pGEt

¶
+εit

which is the same regression and gives numerically identical test statistics. Therefore, the only test that we need to

carry out with Germany as numeraire is the one that normalizes on the US relative price level.

Table 5. Cointegration tests of (log) relative price levels

(* indicates significant at the 5% level)

Consumer prices Producer prices GDP deflators

Numeraire Normalization Zt Zα ADF Zt Zα ADF Zt Zα ADF

Canada -2.471 -13.085 -2.393 -2.015 -9.157 -1.933 -2.226 -11.625 -2.297

France -3.766 -26.028 -3.351 - - - -3.521 -21.351 -3.889

Germany -4.012 -27.584 -3.117 -2.580 -14.962 -2.724 -3.418 -22.302 -3.365

U. S. Italy -4.030 -28.696 -3.797 - - - -3.561 -22.638 -4.157

Japan -4.618 -33.202 -3.081 -3.203 -23.060 -3.475 -10.472* -84.004* -2.966

U.K. -4.529 -31.598 -5.650* -2.644 -11.598 -3.247 -4.726 -23.065 -5.842*

Germany U.S. -2.956 -16.634 -3.588 -3.039 -19.810 -3.078 -2.629 -14.209 -2.970

5% critical value -5.188 -42.141 -5.188 -4.576 -34.147 -4.576 -5.188 -42.141 -5.188
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There are a few rejections of the null hypothesis of no cointegration, but these represent the exception rather than the

rule. The only rejections occur with the U.K. CPI and GDP deflator using the ADF test and the Japanese GDP deflator

using the Zt and Zα tests. It thus appears reasonable to assume that relative prices are not cointegrated in the following.

Table 6 presents the results of estimating equation (22) using all 6 estimators in the Monte Carlo experiment above

and using the three different sets of price indices with the United States as the numeraire. The number of leads and

lags was selected using BIC. It turns out that the criterion often prefers a small number of leads and lags, especially for

system methods.

Looking at first at the results for consumer prices, we can easily reject the joint null hypothesis of proportionality at

any reasonable significance level with all three system methods (SDOLS, DGLS, and SUCCR). The Wald statistics

are reported in the last column of the table and each has a χ2 (6) distribution under the null hypothesis. Turning to

individual tests, we cannot reject proportionality for Canada, Italy, and the UK when using our efficient GLS estimator.

The non-rejection for these three countries is robust across methods as well. We can reject the null hypothesis for Italy

and UK only with SUCCR and for Canada with FM-OLS. On the other hand, Germany is only rejected with our DGLS

estimator. On the basis of the reported standard errors, dynamic GLS generally provides more precise estimates than

any either individual OLS or DOLS, suggestive of efficiency gains by accounting for cross-country correlations. The

use of system OLS is not particularly effective in providing more precise estimates because the much higher number of

additional parameters that must be estimated dominate the efficiency gains from the cross-country correlations. The

reported standard errors for SUCCR are much smaller than for those for any other method, and this leads to a very large

Wald statistic for the joint test.

As emphasized by other authors, it is important to look at system methods in testing for PPP. However, it is not

sufficient to reject proportionality for Italy and Germany. It is important to also look at cross-country correlations

through the use of GLS. This provides efficiency gains and increased power sufficient to reject the hypothesis that

the proportionality condition implied by purchasing power parity is a reasonable description of long-run exchange rate

behavior.
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Table 6. Tests of proportionality condition - Estimates of β1i with United States as numeraire

(standard errors in parentheses, * indicates significantly different from 1 at 5% level)

Canada France Germany Italy Japan U.K. Joint test (p-value)

IDOLS 1.083
(1.044)

2.390
(0.417)

∗ 1.059
(0.301)

1.132
(0.161)

1.891
(0.245)

∗ 0.628
(0.325)

SDOLS −0.345
(1.516)

2.484
(0.489)

∗ 0.296
(0.589)

1.205
(0.278)

1.085
(0.539)

0.777
(0.560)

18.43 (0.005)

Consumer DGLS 1.279
(0.414)

1.629
(0.078)

∗ 0.677
(0.120)

∗ 0.898
(0.082)

1.580
(0.247)

∗ 0.638
(0.273)

143.42 (0.000)

prices FM −OLS −1.112
(1.021)

∗ 1.645
(0.329)

0.925
(0.265)

0.846
(0.116)

2.099
(0.239)

∗ 0.869
(0.234)

FM −GLS 1.106
(0.333)

1.567
(0.067)

∗ 0.998
(0.069)

0.963
(0.043)

2.153
(0.125)

∗ 0.923
(0.129)

SUCCR 1.098
(0.182)

1.608
(0.051)

∗ 0.921
(0.044)

0.912
(0.026)

∗ 1.934
(0.104)

∗ 0.694
(0.063)

∗ 591.45 (0.000)

IDOLS 1.100
(0.114)

- 1.814
(0.406)

∗ - 1.901
(0.177)

∗ 0.600
(0.206)

SDOLS 0.933
(0.163)

- 2.369
(0.827)

- 2.004
(0.269)

∗ 0.586
(0.288)

∗ 25.07 (0.000)

Producer DGLS 1.012
(0.114)

- 1.541
(0.328)

- 1.679
(0.144)

∗ 0.833
(0.201)

∗ 54.60 (0.000)

prices FM −OLS 1.036
(0.107)

- 1.681
(0.378)

- 1.833
(0.157)

∗ 0.542
(0.171)

∗

FM −GLS 1.066
(0.082)

- 1.249
(0.206)

- 1.616
(0.102)

∗ 0.659
(0.131)

∗

SUCCR 1.076
(0.070)

∗ - 1.175
(0.155)

∗ - 1.578
(0.088)

∗ 0.699
(0.124)

∗ 155.66 (0.000)

IDOLS 1.548
(1.356)

1.942
(0.449)

∗ 0.741
(0.573)

0.833
(0.112)

2.286
(0.268)

∗ 0.113
(0.278)

∗

SDOLS 0.054
(1.823)

1.926
(0.631)

−0.269
(0.832)

0.814
(.205)

1.248
(0.637)

−0.022
(0.430)

∗ 16.75 (0.010)

GDP DGLS 1.381
(0.647)

1.027
(0.135)

0.700
(0.196)

0.694
(0.071)

∗ 1.175
(0.217)

0.206
(0.191)

∗ 69.85 (0.000)

deflators FM −OLS 1.142
(1.125)

0.929
(0.285)

0.733
(0.481)

0.685
(0.078)

∗ 1.548
(0.285)

0.240
(0.181)

∗

FM −GLS 0.686
(0.469)

1.085
(0.092)

0.753
(0.150)

0.779
(0.037)

∗ 2.685
(0.119)

∗ 0.863
(0.110)

SUCCR 1.083
(0.261)

0.915
(0.071)

0.827
(0.126)

0.696
(0.026)

∗ 2.440
(0.100)

∗ 0.513
(0.058)

∗ 839.71 (0.000)

The results with producer prices are slightly different from those with consumer prices for the four countries for which

we have data. We reject proportionality for Japan and the UK and fail to reject for Canada and Germany. As emphasized

by other researchers, the use of this price index is more favorable to PPP. The statistics for the joint null hypothesis

tend to be smaller. Note that the appropriate distribution for these statistics is χ2 (4) since we have data for only 4

countries. Finally, the results with GDP deflators are similar. As a rule, we reject the proportionality null hypothesis for
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Italy, Japan, and the United Kingdom, irrespective of the method used, while we fail to reject for Canada, France, and

Germany.

Table 7 reports the same information as table 6 but using Germany as the numeraire country. The results are more

sympathetic to proportionality. There are fewer rejections based on individual tests, and the joint null of proportionality

cannot be rejected at the 5% level using the DOLS estimator for the consumer prices and GDP deflators. Another

difference is that the use of producer prices is less supportive of proportionality than consumer prices or GDP deflators

as evidenced by the higher value of the Wald statistics (despite the lower degrees of freedom).

Table 7. Tests of proportionality condition - Estimates of β1i with Germany as numeraire

(standard errors in parentheses, * indicates significantly different from 1 at 5% level)

Canada France U.S. Italy Japan U.K. Joint test (p-value)

IDOLS 1.051
(0.327)

0.924
(0.050)

1.059
(0.301)

0.850
(0.121)

2.374
(0.650)

∗ 0.765
(0.166)

SDOLS 0.319
(0.600)

0.879
(0.071)

0.296
(0.589)

0.756
(0.168)

1.004
(0.921)

0.442
(0.251)

∗ 5.28 (0.509)

Consumer DGLS 1.360
(0.304)

0.890
(0.049)

∗ 1.129
(0.285)

0.842
(0.096)

1.328
(0.363)

0.547
(0.161)

∗ 33.03 (0.000)

prices FM −OLS 1.385
(0.265)

0.944
(0.035)

1.072
(0.265)

0.934
(0.071)

2.875
(0.614)

∗ 0.841
(0.106)

FM −GLS 1.195
(0.178)

0.956
(0.028)

0.774
(0.150)

0.920
(0.055)

2.354
(0.234)

∗ 0.831
(0.085)

∗

SUCCR 1.067
(0.099)

0.942
(0.018)

∗ 0.803
(0.090)

∗ 0.857
(0.025)

∗ 1.651
(0.084)

∗ 0.756
(0.033)

∗ 206.90 (0.000)

IDOLS 1.515
(0.204)

∗ - 1.814
(0.408)

∗ - 1.645
(0.153)

∗ 1.401
(0.258)

SDOLS 1.607
(0.365)

- 2.369
(0.831)

- 1.486
(0.200)

∗ 1.077
(0.180)

23.03 (0.000)

Producer DGLS 1.108
(0.129)

- 0.883
(0.293)

- 1.538
(0.147)

∗ 0.778
(0.133)

53.23 (0.000)

prices FM −OLS 1.353
(0.183)

- 1.616
(0.380)

- 1.590
(0.149)

∗ 0.868
(0.094)

FM −GLS 1.192
(0.100)

- 1.150
(0.210)

- 1.551
(0.114)

∗ 0.683
(0.074)

∗

SUCCR 1.274
(0.072)

∗ - 1.367
(0.126)

∗ - 1.564
(0.109)

∗ 0.741
(0.066)

∗ 168.26 (0.000)

IDOLS 1.074
(0.606)

0.867
(0.096)

0.741
(0.632)

0.828
(0.113)

1.542
(0.377)

0.713
(0.271)

SDOLS 0.074
(0.894)

0.784
(0.126)

−0.269
(0.916)

0.725
(0.172)

0.667
(0.516)

0.332
(0.347)

4.29 (0.638)

GDP DGLS 1.379
(0.425)

0.911
(0.061)

0.908
(0.490)

0.779
(0.077)

∗ 1.168
(0.335)

0.453
(0.185)

∗ 20.94 (0.002)

deflators FM −OLS 1.703
(0.520)

0.921
(0.063)

1.172
(0.530)

0.859
(0.070)

∗ 1.590
(0.313)

0.700
(0.155)

FM −GLS 1.384
(0.284)

0.929
(0.041)

0.985
(0.316)

0.819
(0.041)

∗ 2.161
(0.209)

∗ 0.763
(0.110)

∗

SUCCR 1.301
(0.222)

0.925
(0.031)

∗ 0.837
(0.274)

0.818
(0.035)

∗ 2.368
(0.202)

∗ 0.778
(0.075)

∗ 138.84 (0.000)
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The results we obtain are therefore sensitive to the choice of numeraire. This is to be expected given that the null

hypothesis of PPP is rejected by the data and numeraire invariance holds only under the null hypothesis. The various

estimators seem to give similar results. However, our system dynamic OLS seems to be heavily penalized in terms of

precision by the large number of parameters it has to estimate. The efficiency gain coming from the addition of leads

and lags of first differences of relative prices from other countries is outweighed by the burden of having to estimate the

additional parameters. Based on the more efficient system estimators (DGLS and SUCCR), the joint null proportionality

is easily rejected regardless of the choice of numeraire or price index. Individual tests suggest that Japan is the country

where we reject proportionality the most emphatically, while Canada seems to be the country for which proportionality

is most difficult to reject.

4.2 Tests of symmetry

The second part in our investigation of sources of rejection of PPP is to test the symmetry condition. The general

formulation of our system of equation is:

ln sit = β0i + β1i ln (pit) + β2i ln (p
∗
t ) + εit. (23)

Symmetry implies that β1i = −β2i. Since we do not impose this condition, there is a common regressor in each equation
in the form of the price level for the numeraire country, p∗t . We therefore use the minimum distance estimator of section

2.2 to estimate the parameters of this system. The method first estimates the unrestricted form of (23) that is log nominal

exchange rates are regressed on all log price levels using the Stock and Watson (1993) leads and lags estimator. The

number of leads and lags to add is estimated using BIC again. In a second step, the restrictions that only the domestic

and numeraire price levels appear in each equation are imposed using minimum distance. This is the efficient estimator

in this context. We then test the null hypothesis of symmetry for each country individually and jointly. The results are

presented in table 8 with the United States as numeraire and table 9 with Germany as numeraire.
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Table 8. Tests of symmetry condition - Estimates of β1i and β2i with United States as numeraire

(standard errors in parentheses, * indicates symmetry rejected at 5% level)

Canada France Germany Italy Japan U.K. Joint test (p-value)

Consumer prices β1i −2.520
(0.325)

∗ 1.704
(0.103)

∗ −2.018
(0.200)

∗ 2.205
(0.165)

6.518
(0.963)

0.540
(1.121)

∗ 665.26 (0.000)

β2i 3.749
(0.359)

∗ −0.405
(0.151)

∗ 2.307
(0.147)

∗ −2.417
(0.310)

−6.346
(0.495)

2.464
(1.498)

∗

Producer prices β1i 0.516
(0.163)

− 1.042
(0.408)

∗ − 2.895
(0.284)

∗ 1.127
(0.149)

23.16 (0.000)

β2i −0.522
(0.215)

− −0.540
(0.289)

∗ − −1.792
(0.132)

∗ −1.376
(0.277)

GDP deflators β1i −1.347
(0.279)

∗ 2.249
(0.236)

∗ −0.990
(0.187)

∗ 0.371
(0.291)

∗ 4.767
(0.518)

∗ −2.929
(1.028)

∗ 1672.0 (0.000)

β2i 0.965
(0.307)

∗ −5.937
(0.340)

∗ −2.763
(0.162)

∗ −4.608
(0.677)

∗ −1.830
(0.284)

∗ −2.875
(1.649)

∗

In almost all cases, symmetry is easily rejected. There are six non-rejections in the tables: with the United States

as numeraire, we cannot reject symmetry for Italian and Japanese CPI, and Canadian and UK PPI. With Germany as

numeraire, the only two non-rejections are for Canadian and Italian consumer prices.

Table 9. Tests of symmetry condition - Estimates of β1i and β2i with Germany as numeraire

(standard errors in parentheses, * indicates symmetry rejected at 5% level)

Canada France U.S. Italy Japan U.K. Joint test (p-value)

Consumer prices β1i −0.299
(0.265)

1.180
(0.079)

∗ 2.648
(0.256)

∗ 0.510
(0.108)

9.786
(0.857)

∗ −3.165
(0.490)

∗ 693.77 (0.000)

β2i 0.290
(0.515)

−1.642
(0.172)

∗ −6.670
(0.482)

∗ −0.734
(0.361)

−15.930
(0.861)

∗ 10.938
(1.157)

∗

Producer prices β1i 1.144
(0.160)

∗ - 1.539
(0.230)

∗ - 0.640
(0.294)

∗ −0.040
(128)

∗ 41.24 (0.000)

β2i −2.608
(0.517)

∗ - −2.897
(0.507)

∗ - −2.545
(0.487)

∗ 0.786
(0.371)

∗

GDP deflators β1i −1.192
(0.090)

∗ 0.537
(0.032)

∗ −1.684
(0.147)

∗ −0.119
(0.047)

∗ 0.060
(0.120)

∗ −0.516
(0.063)

∗ 2179.3 (0.000)

β2i 3.574
(0.136)

∗ 0.019
(0.061)

∗ 3.637
(0.200)

∗ 2.429
(0.146)

∗ −0.622
(0.097)

∗ 2.234
(0.139)

∗

It is important to note that our rejection of PPP for a subset of countries based on failures of both the symmetry

and proportionality conditions is perfectly consistent with recent findings of evidence for PPP based on panel unit root

tests. These tests impose the symmetry and proportionality conditions, and a rejection of the null hypothesis that all

real exchange rates have a unit root simply suggests that for some countries, PPP is a reasonable approximation to

the behavior of their exchange rates. However, that methodology does not inform us on which country are likely to be
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supportive of PPP and which ones are not and what is the source of rejection of PPP. Our methodology suggests that

on balance, Canada is the most likely country for which PPP holds relative to the United States. We also find that

proportionality has, on the whole, more support in the data than symmetry, as evidenced by the higher Wald statistics

for the joint hypothesis of symmetry.

4.3 A model with a proxy for nontraded goods

Since PPP does not seem to be a reasonable approximation for most countries, we investigated an alternative model of

exchange rate determination. One common explanation for the failure of PPP is the presence of nontraded goods for

which the law of one price does not need to hold. This is also why some authors prefer to use producer prices rather

than consumer prices when testing for PPP since the former is thought to contain a smaller proportion of goods that are

not traded internationally. We try to control for the presence of nontraded goods by considering the model proposed by

Kakkar and Ogaki (1999) . In essence, their model consists of using the ratio of producer to consumer prices as a proxy

for the relative price of tradable versus non-tradable goods. The model to be estimated is therefore:

ln qit = γ0i + γ1i,1 lnwit + γ1i,2 lnw
∗
t + uit (24)

where qit is the real exchange rate for country i, wit is the proxy for the relative price of tradable goods for the home

country i and w∗t is the same variable for the foreign country (the numeraire). As in Kakkar and Ogaki, we will use

the ratio of producer to consumer prices as our definition of wit. The real exchange rate is computed using our most

comprehensive price index, the GDP deflator. The coefficients γ1i,k have the interpretation of the share of tradable goods

in the overall price index for either the country of interest or the numeraire. We therefore expect these coefficients to lie

between 0 and 1 in magnitude (the coefficient for the numeraire country should have a negative sign).

In the same way as before, the use of a numeraire country implies that there is a common regressor to all equations

in the system. Thus, Kakkar and Ogaki could only estimate their model for one country at a time, Instead, we use the

minimum distance estimator with the Stock and Watson estimator in the first stage and number of leads and lags selected

by BIC. Table 8 reports results of the estimation of this system of equations.

Table 9. Estimates of γ1i,1 and γ1i,2 in Kakkar-Ogaki model with United States as numeraire

(standard errors in parentheses)

Canada Germany Japan U.K.

γ1i,1 1.664
(0.164)

3.690
(0.650)

2.108
(0.709)

2.985
(0.767)

γ1i,2 −1.339
(0.137)

−1.038
(0.591)

0.682
(0.916)

−2.035
(0.526)

The coefficients that we find are close to those in Kakkar and Ogaki with the exception of the foreign price of

tradables for Japan (Kakkar and Ogaki found -4.09 using post Bretton-Woods data with real exchange rates defined
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using consumption deflators). All coefficients have the expected sign, again with the exception of the coefficient on the

foreign relative price of tradables for Japan. However, most lie outside of the unit interval although it would not be

possible to reject that they lie within that interval in some cases. Note that for the cases that are comparable to Kakkar

and Ogaki (they have post Bretton Woods data for Canada, UK and Japan), our estimates have smaller standard errors,

reflecting the efficiency gain in estimating the model as a system. We must however agree with Kakkar and Ogaki and

conclude that there is little support for their model.

5 Conclusion

This paper has proposed new estimators of the SUR model with integrated regressors based on an augmented regression

model. We have derived the asymptotic distributions of our estimators and indicated that a feasible generalized least

squares estimator of the augmented model using the long-run covariance matrix is the most efficient among them. We

have also suggested the use of a minimum distance estimator in the case where there exists a common regressor in each

equation in the system.

Monte Carlo results suggest that our dynamic GLS estimator compares favorably with other estimators and improves

noticeably upon them in some situations. Moreover, inference with this estimator has size close to its nominal level.

Fully-modified estimators suffer from more noticeable size distortions.

An application of the methods to testing of purchasing power parity among G-7 countries demonstrates the importance

of analyzing this issue in a system framework and taking into account cross-country correlations. Our approach allows

for direct tests of the symmetry and proportionality conditions implied by PPP. With our dynamic GLS system method,

we are able to reject proportionality for PPP for 3 of the 6 countries in our analysis when using the United States as

numeraire and consumer prices. In this same case, we reject symmetry for 4 out of 6 countries. This casts doubts on the

validity of PPP as a reasonable description of long-run exchange rate behavior and suggests that rejections of PPP are

due to failure of both the symmetry and proportionality conditions.

6 Appendix

Proof of Proposition

The proof uses standard arguments and will be mostly omitted. It suffices to notice that we can write

GT∗
³
b̂DGLS − b

´
=

⎛⎝ FT∗
³
β̂DGLS − β

´
√
T ∗
³bΠDGLS −Π´

⎞⎠ =

⎛⎝ A11 A12

A012 A22

⎞⎠−1⎛⎝ B1

B2

⎞⎠ ,
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where

A11 =
T−KX
t=K+1

F−1T∗ x̃tΩ̂
−1
uu.vx̃

0
tF
−1
T∗

A12 =
³

1√
T∗

PT−K
t=K+1 F

−1
T∗ x̃tΩ̂

−1
uu.v

¡
∆x0t−K ⊗ IN

¢
· · · 1√

T∗

PT−K
t=K+1 F

−1
T∗ x̃tΩ̂

−1
uu.v

¡
∆x0t+K ⊗ IN

¢ ´

A22 =

⎛⎜⎜⎜⎝
1
T∗
PT−K

t=K+1

³
∆xt−K∆x

0
t−K ⊗ Ω̂−1uu.v

´
· · · 1

T∗
PT−K

t=K+1

³
∆xt−K∆x

0
t+K ⊗ Ω̂−1uu.v

´
...

. . .
...

1
T∗
PT−K

t=K+1

³
∆xt+K∆x

0
t−K ⊗ Ω̂−1uu.v

´
· · · 1

T∗
PT−K

t=K+1

³
∆xt+K∆x

0
t+K ⊗ Ω̂−1uu.v

´
⎞⎟⎟⎟⎠ ,

and

B1 = F−1T∗

T−KX
t=K+1

x̃tΩ̂
−1
uu.vξ

∗
t

B1 =

⎛⎜⎜⎜⎝
1√
T∗

PT−K
t=K+1

³
∆xt−K ⊗ Ω̂−1uu.vξ∗t

´
...
1√
T∗

PT−K
t=K+1

³
∆xt+K ⊗ Ω̂−1uu.vξ∗t

´
⎞⎟⎟⎟⎠ .

Then, with K3

T → 0 and
√
T
P
s>|K| kπsk = o (1), we can use similar arguments to those in Saikkonen(1991) to show that

as T →∞

FT∗
³
β̂DGLS − β

´
⇒

µZ 1

0

B̃v (r)Ω
−1
uu.vB̃

0
v (r) dr

¶−1 Z 1

0

B̃v (r)Ω
−1
uu.vdBuu.v (r)

≡ MN

Ã
0,

µZ 1

0

B̃v (r)Ω
−1
uu.vB̃

0
v (r) dr

¶−1!
,

where Buu.v (r) = Bu (r)− ΩuvΩ−1vv Bv (r) . The derivation of the other two results is similar. ¥
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